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Abstract: The total current of dielectrics under DC voltage consists of relaxation current and conduc-
tion current, which contains the information about the relaxation polarization and conduction. The
time-domain spectrum (TDS) is an effective method to study the dielectric properties of insulating
dielectrics. In this paper, the TDS method is also used to study the dielectric properties of the com-
pressed inorganic hexagonal boron nitride (BN) and magnesium oxide (MgO) insulating powders.
It is interestingly found that these inorganic insulating powders shows an abnormal TDS, where
the current decreases monotonically to a certain level at first and then increases with time while in
normal TDS the current decreases monotonically with time and finally reaches a steady value which
is conduction current. The experiments verify that the abnormal phenomenon is attributed to the
moisture absorption of powders during the testing process, which causes an increase in conductivity
and leads to the increasing current at the end of testing time. The insulating powder cannot be
regarded as a time-invariant system during the measurement, and the time-varying characteristic is
mainly manifested in conduction. A time-domain least squares fitting method is presented and is
effective to eliminate the deviation from normal TDS. The results of this paper provide a reference for
dealing with abnormal TDS.

Keywords: abnormal time-domain current spectrum; inorganic insulating powder; polarization;
conductivity; least squares fitting

1. Introduction

Inorganic insulating powder is widely used as raw materials to synthesize electrical
and electronic ceramics [1–3], and is also used as functional filler in polymer composites to
improve their thermal, mechanical, and electrical insulating performance [4–7]. In addition,
due to its excellent high-temperature resistance and radiation resistance, the inorganic
insulating powder is also usually used as insulating material for the fire-resistant cables [8]
and the nuclear power plant’s cables [9], and it has a cheerful prospect of application in
electrical insulation under extreme working environment. Therefore, it is of great academic
and engineering significance to carry out the research on dielectric properties of inorganic
insulating powder.

The relationship between the current following through the specimen and time under
DC voltage is a kind of current TDS, and it is an important method to study the dielec-
tric properties of electrical insulating materials [10]. Usually, this time-domain current
decreases monotonically with time, and finally reaches a steady state, i.e., the conduction
current, which is normally used to calculate the conductivity of insulating materials. When
the conduction current is subtracted from the time-domain current, the absorption current
is obtained and is attributed to the establishment of relaxation polarization. The absorption
current decreases monotonically with time and tends to be zero. By the integration of the
absorption current density and time, the relationship between the relaxation polarization
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and time is obtained. Combined with the trend prediction method, the steady-state polar-
ization of specimen under a certain applied electric field is obtained and then is used to
determine the steady-state susceptibility of insulating material.

In the study of conductivity and relaxation polarization characteristics of inorganic
insulating powder under DC voltage, it can be found that some kind of inorganic insulating
powder shows an abnormal current TDS. That is, the current cannot reach to the steady
state. In this paper, two typical kinds of inorganic insulating powder, i.e., hexagonal boron
nitride (BN) [11–14] and magnesium oxide (MgO) are studied under DC voltage and the
abnormal current TDS are presented. Through the study on the stability of inorganic
insulating powder, the mechanism of the abnormal phenomena is discussed. Moreover, the
analysis method for the abnormal current TDS is presented.

2. Materials and Methods
2.1. Sample Preparation

Commercially available hexagonal BN and granular MgO powders are used in this
research. The average diameter of BN particle is about 10 µm, and that of MgO particle is
about 30 µm. The SEM pictures of BN and MgO powders are shown in Figure 1, which
shows that particle size distribution is basically uniform.
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Figure 1. SEM pictures of BN and MgO powders. (a) SEM picture of BN; (b) SEM picture of MgO. 

Figure 2 shows the XRD spectrum of BN and MgO powders. It can be found that 

there are almost no impurities in powders used in the experiments. 
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Figure 1. SEM pictures of BN and MgO powders. (a) SEM picture of BN; (b) SEM picture of MgO.

Figure 2 shows the XRD spectrum of BN and MgO powders. It can be found that there
are almost no impurities in powders used in the experiments.
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Figure 2. XRD spectrum of BN and MgO powders. (a) XRD spectrum of BN; (b) XRD spectrum
of MgO.
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The powder is short-circuited and dried at 200 ◦C in vacuum with −0.1 Mpa for 48 h
before testing to remove the moisture and residual charge inside the powders. Thereafter,
the powder is cooled down to the experimental temperature in vacuum to measure the
current TDS.

2.2. Measurement System for the Current TDS

A there-electrode system is designed, as shown in Figure 3, for the measurement of
current TDS of inorganic insulating powder under different temperatures and different
electric fields. The high voltage electrode of the three-electrode system is made into a tank
shape, which not only holds the powder specimen, but also the side mechanical pressure.
The measurement electrode and the shield electrode are separated by a polytetrafluoroethy-
lene (PTFE) block, and are assembled into a cylindrical plane plate system fixed by bolts,
so the external mechanical load is uniformly acted on the powder specimen.
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Figure 3. Measurement and electrode systems for the current TDS. (a) Schematic diagram of the
measurement system; (b) Schematic diagram of three-electrode system, where 1—pressure sensor,
2—epoxy resin board, 3—internal insulation, 4—external insulation, 5—measurement electrode with
diameter 50 mm, 6—powder specimen, 7—high voltage electrode with inner diameter 94 mm and
outer diameter 114 mm, 8—shield electrode with inner diameter 54 mm and outer diameter 74 mm,
9—PTFE block, 10—measurement lead, 11—screws, 12—high voltage lead.

The maximum output voltage of HB-Z103-1AC DC voltage supply is 10 kV with an
accuracy of 1 V. A Keithley 6571B electrostatic meter with an accuracy of 10−15 A is used to
measure the TDS.

2.3. Measurement Procedure for TDS

The electrode system is put in a temperature-controlled oven for 5 h to ensure that it
reaches the testing temperature of 25 ◦C and 70 ◦C, respectively. The powder specimen is
placed in the three-electrode system and then is applied by 1 MPa pressure. The thickness
of powder specimen is controlled in the region of 5~7 mm. The whole electrode system is
located in the testing temperature for 1 h, and the temperature of powder specimen is mon-
itored by an infrared temperature gun to ensure it to come into temperature stabilization.
The current TDS of powder specimen is then measured via Keithley 6571B electrostatic
meter for 1 h under 0.1 and 0.7 kV/mm, respectively.
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3. Results and Discussion
3.1. Normal Current TDS

Figure 4a shows the current TDS of BN powder at 25 ◦C in linear coordinate. It can be
seen that the current nearly decreases with time under 0.1 and 0.7 kV/mm, but it cannot be
distinguished from each other in the long time even described as in the inset of Figure 4a.
So, the TDS of BN powder is shown in double logarithmic coordinate as in Figure 4b.
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Figure 4. Current TDS of BN powder at 25 ◦C. (a) Linear coordinate; (b) double logarithmic coordinate.

It can be seen from Figure 4b that the current TDS changes as a straight line with
time at the beginning and gradually tends to the steady state in the double logarithmic
coordinate. The relationship between the current and time is consistent with the Curie
von Schweidler relation also called “universal law” as shown in Equation (1), which is
recognized by many scholars [15] and is used to fit the experimental results in Figure 4b.

i(t) = At−n + idc (1)

In Equation (1), i is the time-domain current, t is the time, At−n is the polarization
absorption current, A and n is constant; idc is the steady-state conduction current.

The current TDS of BN powder as shown in Figure 4 is normal, which is fitted by (1)
to eliminate the noise signal and achieve the decomposition of the polarization absorption
current and the steady-state conduction current. It is yet to be verified whether this
denoising process removes only noise rather than any valuable information. Therefore, the
conventional residuals of the current TDS are analyzed. The residuals are calculated as:

∆i(k) = i(k)− î(k) k = 1, 2, 3, · · · , N (2)

where i(k) is the measured time-domain current and î(k) is the fitted current. ∆i(k) is the
residual value between the measured and fitted current, k is the serial number. The time
step is 1 s. The residual values of BN powder under 0.1 and 0.7 kV/mm are calculated as
shown in Figure 5a,b, respectively.
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Figure 5. Residual values of BN powder at 25 ◦C. (a) 0.1 kV/mm; (b) 0.7 kV/mm.

As can be seen from Figure 5, residual value fluctuates around zero and is independent
of time. This result indicates that the current TDS of BN powder i obeys (1), and the removed
residual is the white noise. In addition, the residual values under 0.7 kV/mm is significantly
higher than that under 0.1 kV/mm, which is mainly attributed to the increase in random
fluctuations of the applied DC power supply with the increasing output voltage.

The relaxation polarization current ip(t) and the conduction current idc can be obtained
by fitting the measured time-domain current of BN powder with (1). The relaxation
polarization P(t) corresponding to ip(t) can be expressed as follows.

P(t) =
∫ t

0
ip(τ)dτ (3)

The relationship between the relaxation polarization and time is obtained by (3), and
then the steady-state relaxation polarization is predicted by the form of a sum of multiple
exponential function, as below.

Under 0.1 kV/mm, the steady-state relaxation polarization of BN powder is 1.67 C/m2, and
the steady-state susceptibility is 1.89. The conduction current density is 1.36 × 10−14 A/cm2,
and the conductivity is 1.36 × 10−15 S/m. Under 0.7 kV/mm, the steady-state relaxation
polarization of BN powder is 9.07 C/m2, and the steady-state susceptibility is 1.46. The
conduction current density is 5.37 × 10−14 A/cm2, and the conductivity is 7.66 × 10−16 S/m.

3.2. Abnormal Current TDS

The current TDS of MgO at 25 ◦C is shown in Figure 6. It can be seen that the current
under 0.7 kV/mm has a larger offset than that under 0.1 kV/mm, which is attributed to
a larger conductive current because the conductive current will increase as the electric
field increases [16]. Whether under 0.1 or 0.7 kV/mm, the time-domain current decays to
a certain degree with time and then gradually increases with time as shown in the inset
of Figure 4. This contradicts with the normal current TDS, and the MgO powder shows
an abnormal current TDS. Moreover, when time is larger than 2000 s, the increase rate of
time-domain current to time under 0.7 kV/mm is greater than that of 0.1 kV/mm. Namely,
the higher electric field leads to a higher increase rate in the long time.
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Figure 6. Current TDS of MgO powder at 25 ◦C.

The abnormal current TDS is not the first observed in MgO powder, similar abnormal
phenomena was found in polymer under DC voltage [17]. The difference is that the former
shows abnormal phenomena under low electric field for no more than 1 h, and the latter
only shows abnormal current TDS under high electric field for a long time (up to a few
days). The abnormal phenomenon of polymer is related to space charge effects, formation,
and dissipation of low fraction products in the polymer material. By contrast, due to the
low applied electric field and short time, the abnormal time-domain current of inorganic
insulating powder is obviously related to the powder’s stability.

The factors that affect the stability of dielectric properties of inorganic insulating
powder include the powder’s packing state, the moisture, and the temperature rise. Under
a constant applied pressure, the packing state of insulating powder is stable in several
seconds or minutes [18]. However, the current TDS of MgO powder shows abnormal
phenomena after 200~500 s of the applied voltage as shown in the inset of Figure 6, so the
abnormal current spectrum is not attributed to the powder’s packing state.

It is found that the surface modification of inorganic insulating powder is able to
greatly inhibit the moisture absorption [19–22]. A typical silane coupling agent of KH550 is
used to modify the surface of MgO powder and to verify whether the abnormal current
TDS is related to the moisture absorption during the experiment.

Figure 7 shows the current TDS of the modified MgO powder at 25 ◦C. It can be seen
from Figure 7a that under 0.1 or 0.7 kV/mm, the time-domain current of the modified MgO
powder decreases monotonically with time and tends to be the steady state. The insets of
Figure 7a also show that the time-domain current of MgO in the long time is nearly closed
to the steady state for 0.1 and 0.7 kV/mm. These means that normal current TDS occurs in
modified MgO powder and no abnormal phenomena appears.
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Figure 7. Current TDS of surface modified MgO powder at 25 ◦C. (a) Linear coordinate; (b) double
logarithmic coordinate.

Moreover, the Fourier transform infrared spectrometer (FTIR) of three powders of
MgO, BN, and surface modified MgO before and one hour after the current TDS measure-
ment are shown in Figure 8a–c, respectively.
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The infrared absorption peaks at around 3700 cm−1, 3400 cm−1 correspond to the
antisymmetric stretching vibration peak and symmetric stretching vibration peak of the
O-H bond in water molecule. From Figure 8a, it can be seen that the intensity of the anti-
symmetric stretching vibration peak of the O-H bond of the MgO powder at 3715 cm−1

increased significantly after the experiment, and the symmetric stretching vibration peak of
the O-H bond of the water molecule appeared at 3450 cm−1, indicating that the moisture
content in MgO powder increased significantly after the experiment, and the powder was
damped during the experiment. Figure 8b shows that the absorption peak intensity of
O-H bond at wavelength 3736 cm−1 and 3614 cm−1 of the BN powder before and after
the experiment is basically the same, which means that the BN powder is not significantly
damped during the experiment. As can be seen from Figure 8c, the absorption peak
intensity of O-H bond at wavelength 3700 cm−1 and 3637 cm−1 of the modified MgO
powder after the experiment is basically the same, but a small O-H bond appears at
3440 cm−1, indicating that the modified MgO powder is slightly damped during the
experiment, but it is not as serious as the unmodified MgO damped.

Combined with the current TDS of these powders, it can be found that the abnormal
TDS is mainly caused by the absorption of moisture in powders.

Curie von Schweidler formula (1) is used to fit the measured current TDS of modified
MgO powder, as shown in Figure 7b. It can be observed that the fitting effect of modified
MgO powder is similar to that of BN powder, which also indicates that the current TDS
of the modified MgO powder is normal. The comparison of current TDS between the
original MgO powder in Figure 7 and the modified MgO powder in Figure 7a shows that
the time-domain current of the modified MgO powder is much less than that of the original
one. This suggests that the surface modification can eliminate the effect of the powder’s
moisture absorption on the measurement of current TDS.

From the above, it can be concluded that the powder’s moisture absorption contributes
a lot to the abnormal time-domain current. To further verify whether the temperature rise
caused by the Joule heat of powder also has an effect on the measurement, the current TDS
of the modified MgO powder at 70 ◦C is measured as shown in Figure 9.
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Figure 9. Current TDS of surface modified MgO powder at 70 ◦C. (a) Linear coordinate; (b) double
logarithmic coordinate.

From Figure 9a, it is found that the time-domain current of the modified MgO at 70 ◦C
decreases with time and tends to be in the steady state in the long time under 0.1 and
0.7 kV/mm, respectively. This indicates that the current TDS of the modified MgO powder
at 70 ◦C is still normal.

Comparing Figure 7 with Figure 9, it can be learnt that the time-domain current of
modified MgO powder at 70 ◦C is much higher than that of 25 ◦C, which means that more
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Joule heat is generated at 70 ◦C. The more Joule heat only contributes to a larger conduction
current (i.e., a larger steady-state time-domain current), but the conduction current hardly
increases with time, and the current TDS is normal. Thus, the Joule heat can be ruled out to
affect the measured abnormal TDS.

3.3. Analysis of Abnormal Current TDS

According to the above analysis, the reason for the abnormal current TDS is the
MgO powder’s moisture absorption, which occurs during the measurement process and
is uncontrollable. The similar phenomena and relative conductive mechanism are also
described in reference [23]. Therefore, it is of great significance to eliminate the deviation
from normal TDS caused by influence of the moisture absorption and to obtain the real
dielectric parameters of inorganic insulating powder.

In order to eliminate the deviation, the polynomial expansion of time is added in (1)
to describe the time-varying trend because of the generality of polynomial in mathematics.
So, there is no physical mechanism involved. It should be noted that this approach is a
kind of trend filtering method for current TDS in this sense, and (1) is rewritten as below.

i(t) = At−n + idc +
l

∑
m=1

kmtm (4)

where km is a coefficient, and l is the number of time term. The abnormal current TDS is
fitted by the least squares method with (4), and the fitting curve can be obtained under
different values of l. The value of l is determined by the optimal fitting effect. Subsequently,
the current TDS without time-varying factors and the white noise are obtained, respectively.

With this method, the time-domain current spectrum of original MgO powder under
0.1 kV/mm as an example is fitted to illustrate the feasibility. When fitting with Equation (4),
it is found that when l ≥ 4, the fitting does not converge. While l ≤ 3, the fitting parameters
are shown in Table 1.

Table 1. Fitting parameters of different formulars.

Fitting Formular Expectation Standard Deviation R2

Curie-von-Schweidler relation 2.92795 × 10−4 15.91527 0.81965

l = 1 8.06838 × 10−5 2.77483 0.99186

l = 2 4.95347 × 10−4 4.24491 0.98717

l = 3 3.52372 × 10−6 2.65278 0.99256

Comparing the fitting effect of l ≤ 3, it can be seen that when the value of l is 3, the
fitting effect is the best. The relationship between the fitting residual and time for l = 3 is
shown in Figure 10.

Figure 10 shows that the residual values belong to white noise. The normal time-
domain current spectrum of the inorganic insulating powder with moisture absorption is
obtained by eliminating the effects of white noise and time-varying factors. For the original
MgO powder under 0.1 kV/mm at 25 ◦C, the fitting parameters of A = 2567.856, n = 0.885,
and idc = 184.877 pA are obtained via (4) by eliminating the effect of time-varying factors.
Accordingly, the steady-state relaxation polarization of the original MgO powder under
0.1 kV/mm is 18.576 C/m2, and the steady-state susceptibility is 20.99. The conductivity is
8.7 × 10−13 S/m.
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Figure 10. Relationship between residual values of original MgO powder and time obtained by (4)
with l = 3 at 25 ◦C.

4. Conclusions

Insulation properties of inorganic insulating powder is extremely sensitive to the
moisture. In the absence of absolutely sealed experimental conditions, during the measure-
ment of insulation properties of hydrophilic inorganic insulating powder, such as MgO
powder, the moisture exchange between the tested specimen and the external atmosphere
environment is easy to occur and makes the tested specimen become a time-varying system,
resulting in an abnormal time-domain current spectrum. When the testing temperature is
low, the powder tends to absorb moisture from the external atmosphere, which increases
the micro-water content of the insulating powder and in turn forms a time-varying conduc-
tion current. Thus, the time-varying conduction current leads to the abnormal time-domain
current spectrum in the end of time.

The hydrophobic inorganic insulating powder, such as BN powder, is insensitive to
moisture, and its measured specimen is able to be regarded as a time-invariant system
during the whole measurement, so the time-domain current decreases with time and
approaches to the steady state, and the time-domain current spectrum is normal.

For the measured powder, its initial moisture state is known or controllable, but its
moisture absorption during the measurement is uncontrollable. In this sense, the effect of
the powder’s moisture absorption occurred during the measurement must be eliminated in
order to obtain the real dielectric properties of inorganic insulating powder. An absolutely
sealed condition can avoid the moisture exchange between the powder specimen and the
external atmosphere during the measurement. By contrast, when the absolutely sealed
condition cannot be achieved, the time-varying term is added to the least squares fitting
equation to eliminate the influence of time-varying factors. In this paper, a polynomial
term of time is used in Curie von Schweidler formula, which depends on the time-varying
characteristics of the time-domain current spectrum in the end of time.

The reconstructed normal time-domain current spectrum is obtained by excluding
the added term of time, and the dielectric parameters (e.g., conductivity and steady-state
susceptibility) of inorganic insulating powder can be calculated, which lays an important
foundation for the application of inorganic insulating powder in the electrical equipment.
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