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Abstract: Induction motors have gained a renewed interest due to this new shift from conventional
power sources to electric power. These motors are known for their high commencing torque, adequate
speed control and reasonable overload capacity. However, induction motors have an innate thermal
issue wherein their lifespan and performance are strongly temperature dependent. Hence, it is
highly essential to focus on the thermal management aspect of these motors to ensure reliability
and enhance performance. Thus, the major purpose of the paper is to comprehensively review
various approaches and methods for thermal analysis, including finite element analysis, lumped
parameter thermal network and computational fluid dynamics tools. Moreover, it also presents
various cooling strategies commonly adopted in induction motors. Furthermore, this study also
suggests an integrated approach with two or more cooling strategies to be the need of the hour. These
will combine the benefits of the individual system while helping to counter their drawbacks. This
study will help to serve members of the scientific community, manufacturers or motors users who
are interested in the thermal management of induction motors.

Keywords: lumped parameter thermal networks; computational fluid dynamics; finite element
analysis; thermal analysis; heat transfer; thermal management

1. Introduction

Electric motors find their application in a wide range of industries from home ap-
pliances to transportation, including automotive and aerospace applications. A special
type of motor called the induction motor has gained importance in recent times due to its
high commencing torque, adequate speed regulation and reasonable overload capacity [1].
The mechanical power is produced due to the interactions between the magnetic field by
the stator winding and the cage bar [2]. Moreover, IMs are a type of non-magnetic motor,
thereby proving to be a promising option because of the shortage of rare-earth metals.
However, a major drawback of IMs is their inherent thermal problem wherein the lifespan
and efficiency are dependent on temperature [3]. The Arrhenius equation states that the
lifespan of the entire motor is halved every time the functioning temperature is increased
by 10 ◦C [4].

Thus, to ensure reliability and improve the machine performance, it is needed to
emphasize the thermal management of IMs. In the past, motor designers have overlooked
thermal analysis and dealt with the heating problem either by experience or varying other
sizing variables, such as current density, etc. [5]. These methods lead to applying a large
factor of safety, to deal with the worst heating situations, thereby leading to oversizing of
the machine and, in turn, increasing the cost [6].

Analytical lumped circuits and numerical methods are the two basic classifications for
thermal analysis [7]. The main advantage of the analytical approach is its ability to compute
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fast and accurately. However, many efforts need to be invested to define the circuit that is
accurate enough to model the heat paths. On the other hand, numerical methods can be
majorly classified into computational fluid dynamics (CFD) and structural thermal analysis
(STA), where both use the finite element analysis (FEA) [8]. The numerical analysis gives us
the advantage that the machine prototype geometry model could be made. Nevertheless, in
terms of model arrangement and computation time, it could be demanding sometimes [9].

Moreover, various cooling strategies, such as air-cooled, liquid-cooled or heat pipe/plate
cooled, can be employed to enhance the cooling characteristics of the machine [10]. In this
paper, various thermal analysis approaches are contrasted. Additionally, various cooling
strategies are discussed and compared, which refers to approaches for thermal analyses too.
Thus, the study aims to broadly review the different aspects of the thermal management of
IMs and suggest suitable changes, which will further improve the thermal efficiency of the
machine.

2. Types of Losses

The various losses in an IM were described in Bin et al. [11] in Figure 1. However, in
this review paper, only the major losses, that is, iron losses, copper losses and mechanical
losses have been considered in the following section.
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Figure 1. Power losses inside IM [11].

2.1. Copper Losses

All the IMs predominantly suffer this loss majorly due to Joule heating caused by
the resistivity of the conductors. In addition to this, the overall copper losses are highly
impacted by the proximity and frequency-dependent skin effects [12]. The copper losses are
also temperature-dependent whose effect can be determined by substituting the resistivity
as a function of temperature [13].

ρt = ρ0(1 + α(T − T0) (1)

where, T0, temperature at the initial state, T, temperature at the final state, ρ0, resistivity at
T0 and α represents the coefficient of temperature.

2.2. Iron Losses

Iron losses are the second most dominant type of loss, which produces hysteresis and
eddy current losses in IMs, primarily instigated by time-varying magnetic fields [14]. The
core losses are primarily quantified by the Steinmetz equation whose coefficients can be
treated as constants or variables depending on the operating conditions [15].

Pcore = ∑ KhnB1.6
n n f + KenB2

n(n f )2 (2)

To analyze the iron loss in an inverter-fed induction motor, a piecewise variable
parameter iron loss (PVPIL) model could be used [16], where the PVPIL model is useful to
determine the effect of diverse extents and frequencies of flux densities on the hysteresis and
eddy current losses. According to the PVPIL model, the iron losses can also be described
by the expression [16]:

PLoss =
ne

∑
i=1

(PHi + PEi) (2a)
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The hysteresis loss according to the PVPIL model is given as:

PH = kh ρLm (2b)

The eddy current losses due to the model PVPIL is expressed as:

PE = keρLm ∑
v

Av ∑
n
[(1 + k2R(v,n)BmR(v,n)

β2R(v,n))× BmR(v,n)
2 f (v, n)2

+(1 + k2θ(v,n)Bmθ(v,n)
β2θ(v,n))Bmθ(v,n)

2 f (v, n)2]
(2c)

where, v is vth element in the FE-model, Bmθ(v,n) and BmR(v,n) are the maximum values of
the nth flux density harmonic’s tangential and normal components in vth element. f(v,n)
is the frequency of the nth flux density harmonic in the vth element. krv is the rotating
magnetizing coefficient and Av is the vth element’s area in vth element. The variable
parameters k1R(v,n) and β1R(v, n) are changed with f(v,n) and BmR(v,n). Similarly, k1θ(v,n)
and β1θ(v, n) are changed with f(v,n) and Bmθ(v,n). Additionally, k2R(v,n) and β2R(v, n) are
changed with f (v, n) and BmR(v,n). Additionally, k2θ(v,n) and β2θ(v, n) are changed with
f (v, n) and Bmθ(v,n).

2.3. Mechanical Losses

Windage and friction losses are the two major causes of mechanical loss produced in
an IM. Friction losses that are heat-dependent are significantly related to bearings. The
friction ultimately leads to heat generations, thereby increasing the local temperature.
Minimization of the loss could be done with the help of lubricants and good quality
bearings. The mechanical windage and friction loss are given as [17]:

Pw f = 2Dr
3Lrn3 × 10−6 + k f b Grn × 10−3 (2d)

3. Thermal Analysis Approach

Thermal management of an IM requires the accurate prediction of temperature profiles
using different thermal analytical approaches. Apart from experimental validation, CFD
and LPTN are some of the commonly used analytical approaches. The advantages and
disadvantages of different approaches have been highlighted in Figure 2.

3.1. LPTN-Lumped Parameter Thermal Network

The lumped circuit model is a faster approach to determining the temperature profile
within the IM, where the variations consequential from diverse input parameters could
be rapidly determined by the user. The steady state or transient heat flow in an IM and
the temperature of each component can be predicted using this model. The temperature
profile of the system is found to be similar to that of the temperature profile found in the
CFD simulation made through FEA, as long as the geometry remains simple. However,
the major drawback of the LPTN model is the intense effort required for creating an
accurate model [18]. In this model, complex geometry is presented by lumping different
components of it into simplified areas [18–20]. An example of lumped parameter thermal
network of an electrical IM from Nair DG et al. [20] is displayed in Figure 3 where the IM is
of 37 kW capacity.

The cooling system’s thermal parameters, such as conduction, radiation, convection
thermal resistance, and flow resistance of forced convection heat transfer, are estimated
with the help of Equations (3a)–(3d) [18].

Rc =
L

kA
(3a)

Rr =
1

hR A
(3b)



Energies 2022, 15, 8127 4 of 20

Rcv =
1

hC A
(3c)

R f =
kρ

2A2 (3d)

where hR and hC are the radiation and convection heat transfer coefficient, respectively, ρ
represents the fluid density, L and A are the path length and path area, respectively.
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Figure 3. Example of an LPTN model of a 37 kW IM [20].

In Han PW et al. [19] the LPTN model is used to find the temperature profile of a
water-cooled-type IM and the result of simulation, see Table 1. Since the rear parts have
few gaps, the temperature load at the rear end is high, compared to that of the front part.

Table 1. Temperature distribution by thermal analysis [19].

Front End
Winding, [◦C]

Rear End
Winding, [◦C] Winding Slot, [◦C] Rotor Core, [◦C] Rotor Shaft, [◦C]

Test analysis 77.7 83.3 72.2 185.3 179.2

Analytical analysis 71.3 76.3 66.5 172.3 166

% of Deviation 8.3 8.4 7.8 7 7.3

3.2. Numerical Methods
3.2.1. Modelling and Analysis Using Finite Element Analysis

A fine-meshed model with the nodes and elements is examined for the changes along
the dimensions using the popular FEA. The 2D and 3D thermal FEA could be performed
using much available commercial software in steady and transient states. Results from
both the LPTN model and FEA are alike to each other due to the reason that both of them
are fed with common inputs. However, the major drawback of FEA is the processing time.
FEA has its merits over LPTN when complex geometry has to be handled [21].

Xie et al. [22] gave temperature estimations on a 3D model of an enclosed fan-cooled
IM. They observed the 3D thermal model of an IM at a healthy state when one bar is broken
and when two adjacent bars are broken. Zhang Y et al. [23] use FEA to investigate the
3D coupled field FEM to find the temperature profile of an air-cooled IM. The increase in
the temperature was found in the stator winding and squirrel cages majorly due to joules
losses and heat released, as a result of conduction in solid and convection in air.

FEA software, AnSys Maxwell 2-D v.16, and AnSys Maxwell 3-D v.15, is considered to
be one of the best for electromagnetics and is used to find the thermal characteristics in the
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transient state of the IM and the losses in power in the torque area in the steady-state [6]. It
presents an investigation rise in IM when the effects of loading are taken into consideration.
Software for FEA simulation, such as in [24], can be used to predict sources of thermal
energy caused as a result of electromagnetic losses—the eddy currents and hysteresis in
magnets and laminations and the heating due to joule heating in the windings. The major
merits of FEA over others lie in its ability to predict the flow in regions, such as around the
end windings, which is considered complex [25]. For comparison with the LPTN model, a
partial FEA thermal analysis, Figure 4 [10].
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3.2.2. Modelling and Analysis Using CFD Analysis

The temperature estimation with CFD is different when compared to the LPTN method,
since the CFD analysis could reach higher accuracy against a structural analysis of a motor.
The boundary conditions of heat transfer for the FEA model and lumped circuit input,
simulations for predicting fluid flow characteristics, and optimizing the cooling methods,
such as air-cooled water jackets, etc., could be determined with CFD analysis [26]. CFD
is used for big motors and generators, since it has a major advantage over others when
predicting flow in complex regions [18]. In [27], precise geometric sensitivities that affect
the thermal flow characteristics are examined using Simcenter Star-CCM+ (a CFD tool) by
performing finite volume analysis. Airflow rate of the external, as well as an internal fan,
the rise of the volume-averaged temperature of the insulated windings, are found.

Jang JH et al. [28] analyze the temperature profiles of the motor and the cooling
mechanism performance found using commercial software with FVM, and a semi-implicit
method for the pressure-linked equations. The heat transfer equivalent and the boundary
conditions of fluid flow in the FEA motor model and pumped approach are given by
CFD calculation [18,29]. Roffi M et al. [30] use CFD simulation software to accelerate the
designing of the impeller and optimize the aerodynamic process, as well as visualizing the
fluid-air dynamics for different cooling fan designs for the IM. Conjugated heat transfer



Energies 2022, 15, 8127 7 of 20

methods could be used to improve the results found after stimulation [8,31], where both
the solid and fluid domains are modelled. The heat losses could be well-defined in the
solid domains as volumetric sources found by electromagnetic simulations. Temperatures
of the inlets and outlet, pressure changes, and volumetric flow rate are the inputs in the
CFD method, similar to the material input in FEA [19,26].

3.3. Experimental Validation

Even though the LPTN model and numerical analysis provide very precise and
accurate temperature profile predictions and thermal management, a certain degree of
errors or inaccuracy always exists because of the model limitations, parameter deviation,
various assumptions in equations and models, simple boundary conditions and so on. Thus,
it is often mandatory to verify and calibrate the results through experimentation. There
are generally two types of experimental validation methods: (i) experiments conducted
to determine machine thermal parameters, and (ii) experiments to verify the results of
simulation and analysis.

Temperature monitoring is done using direct thermal sensors by placing them on the
end caps, windings, etc., [32,33]. Thermocouples, resistance thermometers, and thermistors
are the most used thermal monitoring sensors. The principle on which thermocouples
work is that a potential difference is created between two dissimilar metals, which increases
with temperature. Quick response time, a broad range of measurements and simple con-
figurations are its major merits. However, due to low signal strength, they are susceptible
to electromagnetic interference. Thermistors are considered more accurate compared to
thermocouples. The major merits of thermistor over thermocouple of simple geometry,
small in size and low thermal mass. It is also susceptible to electromagnetic noises. In
some cases where the sensors are difficult to place, infrared thermography is used as an
indirect temperature measurement [34–36]. Figure 5 shows the infrared thermal image of
an IM [35].
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4. Various Cooling Strategies
4.1. Air Cooling Approach

Roffi et al. [30] compared many cooling strategies involving various designs in the
fan, which includes the likes of standard centrifugal fans and some axial fans for the same
base fan cover. The experimentation was conducted with an IE3 class 7.5 kW, 4 poles, 400 V
squirrel caged IM at no and part loads. Table 2 provides the simulated outcomes for four
dissimilar axial fan designs and Table 3 gives the experiment results of part load for the IM
with four different cooling fan systems. Table 4 shows the respective fan and cover designs
for Tables 2 and 3. The inclusive efficacy improves unidirectional self-ventilated motors
when fan power is reduced without changing the velocity of the air and the volumetric
airflow. Henceforth, not affecting the motor operating temperatures.

Table 2. Results of simulations for four diverse designs of axial fans [30].

Fan Design
Axial Fan Performance at 1450 rpm

Q (m3/s) Vair (m/s) Pfan (W) hair (Pa)

Centrifugal fan, large - - - -

Centrifugal fan, small - - - -

Axial design, A 0.1151 11.3 4.7 17.3

Axial design, B 0.1067 12.1 10.3 63.7

Axial design, C 0.1216 12.9 11.8 70.2

Axial design, D 0.0998 12.5 8.0 50.7

Table 3. Part-load experimental results with four different cooling fan systems [30].

Various Fan Designs and Covers Performance of Fan at 1483 rpm Performance of Motor at 58.08% Load

Vair (m/s) Pfan (W) Ploss,total (W) Efficiency (%) ∆θframe (K)

Centrifugal Original Cover, small 4.4 7 606 87.8 19

Centrifugal Original Cover, large 7.0 16 615 87.6 18

Axial design, C, Original Cover 5.1 7 600 87.9 18

Axial design, C, Customized Cover 5.4 9 604 87.8 17

Table 4. Fan designs and the respective cover [30].

S.No Fan Type Fan Configuration Original Cover Performance

1 Small Centrifugal
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Table 4. Cont.
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Moon et al. [27] numerically studied the characteristics of the thermal flow of an
enclosed fan-cooled IM. The various configurations, including the fin, which is joined to the
surface of the frame, frames embedded with air channels, air duct through the rotor core
and fan cover, which enclosed the external fan, were incorporated and variations among
them were studied. CFD analyses were performed and results were validated for accuracy
through experimental tests, Figure 6. Based on the parametric studies, the level of cooling
effect was raised to its maximum power density, and, as a result, the motor was developed:
2350 kW, 560 frames, 4 poles, 6 kV and 60 Hz.
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Kim et al. [37] have studied the effects of air gap fans and the cooling of the winding of
a large capacity IM using computational thermal coupled analysis to improve the accuracy
of results. In this work, varying iron loss distribution model that considered the time and
rotation period was included, Figure 7. The performance of different configurations with
only front air gap fan, only rear-end air gap fan, and when both the sides had the air gap
fan were compared to a scenario with no air gap fans. Results showed that the effect of
vanishing stagnant flow near the gaps was due to the fact that the fan increases the flow
rate distribution, Table 5. The average temperature in the IM declines with the growth in
the average flow velocity in the cavity. This also led to the heat transfer coefficient increase
by 31% at the surfaces of the windings and the air gaps by 90%. For a singular fan scenario,
the fan at the rear end had improved by 36%, and in the case of the fan at the front end, this
was only 35%.
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Table 5. Temperature distribution (a) without a fan; (b) with fan [37].

Ansys Simulated Sections of
the Motor

Simulated Temperature, ◦C
(With Out Fan)

Simulated Temperature, ◦C
(With Both Fans)

% of Temperature Reduction
Due to Fans Both the Sides

Rotor core section
(central section) 324 233 28

Rotor core section
(ends section) 235 202 14

Air gap between rotor and
stator 172 162 5.8

Stator core 152 112 23

Housing 62 52 16

Air flow passage 32 22 31

Zhang et al. [23] have studied temperature profile over air-cooled asynchronous IM
by coupled field FEM approach. A fluid model was suggested, where all rotor parts are
considered fluids with certain conditions. Due to the rotation of the rotor, Coriolis force
and centrifugal forces are taken into account, since they have a huge influence. A new
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asynchronous motor is designed with a 6-phase, 8-poles and 200 kW capacity to validate
the proposed methodology. The multi-fluid model showed positive agreement with the
simulated and experimental results.

Kim et al. [38] to improve the existing thermal circuit’s model introduced a new
thermal model (TNM) by compensating for the modelling of the heat transport by airflow.
Thermal analysis was performed on an open-type air-cooled IM. A total number of 36 nodes
for solid and fluid regions in the motor were chosen to build the thermal nexus model. In
comparison to CFD and the experimental method, the thermal nexus model was able to
show a 4% less error. Further, the cooling path analysis showed a 3% less error, compared
to CFD. It was, hence, concluded that the developed model was handy in improving the
design of the motor cooling system.

Hashish et al. [39] patented a new invention of an auxiliary cooling system for TEFC
IM. The invention provided a buffet thermal shroud that was incorporated over the present
motor housing cooling fins in a spaced manner. The tabs were aligned in the airflow channel
amid the contrasting cooling fins, where they are in thermal and fluid communications with
the cooling air-flow. The turbulence created in the cooling air-flow by the tabs or shroud
fingers were able to increase convective heat transfer efficiency and contact time amid the
cooling air and motor cooling fins. It was further stated that the present invention can be
retrofitted on any IM quickly at the lowest possible cost and with relatively little effort.

4.2. Liquid Cooling Approach

Rehman et al. [40] conducted the 3D steady-state model investigation of a 90 kW
IM with three different layouts of cooling jackets and four types of coolant flow passes.
Four different water flows (5, 10, 20 and 30 LPM) were numerically studied. Maximum
functioning temperature and pumping power were the key areas of focus in this investi-
gation. The different configurations are shown in Figures 8 and 9. The upper limit of the
operating temperature for the design of the cooling jacket was set at 373 K. The highest
temperature was observed to be in the stator winding due to intense heat loss from the
winding loss. It was observed that the more the number of passes, the less the maximum
temperature reached. Furthermore, the effect of varying the number of passes becomes less
on increasing the passes beyond six, Tables 6 and 7.

Energies 2022, 15, x FOR PEER REVIEW 12 of 21 
 

 

  
Figure 8. Cooling jacket configuration with different number of passes [40]. 

 
Figure 9. Port configuration [40]. 

Table 6. Maximum temperature versus flow rate for all the designed models [40]. 

 
Temperature, °C  

with 2 Ports 
Temperature, °C  

with 3 Ports 

Temperature, °C  
with 3 Ports (Centre 

Inlet) 
Number Coolant 

Passes 
10 lpm 20 lpm 30 lpm 10 lpm 20 lpm 30 lpm 10 lpm 20 lpm 30 lpm 

4 378 368 364 392 382 375 395 377 371 
6 374 365 362 388 375 370 393 380 374 
8 373 364 360 376 365 363 376 366 363 

10 372 362 359 375 363 360 375 364 361 

Table 7. Rate of temperature variation, with respect to the number of passes and coolant flow rate 
[40]. 

Number Coolant 
Passes 

Temperature, °C 
with 2 Ports 

30 lpm to 10 lpm 

Temperature, °C 
with 3 Ports 

30 lpm to 10 lpm 

Temperature, °C 
with 3 Ports (Centre Inlet) 

30 lpm to 10 lpm 

Average % of the Variation 
in Temperature for 30 lpm 

4 365–380 375–395 370–395 1.3 

Figure 8. Cooling jacket configuration with different number of passes [40].



Energies 2022, 15, 8127 12 of 20

Energies 2022, 15, x FOR PEER REVIEW 12 of 21 
 

 

  
Figure 8. Cooling jacket configuration with different number of passes [40]. 

 
Figure 9. Port configuration [40]. 

Table 6. Maximum temperature versus flow rate for all the designed models [40]. 

 
Temperature, °C  

with 2 Ports 
Temperature, °C  

with 3 Ports 

Temperature, °C  
with 3 Ports (Centre 

Inlet) 
Number Coolant 

Passes 
10 lpm 20 lpm 30 lpm 10 lpm 20 lpm 30 lpm 10 lpm 20 lpm 30 lpm 

4 378 368 364 392 382 375 395 377 371 
6 374 365 362 388 375 370 393 380 374 
8 373 364 360 376 365 363 376 366 363 

10 372 362 359 375 363 360 375 364 361 

Table 7. Rate of temperature variation, with respect to the number of passes and coolant flow rate 
[40]. 

Number Coolant 
Passes 

Temperature, °C 
with 2 Ports 

30 lpm to 10 lpm 

Temperature, °C 
with 3 Ports 

30 lpm to 10 lpm 

Temperature, °C 
with 3 Ports (Centre Inlet) 

30 lpm to 10 lpm 

Average % of the Variation 
in Temperature for 30 lpm 

4 365–380 375–395 370–395 1.3 

Figure 9. Port configuration [40].

Table 6. Maximum temperature versus flow rate for all the designed models [40].

Temperature, ◦C
with 2 Ports

Temperature, ◦C
with 3 Ports

Temperature, ◦C
with 3 Ports (Centre Inlet)

Number
Coolant
Passes

10 lpm 20 lpm 30 lpm 10 lpm 20 lpm 30 lpm 10 lpm 20 lpm 30 lpm

4 378 368 364 392 382 375 395 377 371

6 374 365 362 388 375 370 393 380 374

8 373 364 360 376 365 363 376 366 363

10 372 362 359 375 363 360 375 364 361

Table 7. Rate of temperature variation, with respect to the number of passes and coolant flow rate [40].

Number
Coolant Passes

Temperature, ◦C
with 2 Ports

30 lpm to 10 lpm

Temperature, ◦C
with 3 Ports

30 lpm to 10 lpm

Temperature, ◦C
with 3 Ports (Centre Inlet)

30 lpm to 10 lpm

Average % of the Variation
in Temperature for 30 lpm

4 365–380 375–395 370–395 1.3

6 360–375 370–385 375–395 4.1

8 360–375 360–375 360–375 0

10 360–375 360–375 360–375 0

Average % of variation > 4 Average % of variation > 4 Average % of variation > 5

Han et al. [19] carried out the analysis of a high-speed water-cooled IM using LPTN
methods. The heat transfer coefficients of the water jackets channel and interface amid the
core of the stator and frame were an influential factor, since the motor was a water-cooled
type. Further, from Table 8 it was observed that the temperature of the trailing part of
the end winding was greater, in contrast to the front part, since it had a minute gap with
the housing. The authors concluded by stating that if the important parameters, such
as interface gap and heat conductivity of the materials are properly selected, accurate
distribution of temperature can be achieved from the LPTN method.

Table 8. Temperature distribution [19].

Evaluation Method IM Winding, ◦C IM Rotor, ◦C Remarks

End Part In Slot End Part Core Shaft

Analysis 71.3 66.5 76.3 172.3 166 considering FEM losses

Analysis 77.7 72.2 83.3 185.3 179 considering test losses

Test 75.2 65.5 80.4 - - -
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Satrústegui et al. [41] presented a thermal model of an IC71 IM with different design
criteria for the water-cooled system. The key parameters that describe the water jacket and
shaft were identified through the use of a validated thermal model and CFD simulation.
The topology of the water jacket was analyzed and it was observed that with similar cooling
areas, Figure 10. The topologies were classified based on the pressure drop introduced in
the cooling system. Spiral water jackets were chosen as the preferred option for reducing
the pressure drop but were the most complex to manufacture. Later, two parameters that
had almost no influence were determined, which were the interspace of cooling ducts and
the distance between the ducts and the stator stack. Finally, the influence of water in these
cooling arrangements was analyzed using CFD techniques. The temperature of some parts
of the motor reduced significantly due to the enhanced coefficient of heat transfer by the
use of water.
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Tanguy et al. [44] performed an experimental study on the oil cooling system for an
electric motor. The focus of the study was to determine the influence of the oil temperature,
rotation speed and oil flow rate on the cooling of the stator coil end cooling. The oil flow
rate was changed between 40 and 360 L/h, the oil temperature between 50 ◦C to 75 ◦C and
the speed between 0 to 4600 rpm. Different injection patterns, see Figure 11, were utilized
to study the above factors, which have been summarized in Figure 12.
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The author concluded that oil, even in restricted amounts, had greatly improved the
global heat transfer, in contrast to air-based cooling only. The dripping injector proved to
be highly effective as the oil is injected with a higher flow rate at the top region and the
end windings. This is followed by nozzle injection in which the efficiency was similar for
both types of nozzles. The jet seemed to be ineffective in the cooling performance. The
oil flow rate remained the major factor in improving global efficacy for any configuration,
Figure 11.

Rippel [45] patented a new method of a liquid cooling system called transverse
lamination cooling wherein the coolant flows transversely through a narrow region formed
by apertures in every other magnetic lamination. The new invention greatly improved the
cooling performance of the stator winding, as well as the rotor winding.

Recent advancements in the field of dimple cooling geometry have opened new
opportunities for the utilization of such geometries in liquid-cooled induction motors.
Qian et al. [46] conducted the numerical simulation of both simple dimples with dissimilar
geometries and the complete dimple jacketed heat exchanger with diverse dimple measures.
It was observed that the dimples could enhance the heat transfer efficiency in contrast to
the conventional jacketed heat exchanger. Pan et al. [47] aimed to study the numerical
analysis and comparison of fluid flow and heat transfer characteristics of a microchannel
heat exchanger with diverse re-entrant cavities. It was concluded that the heat transfer
efficacy of microchannel heat exchangers with re-entrant cavities is improved, and the
pressure drop is lower. The highest heat transfer efficacy comes from a microchannel heat
exchanger with trapezoidal-shaped cavities, whereas the smallest pressure drop comes
from a microchannel heat exchanger with fan-shaped cavities. Fazli et al. [48] aimed to
expect the turbulent flow and heat transfer through diverse channels with periodic dimple
walls. The efficacy of several low-Re k-turbulence models in predicting local heat transfer
coefficient is assessed more explicitly. The nonlinear k-ε model forecasts a bigger whirly
bubble inside the dimple with more impingement and upward flow than the zonal and
linear k-ε models, according to the numerical predictions. Heat transport estimates inside
the dimples and their rear rim improve when the linear k-ε model is used. The nonlinear
k-ε function, on the other hand, yields the most accurate thermal forecasts.

Apart from the cooling structures, there also has been developed in the field of cooling
fluids apart from the conventional water and oil. Deriszadeh et al. [49] investigate the
possibility of directly cooling traction motors in the car industry using a liquid medium. As
a coolant, a mixture of ethylene glycol and water with different volume fractions is utilized.
Thermal analyses of the cooling system are carried out using CFD and 3D turbulent fluid
motion analysis. During research and modelling, it was discovered that increasing the
number of fluids turning channels, the volume combination of ethylene glycol, and the
Reynolds number increases the heat transfer coefficient. When the number of rotations
was eight, the volume mixing ratio of ethylene glycol to water was 60:40 and Reynolds no.
5000, the highest performance was recorded. Ijaz et al. [50] carried out research comprising
a simulation-based evaluation of graphene-doped nano-coolant thermal properties in an
automobile radiator. To explore the impact of graphene oxide (GO) nanoparticles doped in
a base fluid (water) as a nano coolant for a car radiator’s temperature reduction over the
tube length and efficacy. As the concentration of GO nanoparticles by volume increases, a
significant temperature reduction is observed. Temperature drops of 9.68 K, 10.89 K and
11.9 K are typical for 6%, 8% and 10% of the GO nanoparticles, respectively. The efficacy
of the radiator rises in proportion to the percentage increase in nanoparticle addition.
Mukherjee et al. [51] studied the value of k of commercial engine coolant-based SiO2
nanofluids utilizing a unique sonic velocity measuring methodology. This was performed,
considering k is a vital constraint to define the heat transfer efficacy. Nanofluids were made
by dispersing SiO2 nanoparticles in engine coolant at five distinct mass concentrations:
0.01%, 0.05%, 0.10%, 0.50% and 1%. The temperature rise was more effective than the
rise in nanofluid concentration, according to these findings. At 65 ◦C, a nano-coolant
concentration of 1% demonstrated a maximum increase in k of 21.083%. Ultimately, in this



Energies 2022, 15, 8127 16 of 20

work, a novel mathematical correlation was created to accurately estimate the value of k of
engine coolant-based SiO2 nanofluids.

4.3. Heat Pipes/Plates Cooling Approach

N. Putra et al. [52] explored on the heat management of electric motors using L-shaped
heat pipes. The heat pipes were located on the surface of the motor housing, Figure 13. The
L-shaped flat heat pipes with 154 mm evaporator section and 34 mm condenser section
with heat sinks were made of copper tubes. The heat sinks were used to enable fast heat
transfer to the surrounding area. For uniform heat generation, a cartridge heater was
positioned inside the motor housing. The heat generation process was regulated by an
AC voltage regulator. The experiment was conducted for five sets of heat loads, namely
30 W, 60 W, 90 W, 120 W and 150 W. Further, the experiment was conducted without the
L-shaped flat heat pipes to increase or decrease in performance. The results indicated that
on using the L-shaped heat pipes, the temperature of both the inner and outer surface
reduced to a greater, Table 9. For instance, at a heat load of 150 W, the utilization of
the L-shaped flat heat pipes reduced the inner and outer surface temperature by 34.6 ◦C
and 33.8 ◦C correspondingly, as compared to without the heat pipes. To achieve a high
motor performance and high power density, various effective cooling schemes have to be
incorporated. Cooling schemes aiming to bring down the temperatures at the hot spots
and raise motor thermal efficiency have to be carefully adopted. Hence, an IM system
with novel motor topologies, geometrical parameters, design and materials would greatly
affect the electrical/electromagnetic performance of the system, Figure 14. Out of all the
cooling schemes, air-cooling is the cheapest. Liquid cooling is a very effective strategy
but complex geometry, pumping and also the addition of nanoparticles makes it more
expensive, compared to all the cooling schemes. Heat pipe cooling is effective for motor
housing cooling but compared to liquid cooling it is cheaper because this scheme is mostly
an add-on to the existing air cooling strategy.
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Table 9. Effect of heat pipe implementation [52].

Given Heat
LOAD, W

Outer Surface
Temperature,
◦C (with Out
Heat Pipes)

Outer Surface
Temperature,

◦C (With
Heat Pipes)

% of Variation
(Temperature

Reduction)

Inner Surface
Temperature,
◦C (with Out
Heat Pipes)

Inner Surface
Temperature,

◦C (With
Heat Pipes)

% of Variation
(Temperature

Reduction)

31 42 35 20 48 40 20

61 58 42 38 70 54 29.6

91 75 52 39 90 68 32.3

119 88 58 51 110 78 41

149 100 64 56 128 90 42.2
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5. Future Scope

A thorough analysis of all the available literature on thermal analysis has pointed out
a common conclusion that liquid cooling systems are more advantageous when it comes to
dealing with high heat loads due to their high thermal conductivity and highly turbulent
flow, which increase the heat transfer characteristics. Additionally, the use of different
coolants can further improve the cooling aspects of these systems. The use of mixtures of
two or more coolants, such as water and ethylene glycol, has made it possible to obtain
enhanced cooling characteristics. Moreover, the use of the nanoparticles in the coolant
has opened up new avenues for the development of safe and improved heat rejection
strategies. However, the increased use of power to pump around the coolant liquid requires
significant attention, since it decreases the net output power. The recent advancement in
dimple cooling geometries has led to improved cooling rates with just minor changes to the
surface of the heat exchange region. This can prove to be instrumental in creating thermal
management strategies. When compared to a liquid cooling system, the air-cooled system
consumes less power but is not as efficient as liquid cooling systems when dealing with
high heat loads. The utilization of heat pipes in the thermal management of large-capacity
motors have not received the required attention needed. If used with an appropriate
coolant, the heat pipes strategy has the potential to reuse the obtained low-grade heat for
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purposes requiring low heating, thereby increasing the overall efficiency of the system.
Hence, is suggested that an integrated approach can be adopted while dealing with large-
capacity motors. This system can utilize two or more cooling strategies together to improve
the overall dynamics of the induction motor.

6. Summary

The thermal management and analysis of an induction motor play an important
role to determine the performance and consistency. This paper carefully covers diverse
characteristics related to induction motor heat management and analysis to identify the
major hotspots and deal with them appropriately. Different loss generation in the induction
motor is provided when it is shown how copper, iron, and mechanical losses affect the heat
load on an induction motor. The study provides various methods of thermal analysis for
drawing a thermal profile of an induction motor to choose an appropriate cooling strategy.
The thermal methods provide show the merits and demerits of LPTN, numerical approaches
(i.e., in the CFD) and experimental validation. Furthermore, this paper also presents various
cooling strategies for the readers or researchers to choose from, which includes their merits
and demerits. The air-cooled systems have been carefully analyzed and compared with the
liquid-cooled systems. Moreover, different coolant fluids, which have gained traction in
recent times have also been discussed. New strategies, such as dimple cooling geometries,
have also been studied to provide necessary insight into the upcoming technologies in the
field of thermal management. The future scope is being provided to serve as grounds for
researchers and machine designers working in a related field.
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