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Abstract: Battery management systems (BMS) are important for ensuring the safety, efficiency and
reliability of a battery pack. Estimating the internal equivalent circuit model (ECM) parameters of
a battery, such as the internal open circuit voltage, battery resistance and relaxation parameters, is
a crucial requirement in BMSs. Numerous approaches to estimating ECM parameters have been
reported in the literature. However, existing approaches consider ECM identification as a joint
estimation problem that estimates the state of charge together with the ECM parameters. In this
paper, an approach is presented to decouple the problem into ECM identification alone. Using the
proposed approach, the internal open circuit voltage and the ECM parameters can be estimated
without requiring the knowledge of the state of charge of the battery. The proposed approach is
applied to estimate the open circuit voltage and internal resistance of a battery.

Keywords: battery management system; battery equivalent circuit model; least squares estimation;
battery internal resistance; Cramer–Rao lower bound

1. Introduction

Rechargeable Li-ion batteries are becoming ubiquitous in wide-ranging applications,
such as electric vehicles, consumer electronics, power equipment and aerospace sys-
tems [1,2]. A battery management system (BMS) is required to ensure the safe, efficient and
reliable operation of battery packs. It is quite well known that Li-ion batteries suffer from
safety issues when operated outside their allowable voltage ranges. It is the task of the BMS
to keep the battery within the operable range to ensure safety. A battery pack that is not
properly managed is neither efficient nor reliable. For example, a pack that is not balanced
is limited in its performance due to weak cells. Such cells can make the pack useless over
time. Consequently, the BMS constantly monitors the battery by measuring the voltage
and current of the battery to perform specific control operations [3]. Using the measured
data, the BMS accurately estimates crucial diagnostic parameters of a battery pack, such
as battery equivalent circuit model parameters (ECM) [4,5], battery capacity [6–8], state of
charge (SOC) [9], state of health (SOH) [10,11], time to shut down and the remaining useful
life (RUL) [12].

Estimation of the electrical equivalent circuit model parameters of the battery is a
wide area of research. The estimated ECM parameters are used to model the voltage drop
within the battery, eventually to estimate the SOC by the voltage-based approach [13].
The estimated ECM parameters, along with the estimated SOC, can be used to compute
the remaining mileage of an electric vehicle. ECM parameters determine the limits of
charging current for safe and fast charging of batteries. In battery thermal management,
with the identified ECM parameters, heat generated within the battery can be computed to
predict the surface temperature of batteries [14] so that it can be maintained within safe
temperature limits.
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Existing approaches to the estimation of ECM parameters can be broadly divided into
time domain and frequency domain approaches. Time domain approaches are methods
which use instantaneous voltage and current measurements to estimate ECM parameters.
In the frequency domain, battery ECM parameters are estimated through electrochemical
impedance spectroscopy (EIS) [15]. EIS approach to battery ECM parameter estimation
requires the application of excitation signals spanning a wide-ranging frequency spectrum,
starting from a low-frequency range (fraction of a Hz) to a very high-frequency range (in
the MHz range). In [16], a nine-parameter model (2RC) was used in ECM parameter esti-
mation in the frequency domain, resulting in moderate accuracy for only certain parameter
estimates. The entire frequency scanning may take close to an hour. Frequency domain
approaches have been extensively employed in battery SOH studies [17,18]. The EIS-based
approaches have been studied generally in laboratory settings to estimate ECM parame-
ters [19,20] and these approaches cannot yet be used in real-life systems. Implementation
of EIS in real-life battery applications requires additional hardware in order to generate
and sense high-frequency excitation signals and their responses. Time domain approaches,
on the other hand, can be implemented without requiring special excitation signals, which
will be the focus of this paper.

The literature on time domain approaches generally considers the co-estimation of
ECM parameters and the SOC [21,22] of battery. For example, in [23], parameter estimation
for four different equivalent models of the battery, that represent typical battery operation
modes, were discussed. For the four models, joint linear parameter estimation and SOC
tracking framework were proposed. This approach is faced with dependencies on the
knowledge of k-parameters of the open-circuit voltage (OCV)—the state of charge repre-
sentation, i.e., OCV-SOC parameters of the battery. Additionally, the estimation of SOC is
usually subject to errors in SOC initialization, integration and uncertainty in the knowledge
of battery capacity. Such SOC errors consequently translate to errors in the estimation
of ECM parameters using the co-estimation approach. The persistence of these errors
can also be seen in methods that model battery parameters as a function of the SOC [24].
When the internal battery impedances are modelled as a function of the SOC, an extended
Kalman filter (EKF) is generally implemented to jointly estimate SOC and the other battery
parameters. Further, different identification methods such as the EKF, particle swarm
optimization (PSO) and recursive least square (RLS) are discussed in [25] to estimate the
battery’s internal ECM parameters along with SOC. In [26], higher accuracy is achieved by
retaining initial values for less important parameters and updating the parameters relevant
to SOC and SOH estimation. It can be said that time-domain approaches to estimating
ECM model parameters of a battery, without requiring other battery state information,
remain sparse. In [27], an approach to independently estimate ECM parameters without
requiring the SOC is proposed, where the observation model was developed based on the
differentials of voltage and current measurements. However, the possibility of estimation
of OCV as one of the parameters is not considered. Further, theoretical performance bounds
in the accuracy of estimation were not derived.

Cramer–Rao lower bound (CRLB) defines the theoretical minimum estimation error
variance, i.e., the theoretical performance bound that an estimator can achieve. In this paper,
it is shown that the CRLB of estimation has a dependency on the choice of current profile
for accurate estimation of internal open-circuit voltage and resistance of the battery. Using
this, better approaches can be developed for ECM parameter estimation by optimizing the
voltage-current profiles. Different works on ECM parameter estimation have considered
different current profiles for the estimation of battery parameters [28]. However, in these
works, it is neither shown that the profiles are optimal for the estimation of parameters nor
is an approach to relating the estimation accuracy to the preferred current profile derived.

The contributions of the present paper are as follows:

• ECM parameter estimation without the knowledge of SOC: In this paper, ECM parameter
estimation is formulated as a linear least squares estimation problem. Using the
proposed approach, the internal open circuit voltage and the ECM parameters can
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be estimated without depending on the OCV-SOC model parameters and the SOC
estimation algorithms, which are potential sources of errors that can eventually affect
the identification of the battery’s internal impedance. The developed approach is a
simplistic model in terms of the voltage and current measurements from a battery.

• Theoretical performance analysis: The theoretical analysis is completed for the proposed
approach using the theoretical bounds of estimation Cramer–Rao lower bound (CRLB).
The CRLB defines the relationship of the estimation accuracy with regard to the
measurement noise characteristics, the number of observations and the current profile.

• Current profile optimization or improved estimation accuracy: It is shown in this paper
that the CRLB takes a simplified closed form for the simple R-int model of the battery.
While it is known that the estimation accuracy improves with lower measurement
noise variance and more observations, avenues are opened to explore current profiles
that minimize the CRLB of estimation.

• Optimization approach to select the current profile: For the first time, an optimization
approach is developed that describes the selection of current profiles to improve
the accuracy of estimation. It is shown that a pulse current of equal charging and
discharging magnitude minimizes the CRLB in the estimation of both the internal
open circuit voltage and the internal resistance of the R-int model of the battery.

The approach presented in this paper is demonstrated using a battery simulator
developed in MATLAB and validated on experimental data collected from a commercial
battery.

The remainder of the paper is structured as follows: In Section 2, the mathematical
derivation of the new measurement model that is based only on the measured voltage and
current through the battery is presented. In Section 3, the derivation of the measurement
model is extended to different model orders. Section 4 describes the proposed parameter
estimation method and Section 5 contains the theoretical performance analysis of the
proposed method. Section 6 summarizes the results of the testing approaches for simulated
and real data. Section 7 concludes the paper.

2. Signal Model of a Battery

Figure 1 shows four different approximations of an ECM to be considered in this paper.
Model 1 represents a short-circuited battery; a detailed analysis of Model 1 parameter
estimation can be found in [5]. Model 2 represents the R-int model and is the subject of
this paper. Models 3 and 4 represent higher-order and more accurate representations of a
battery. Unlike Models 1 and 2, the optimal linear approach to parameter estimation is not
feasible in Models 2 and 3. The derivations presented in this section are based on the most
general model shown in Figure 1d. Section 3 shows how these derivations can be applied
to the other three models.

The measured current through the battery is written as

zi[k] = i[k] + ni[k] (1)

where i[k] is the true current through the battery and ni[k] is the current measurement noise
which is assumed to be zero mean and has a standard deviation (s.d.) σi. The measured
voltage across the battery is

zv[k] = v[k] + nv[k] (2)

where v[k] is the true voltage across the battery and nv[k] is the voltage measurement noise
which is assumed to be zero mean with s.d. σv.
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(d) Model 4

Figure 1. Different equivalent circuit model (ECM) orders. (a) Series resistance only. (b) Series
resistance and battery. (c) Series resistance, the battery and a single RC circuit. (d) Series resistance,
the battery and two RC circuits.

For the ECM model in Figure 1d, the true voltage across the battery, v[k], is written as
the sum of the voltage drop across the internal components, R0, R1, R2 and the EMF, vo[k].
Hence, (2), can be rewritten as,

zv[k] = i[k]R0 + xi1 [k]R1 + xi2 [k]R2 + vo[k] + nv[k] (3)

where the currents through the resistors R1 and R2 can be written in the following form

xi1 [k + 1] , i1[k + 1] = α1i1[k] + (1− α1)i[k] (4)

xi2 [k + 1] , i2[k + 1] = α2i2[k] + (1− α2)i[k] (5)

where

α1 ,e−
∆

R1C1 (6)

α2 ,e−
∆

R2C2 (7)
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and ∆ is the sampling interval. By substituting the measured current zi[k] for i[k], the
currents in (4) and (5) can be rewritten as follows

xi1 [k + 1] = α1xi1 [k] + (1− α1)zi[k]− (1− α1)ni[k] (8)

xi2 [k + 1] = α2xi2 [k] + (1− α2)zi[k]− (1− α2)ni[k] (9)

Now, using (1), (3) can be rewritten in the z domain as follows

Zv[z] = Zi[z]R0 + Xi1 [z]R1 + Xi2 [z]R2 + Vo[z] + Nv[z]− R0Ni[z] (10)

Next, let us rewrite (8) in the z domain

zXi1 [z] = α1Xi1 [z] + (1− α1)Zi[z]− (1− α1)Ni[z] (11)

which yields

Xi1 [z] =
1− α1

z− α1

(
Zi[z]− Ni[z]

)
(12)

and similarly for (9),

Xi2 [z] =
1− α2

z− α2

(
Zi[z]− Ni[z]

)
(13)

By substituting (12) and (13) into (10), one gets

Zv[z] = Zi[z]R0 +
1− α1

z− α1
Zi[z]R1 +

1− α2

z− α2
Zi[z]R2 + Vo[z]

+ Nv[z]−
(

R0 +
1− α1

z− α1
R1 +

1− α2

z− α2
R2

)
Ni[z] (14)

Rearranging (14) and converting it back to the time domain, we get

zv[k] =αzv[k− 1]− βzv[k− 2] + R0zi[k]− Ř1zi[k− 1]

+ Ř2zi[k− 2] + Vo[k] + n̄i[k] + n̄v[k] (15)

where

α = α1 + α2

β = α1α2

Ř1 = (α1 + α2)R0 − (1− α1)R1 − (1− α2)R2

Ř2 = α1α2R0 − α2(1− α1)R1 − α1(1− α2)R2,

Vo[k] = vo[k]− αvo[k− 1] + βvo[k− 2]

n̄v[k] = nv[k]− αnv[k− 1] + βnv[k− 2]

n̄i[k] = −R0ni[k] + Ř1ni[k− 1]− Ř2ni[k− 2]

Consider Vo[k] to be constant over a small window of time k; then, Vo[k] ≈ Vo. There-
fore, (15) can rewritten as

zv[k] =αzv[k− 1]− βzv[k− 2] + R0zi[k]− Ř1zi[k− 1]

+ Ř2zi[k− 2] + Vo + n̄i[k] + n̄v[k] (16)

Now, let us rewrite (16) in the following form

zv[k] = a[k]Tb + nD[k] (17)
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where the observation model a[k]T and the model parameter vector b for the ECM model
are given by

a[k]T = a4[k]T

,
[
zv[k− 1] − zv[k− 2] zi[k] − zi[k− 1] zi[k− 2] 1

]
(18)

b = b4

, [α β R0 Ř1 Ř2 Vo]
T (19)

The subscripts 4 in (18) and (19) indicate that the model corresponds to Model 4, as in
Figure 1d. Equivalent circuit models 1–3 are discussed later in Section 3. The noise in the
voltage drop in (17) is written as

nD[k] , n̄i[k] + n̄v[k] (20)

which has the following autocorrelation

RnD (l) = E(nD[k]nD[k− l]) (21)

This autocorrelation RnD (l) for different values of l are given below:

RnD (0) = E
{

nD[k]nD[k]
}

= E
{{

n2
v[k] + α2n2

v[k− 1] + β2n2
v[k− 2]

+R2
0n2

i [k] + Ř2
1n2

i [k− 1] + Ř2
2n2

i [k− 2]
}}

= (1 + α2 + β2)σ2
v + (R2

0 + Ř2
1 + Ř2

2)σ
2
i (22)

RnD (1) = E
{

nD[k]nD[k− 1]
}

= E
{(
− αnv[k− 1] + βnv[k− 2] + Ř1ni[k− 1]

− Ř2ni[k− 2]
)(

nv[k− 1]− αnv[k− 2]

− R0ni[k− 1] + Ř1ni[k− 2]
)}

= −α(1 + β)σ2
v − Ř1(R0 + Ř2)σ

2
i (23)

RnD (2) = E
{

nD[k]nD[k− 2]
}

= E
{(

βnv[k− 2]− Ř2ni[k− 2]
)

(
nv[k− 2]− R0ni[k− 2]

)}
= βσ2

v + R0Ř2σ2
i (24)

All the noise auto-correlation values can be summarized as follows:

RnD (l) , E
{

nD[k]nD[k− l]
}
=


(1 + α2 + β2)σ2

v + (R2
0 + Ř2

1 + Ř2
2)σ

2
i |l| = 0

−α(1 + β)σ2
v − Ř1(R0 + Ř2)σ

2
i |l| = 1

βσ2
v + R0Ř2σ2

i |l| = 2
0 |l| > 2

(25)

3. ECM Identification of Different Model Orders

The four models are explained below:

• Model 1: A series resistance only (Figure 1a).
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• Model 2: A series resistance and the battery (Figure 1b).
• Model 3: A series resistance, the battery and a single RC circuit (Figure 1c).
• Model 4: A series resistance, the battery and two RC circuits (Figure 1d).

The measured voltage of each of the four equivalent circuit models shown in Figure 1
can be written in the following form:

zv[k] = a[k]Tb + nD[k] (26)

where

a[k]T =


aT

1 [k] Model 1
aT

2 [k] Model 2
aT

3 [k] Model 3
aT

4 [k] Model 4

b =


b1 Model 1
b2 Model 2
b3 Model 3
b4 Model 4

(27)

where

aT
1 [k] = zi[k] aT

2 [k] = [zi[k] 1]

aT
3 [k] =

[
zv[k− 1] zi[k] − zi[k− 1] 1

]
aT

4 [k] =
[
zv[k− 1] − zv[k− 2] zi[k] − zi[k− 1] zi[k− 2] 1

]
b1 = R0 b2 = [R0 Vo]

T

b3 =
[
α1 R0 Ř1 Vo

]T b4 =
[
α β R0 Ř1 Ř2 Vo

]T

For each of the above model complexities, the noise term nD[k] is expressed in terms
of n̄i[k] and n̄v[k] as follows:

n̄v[k] =


n̄v1[k] Model 1
n̄v2[k] Model 2
n̄v3[k] Model 3
n̄v4[k] Model 4

n̄i[k] =


n̄i1[k] Model 1
n̄i2[k] Model 2
n̄i3[k] Model 3
n̄i4[k] Model 4

(28)

where

n̄v1[k] = n̄v2[k] = nv[k]

n̄v3[k] = nv[k]− α1nv[k− 1]

n̄v4[k] = nv[k]− (α1 + α2)nv[k− 1] + α1α2nv[k− 2]

n̄i1[k] = n̄i2[k] = −R0ni[k]

n̄i3[k] = −R0ni[k] + Ř1ni[k− 1]

n̄i4[k] = −R0ni[k] + Ř1ni[k− 1]− Ř2ni[k− 2]

The autocorrelation for all four model orders is as follows:

RnD (0) = E
{

nD[k]nD[k]
}
=


σ2

v + R2
0σ2

i Model 1
σ2

v + R2
0σ2

i Model 2

(1 + α2
1)σ

2
v +

(
R2

0 + Ř2
1

)
σ2

i Model 3

(1 + α2 + β2)σ2
v +

(
R2

0 + Ř2
1 + Ř2

2

)
σ2

i Model 4

(29)
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RnD (1) = E
{

nD[k]nD[k− 1]
}
=


0 Model 1
0 Model 2
−α1σ2

v − R0Ř1σ2
i Model 3

−α(1 + β)σ2
v − Ř1(R0 + Ř2)σ

2
i Model 4

(30)

RnD (2) = E
{

nD[k]nD[k− 2]
}
=


0 Model 1
0 Model 2
0 Model 3
βσ2

v + R0Ř2σ2
i Model 4

(31)

The auto-correlation RnD (l) is zero when l > 2 for all four models.

4. Parameter Estimation Method

The measurements are grouped into batches of equal length Lb. Using (26), the vector
observation model is rewritten for a particular batch of data of length Lb.

zv[κ] = H[κ]Tb + nD[κ] (32)

where κ denotes the batch number,

zv[κ] =


zv[(κ − 1)Lb + 1]
zv[(κ − 1)Lb + 2]

...
zv[κLb]

, nD[κ] =


nD[(κ − 1)Lb + 1]
nD[(κ − 1)Lb + 2]

...
nD[κLb]



H[κ] =


a[(κ − 1)Lb + 1]
a[(κ − 1)Lb + 2]

...
a[κLb]

, a[k]T =


aT

1 [k] Model 1
aT

2 [k] Model 2
aT

3 [k] Model 3
aT

4 [k] Model 4

The correlation matrix of the noise vector nD[κ] is written as

E
(

nD[κ]nD[κ]
T
)
= RnD [κ] (33)

where RnD [κ] is a banded symmetric Toeplitz matrix which is diagonal for Models 1 and 2,
tridiagonal for Model 3 and pentadiagonal for Model 4. The diagonal entry of RnD [κ] is
given by RnD (1), the first off-diagonal entry is given by RnD (1) and the second off-diagonal
entry is given by RnD (2) in (29) to (31). All the other off-diagonal elements of RnD [κ]
are zero.

Given the κth batch of observations, the least square (LS) estimate of b can be written as

x̂LS[κ] =
(

H[κ]TRnD [κ]
−1H[κ]

)−1
H[κ]TRnD [κ]

−1zv[κ] (34)

It can be shown that the covariance of the LS estimation error is

P[κ] =
(

H[κ]TRnD [κ]
−1H[κ]

)−1
(35)

When the parameter b needs to be estimated using more data, the batch length Lb
increases, resulting in significantly high computational complexity. Rather than increasing
Lb, a recursive least square (RLS) algorithm can be employed to achieve the same perfor-
mance without significantly increasing computational load. Algorithm 1 summarizes one
iteration of the RLS algorithm. The input to this algorithm is the estimate x̂[κ] and the
error covariance P[κ] from the prior batch, the new measurement z[κ + 1] and the new
measurement model H[κ + 1]. The outputs are the new estimate x̂[κ + 1] and the updated
error covariance P[κ + 1].
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Algorithm 1
[
x̂[κ + 1], P[κ + 1]

]
= RLS

[
x̂[κ], P[κ], H[κ + 1], z[κ + 1]

]
1: Update residual covariance:

S[κ + 1] = H[κ + 1]P[κ]H[κ + 1]T + R[κ + 1]
2: Update gain:

W[κ + 1] = P[κ]H[κ + 1]TS[κ + 1]−1

3: Update parameter:
x̂[κ + 1] = x̂[κ] + W[κ + 1](z[κ + 1]−H[κ + 1]x̂[κ])

4: Update information:
P−1[κ + 1] = P−1[κ] + H[κ + 1]TR[κ + 1]−1H[κ + 1]

The calculation of the model parameters from the estimates x̂LS[κ] is given below for
Model 3. From (28), the estimate has four elements:

x̂LS[κ] = b3 =
[
α1 R0 Ř1 Vo

]T

After estimation, the parameters of the ECM Model 3, R1 and C1 are recovered
as follows:

R1 =
(Ř1 − α1R0)

(α1 − 1)
, C1 =

−∆
R1 ln α1

5. Performance Analysis

In this section, a theoretical performance analysis of the proposed parameter esti-
mation algorithm is developed. For linear observation model (32) under Gaussian noise
assumption, the Cramer–Rao Lower Bound (CRLB) [29] serves as the lower bound on
the estimation error covariance. It can be shown that, for the observation model (32), the
CRLB is

CRLB =
(

H[κ]TΣ−1H[κ]
)−1

(36)

i.e.,

E
(
(b̂− b)(b̂− b)T

)
≥ CRLB (37)

where b̂ denotes an estimate of b.
Now, let us focus on the CRLB corresponding to Model 2 in Figure 1 for an in-depth

analysis. For this model, the CRLB simplifies to

CRLB = σ2
(

H[κ]TH[κ]
)−1

(38)

and H[κ]TH[κ] can be expanded as follows

H[κ]TH[κ] =

[
∑L

k=1 i(k)2 ∑L
k=1 i(k)

∑L
k=1 i(k) L

]
(39)

where zi(k) = i(k) is assumed in order to simplify the analysis.
Now,

(
H[κ]TH[κ]

)−1 can be simplified as

(
H[κ]TH[κ]

)−1
=

(
1

|H[κ]TH[κ]|

)[
L −∑L

k=1 i(k)
−∑L

k=1 i(k) ∑L
k=1 i(k)2

]
(40)
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where

∣∣∣H[κ]TH[κ]
∣∣∣ = L

L

∑
k=1

i(k)2 −
(

L

∑
k=1

i(k)

)2

(41)

From the above, the CRLB of estimating R0 and Vo, the first and second diagonal
elements, respectively, of (38) can be written as

CRLB(R0) =
σ2

∑L
k=1 i(k)2 − 1

L

(
∑L

k=1 i(k)
)2 (42)

CRLB(Vo) =
(σ2/L)∑L

k=1 i(k)2

∑L
k=1 i(k)2 − 1

L

(
∑L

k=1 i(k)
)2 =

(
σ2

L

) 1

1− 1
L

(
(∑L

k=1 i(k))
2

∑L
k=1 i(k)2

)
 (43)

In other words, one can write

E
(
(R̂0 − R0)

2
)
≥ CRLB(R0) (44)

E
(
(V̂o −Vo)

2
)
≥ CRLB(Vo) (45)

Let us first consider CRLB(R0) in (42). The estimation accuracy depends on the
following three factors:

(1) Measurement noise variance σ2. The lower the measurement noise, the lower the CRLB.
(2) Number of observations L. Under the given assumptions, that R0 remains a constant,

more measurements will decrease estimation error.
(3) Current profile i(k), k = 1, . . . , L. The current profile should be selected in a way that

the error bound in (42) is minimized.

Out of the three factors influencing the estimation error of R0, two are constants. The
current profile i(k), k = 1, . . . , L should be selected in a way that the error can be made as
small as possible.

Remark 1. Let us assume all the values of the current are the same, i.e., i(1) = i(2) = . . . = i(L).
This will make the denominator of (42) zero and lead to infinite error variance. Another way to look
at it is that all equal values of i(k) will make A rank deficient.

We need to find the current profile i(1), i(2), . . . , i(L) such that the CRLB(R0) can be
reduced. The problem can be formally stated as follows:

Problem 1. For a given number of measurements L find i(1), i(2), . . . , i(L) such that the following
cost function is maximized:

JR0(i(1), i(2), . . . , i(L)) =
L

∑
k=1

i(k)2 − 1
L

(
L

∑
k=1

i(k)

)2

(46)

under the constraint that

imin ≤ i(1), i(2), . . . , i(L) ≤ imax (47)

It can be shown that for given values of the current limits imin and imax, a current profile
that alternates between the two extreme values will minimize CRLB(R0).

Minimization of CRLB(Vo) can be formulated as the following problem:
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Problem 2. For a given number of measurements L, find i(1), i(2), . . . , i(L) such that the following
cost function is minimized:

JVo (i(1), i(2), . . . , i(L)) =


(

∑L
k=1 i(k)

)2

∑L
k=1 i(k)2

 (48)

under the constraint that

imin ≤ i(1), i(2), . . . , i(L) ≤ imax (49)

Selecting current limits such that
imin = −imax

and a current profile that alternates between imin and imax will minimize both CRLB(R0)
and CRLB(Vo).

The performance analysis presented in this section shows that the accuracy of the
estimation depends on the excitation signal. By carefully selecting the excitation signal, the
accuracy of ECM parameter estimation can be improved. When there is no control over the
excitation signal, e.g., when using battery usage data for ECM parameter estimation, the
CRLB provides the lower bound on the ECM parameter estimation error.

6. Simulation Analysis

The data for the demonstration in this section were generated using a battery simu-
lator. Figure 2 shows the battery simulator in the form of a block diagram. The battery
simulator uses the equivalent circuit model shown in Figure 1 to simulate the voltage and
current measurements that resemble real-time measurements from a battery. All simulation
analyses in this paper were done by using MATLAB software version R2022a developed by
MathWorks [30]. The OCV effect of the battery, denoted by vo[k] in Figure 1, was generated
using the Combined+3 model [31] with the following model parameters: k0 = −9.082,
k1 = 103.087, k2 = −18.185, k3 = 2.062, k4 = −0.102, k5 = −76.604, k6 = 141.199, and
k7 = −1.117. The voltage measurements across the battery were simulated using the obser-
vation model in (3). The voltage and current measurement noises were implemented based
on (2) and (1), respectively, where the voltage and current measurement noise standard de-
viations were assumed to be equal in magnitude, i.e., σv = σi = σ, where σ was computed
based on the assumed signal-to-noise ratio of the measurement system, defined as

SNR = 20 log
(

I
σ

)
(50)

where I = |i(k)|, k = 1, . . . , L is the amplitude of the current signal that is assumed to be
constant throughout the entire simulation. The relaxation parameters of the ECM are set
at R0 = 0.2, R1 = 0.3, C1 = 50, R2 = 0.3, and C2 = 500. The EECM model in the battery
simulator can be changed in a way that the RC models can be selected from the set of
{(R0), (R1, C1), (R2, C2)}.
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Figure 2. Battery simulator used to simulate the voltage and current measurements in this paper.

First, let us consider the current profile shown in Figure 3. The current is sampled at
10 Hz resulting in L = 1000 samples. The current profile i(1), i(2), . . . , i(L) also holds the
following property

L

∑
i=1

i(k) = 0 (51)

where L = 1000.

0 20 40 60 80 100

Time (sec)

-500

0

500

Figure 3. Current profile 1 generated using the battery simulator with constant amplitude.

Figure 4 shows a plot of OCV Vo(k) over time. It can be seen that when the current
i(k) is positive Vo(k) increases and when i(k) is negative Vo(k) decreases. Since the average
current shown in Figure 3 is zero, the average OCV in Figure 4 is constant as well.
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0 20 40 60 80 100

Time (sec)

3.81655

3.8166

3.81665

3.8167

3.81675

Figure 4. Simulated open circuit voltage (OCV). The average OCV is Vo = 3.8165649 V.

Figure 5 shows a plot of the true voltage across the battery terminals, v(k) = Vo(k) +
i(k)R0, over time. It must be noted that even though Vo(k) changes with time, the magni-
tude of the voltage drop i(k)R0 remains a constant. Moreover, the magnitude of change
in Vo(k) (see Figure 4) is relatively insignificant compared to the magnitude of i(k)R0.
Consequently, the magnitude of v(k) appears unchanged in Figure 5. Another explanation
for this observation is that the change in OCV is small within a duration of 5 s.

0 20 40 60 80 100

Time (sec)

3.7

3.75

3.8

3.85

3.9

3.95

Figure 5. True voltage measurements across the battery terminals.
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Figure 6 shows the voltage measurements from the battery simulator. Here, the battery
simulator is set to Model 2 ECM (see Figure 1), i.e., only R0 = 0.2 Ω had a non-zero
value and all other ECM parameters were set to zero. For now, it is assumed that the
current profile is perfectly known, as shown in Figure 3; i.e., it is assumed that the current
measurement noise is zero.

0 20 40 60 80 100

Time (sec)

3.7

3.75

3.8

3.85

3.9

3.95

Figure 6. Voltage measurements across the battery terminals simulated using the battery simulator.

The least-square estimation algorithm (34) for Model 2 was used to estimate the
resistance R0 and Vo. Let us denote these estimated quantities as R̂0 and V̂o, respectively.
The normalized mean square error (NMSE) of these estimates is defined as

NMSE(R0) =
1

R2
0

M

∑
m=1

(R0 − R̂0(m))2 (52)

NMSE(Vo) =
1

V2
o

M

∑
m=1

(Vo − V̂o(m))2 (53)

where M denotes the number of Monte-Carlo runs.
In order to make the CRLB comparable to the NMSE defined in (52) and (53), the

following CRLB values in (42) and (43) were computed for comparison during simulation
studies.

CRLB(R0)→
CRLB(R0)

R2
0

(54)

CRLB(Vo)→
CRLB(Vo)

V2
o

(55)

6.1. Perfect ECM Assumption

In a perfect ECM assumption, the battery management system assumes the same
model as the battery simulator. We will now consider a scenario where the battery simulator
and BMS assume Model 2. The NMSE for R0 is calculated using Equation (52) where R̂0
for Model 2 is estimated over 1000 Monte-Carlo runs. The CRLB for R0 is calculated
using Equation (54), where the length of current samples (Figure 3) is L = 1000. Figure 7
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shows the NMSE and CRLB for R0 estimation under model matched assumption. It can be
observed that the NMSE is close to the theoretical bound CRLB for all SNR levels indicating
an efficient estimator.

0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

2

2.5

Figure 7. Performance of R0 estimation using ECM Model 2 under perfect ECM assumption.

Similarly, in Figure 8, the NMSE of Vo estimate is plotted with CRLB of Vo for SNR
values between 0 and 40 dB. The NMSE of Vo estimate is calculated using (53) and the
CRLB of Vo estimate is calculated using (55). It can be observed again that the performance
of the estimator is close to the theoretical bound CRLB and that the estimator is efficient.

0 5 10 15 20 25 30 35 40

0

0.005

0.01

0.015

0.02

0.025

Figure 8. Performance of OCV estimation using ECM Model 2 under perfect ECM assumption.
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Now, let us compare the resistance estimates under the perfect ECM assumption
for a particular SNR level. Table 1 contains the R0 estimate for Model 2 under perfect
ECM assumption at SNR = 20 dB. When the BMS and battery simulator assumes Model 2,
the estimate of resistance R0 is obtained as an average from the estimate of R0 over 1000
Monte-Carlo runs. The table also shows another case of perfect ECM assumption where
the simulator, as well as the estimator, correspond to Model 3. Due to this assumption, the
model parameter vector consists of two resistance R0 and R1 values as in Figure 1c. Thus,
when the BMS and battery simulator assumes Model 3, the estimate of resistances, R0 and
R1 are obtained as an average from the estimates of R0 and R1 over 1000 Monte-Carlo runs.

Table 1. Average estimates of equivalent circuit model (ECM) parameters under perfect ECM
assumption (20 dB).

Battery
Simulator BMS R0 R1 R̂0 R̂1

Model 2 Model 2 0.2 NA 0.1999 NA
Model 3 Model 3 0.2 0.1 0.2114 0.0740

6.2. Realistic ECM Assumption

In this section, a simulation-based ECM parameter estimation analysis is presented
based on a realistic ECM assumption in which the battery management system assumes
an ECM model that is different from the one used by the battery simulator to simulate the
measurements. In this section, we consider a scenario where the battery simulator assumes
Model 3 and the BMS assumes Model 2. It must be noted that the CRLB derivations are
done under perfect model assumptions. Figure 9 shows the NMSE and CRLB computed
under the model mismatch assumption. The NMSE is significantly greater than CRLB
at all SNR levels. An explanation for this observation can be stated based on the model
assumptions made for this simulation: ECM Model 3 contains two resistor components, R0
and R1. When a lower order model, here Model 2, is used to estimate the parameters, the
resulting estimate of the resistance is observed to be closer to the sum of the two resistor
components of Model 3. To confirm this observation, let us define a new type of NMSE
as follows:

NMSE(Rtot) =
1

R2
tot

M

∑
m=1

(Rtot − R̂0(m))2 (56)

Here, the estimation error is computed with respect to the total resistance, defined as
Rtot = R0 + R1. Figure 10 shows the computed NMSE based on the two different definitions
given in (52) and (56). In this figure, it can be observed that NMSE(Rtot) is less than the
NMSE for NMSE(R0) at all SNR levels. This means that the BMS under the Model 2
assumption estimates both resistances together, as a summation. Thus, it can be confirmed
that the estimation of resistance of ECM Model 2 is approximately the sum of the two
resistor components of Model 3.

Now, let us compare the estimates of resistances under the perfect and realistic ECM
assumptions at a particular SNR level. Table 2 contains the averages of the R0 and R1
estimates for both assumptions of ECM Model 3. The parameter estimate is obtained as
an average from the estimates of 1000 Monte-Carlo runs at SNR = 20 dB. While using the
realistic ECM model, the estimation algorithm assumes a different model, Model 2. Thus,
from the ECM in Figure 1b, one estimate of resistance is obtained, i.e., 0.2823 Ω. Now we
apply the observation that the resistance of an ECM Model 2 is approximately the sum
of the two resistor components of Model 3. Conforming to this observation, the Model 2
estimate is shown to be the total resistance of ECM Model 3 0.2114 + 0.074 ≈ 0.2823 under
perfect ECM assumption.
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Figure 9. Performance of R0 estimation under model mismatch assumption.
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Figure 10. Performance of R0 estimation under model mismatch assumption.
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Table 2. Average Estimates of ECM Parameters under ECM model mismatch assumption (20 dB).

Battery
Simulator BMS R0 R1 R̂0 R̂1

Model 3 Model 3 0.2 0.1 0.2114 0.0740
Model 3 Model 2 0.2 0.1 0.2823 NA

The simulation analysis presented in this section under realistic ECM assumption is
important because of the fact that when it comes to real battery applications, the assumed
model is always different from the realistic case. Moreover, most battery management
systems resort to reduced order models in order to save computation and hardware com-
plexity.

6.3. Real Data

In this subsection, the performance of the proposed approach for battery parameter
estimation using data collected from a Samsung-30T INR21700 battery cell is presented.
A current profile, shown in Figure 11 is applied to the battery and the voltage across the
battery terminals is recorded. The data collection is performed using the Arbin BT-2000
battery cycler shown in Figure 12 and is made available in this link: https://data.mendeley.
com/datasets/h3yfxtwkjz, accessed on 24 October 2022.
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Figure 11. Current and voltage measurements collected from a real battery using a battery cycler.

The s.d. of the voltage and current measurement error of the device is approximately
0.00033 V and 0.00025 A, respectively. The sampling time of the data is ∆ = 1 second;
this resulted in close to 7200 voltage and current measurements as shown in Figure 11.
Then, least square estimation (34) is performed on the recorded data to estimate the model
parameters. Table 3 shows the parameters obtained when the estimation algorithm is set
to ECM Models 2 and 3, respectively. The parameter estimate is obtained as an average
from the estimates over 1000 Monte-Carlo runs. Here, while using Model 2 to estimate the
parameters, the resistance estimate is R̂0 = 0.0152 Ω. When Model 3 is used, the individual
resistance estimates are R̂0 = 0.0107 and R̂1 = 0.0049, resulting in R̂0 + R̂1 = 0.0152,

https://data.mendeley.com/datasets/h3yfxtwkjz
https://data.mendeley.com/datasets/h3yfxtwkjz
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which is approximately equal to the Model 2 estimation of R̂0. Thus, the observation that
while using Model 2, the resistance obtained is closer to the summation of all the resistor
components of Model 3 holds true for real-battery data.

Figure 12. Experimental setup for battery testing [32].

Table 3. Estimates of ECM Parameters using the real voltage and current measurements.

BMS R̂0 R̂1

Model 2 0.0152 NA
Model 3 0.0107 0.0049

7. Conclusions

In this paper, the Cramer–Rao Lower Bound (CRLB) of estimating the equivalent circuit
model parameters of a battery is derived. It was shown that an alternating current excitation
signal improves the estimation accuracy of the R-int approximation of the equivalent circuit
model. It was shown using simulation studies that the R-int approximation can be efficient;
that is, the estimation error variance becomes the same as the CRLB if the assumed battery
model is also R-int. Further, the cost of reduced order approximation is demonstrated
at various operating conditions (in terms of the signal-to-noise ratio (SNR)) where the
assumed model was more generic than the one assumed by the battery management
system. The proposed approach is demonstrated using data collected from a cylindrical
battery cell.

One of the limitations of the present work is that the proposed approach assumes
that the equivalent circuit model parameters remain constant when the measurements are
taken. In reality, the battery equivalent circuit model parameters are known to change with
temperature, age and usage conditions, such as the state of charge of the battery. This must
be addressed in future works.
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