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Abstract: Nowadays, photovoltaic (PV) systems are responsible for over 994 TWH of the worldwide
energy supply, which highlights their relevance and also explains why so much research has arisen
to enhance their implementation; among this research, different optimization techniques have been
widely studied to maximize the energy harvested under different environmental conditions (max-
imum power point tracking) and to optimize the efficiency of the required power electronics for
the implementation of MPPT algorithms. On the one hand, an earthquake optimization algorithm
(EA) was introduced as a multi-objective optimization tool for DC–DC converter design, mostly to
overcome component shortages by optimal replacement, but it had never been tested (until now) for
PV applications. On the other hand, the original EA was also taken as inspiration for a promising EA-
based MPPT, which presumably enabled a solution with simple parametric calibration and improved
dynamic behavior; yet prior to this research, the EA-MPPT had never been experimentally validated.
Hence, this work fills the gap and provides the first implementation of the EA-based MPPT, validating
its performance and suitability under real physical conditions, where the experimental testbed was
optimized through the EA design methodology for DC–DC converters and implemented for the first
time for PV applications. The results present energy waste reduction between 12 and 36% compared
to MPPTs based on perturb and observe and particle swarm optimization; meanwhile, the designed
converter achieved 7.3% current ripple, which is between 2.7 and 12.7% less than some industrial
converters, and it had almost 90% efficiency at nominal operation. Finally, the EA-MPPT proved
simple enough to be implemented even through an 8-bit MCU (ATmega328P from Arduino UNO).

Keywords: PV systems; DC–DC converters; MPPT; EA; P&O; PSO; metaheuristics

1. Introduction

The constant and immeasurable growth of the world population together with increas-
ing industrial productivity demand has led to increasing and unsustainable worldwide
energy demand, as highlighted by the International Energy Agency (IEA) in [1]; as a result,
the IEA in [2] purports that modern worldwide economies critically depend on the devel-
opment of more reliable and affordable energy supplies, increasing the relevance of cleaner
energy supplies from renewable energy sources (RES) over the past decade.

Consequently, among all RES, solar photovoltaic (PV) energy systems have gained
popularity for power supply applications due to their suitability all around the world,
which is clearly substantiated by their over 994 TWH worldwide generated power in the
past year (as presented by the IEA in [3]). Moreover, according to Femia, N., et al. in [4], the
energy harvested from PV systems is expected to be a feasible solution both for advanced
economies and developing countries; the IEA describes in [3] that PV sources combine two
main advantages: modules can be manufactured in large plants, allowing economies of
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scale, and, as a modular technology, they can be deployed in anything ranging from small
to massive applications.

Therefore, to enhance the use of PV systems, Mendez-Flores, E., et al. in [5] explain
how different research topics have been studied, mostly to improve power converter
topologies (as reviewed by Verbytskyi, I., et al. in [6]), power converter controllers schemes
(as presented by Sabhahit, J. N., et al. in [7]), and maximum power point trackers, which
optimize the energy harvested from PV sources (as studied in [8] by Sharma, A., et al.).

Hence, Figure 1 summarizes the relevance of each topic for energy conversion from
PVs, since PV arrays transform solar energy into electric power, which is transduced
through the power converter by means of the converter control; yet it is until the max-
imum power point tracking (MPPT) stage where the system harnesses the maximum
available power from the PV array through variation of the impedance via the power
electronics converter.

Figure 1. General elements required for a photovoltaic power supply.

This work contributes to two of those research topics (green and red gears from
Figure 1), since a PV system is enhanced through metaheuristic optimization, particularly
by the optimal design of a DC–DC converter and its MPPT algorithm for a typical 10 W
validation case study.

1.1. Enhanced Maximum Power Point Tracking

Among those topics, MPPTs enable dynamic optimization through the power con-
verter, where variations in the voltage (Vpv) and current (ipv) signals from the PV array
pave the way to the maximum power point (MPP), which, according to Femia, N., et al.
in [4], is achieved through variations to the duty cycle from the DC–DC converter.

Hence, there have been numerous proposals and classifications addressing searching
for the MPP. On the one hand, Farh, H. M., and Eltamaly, A. M., in [9] studied and classified
68 different techniques into two main categories: non-model-based and model-based, and
four subcategories: soft computing, hybrid, traditional, and Others. On the other hand,
Motahhir, S., et al. in [10] classified the fourteen most-implemented MPPT algorithms and
classified them into four groups: direct (conventional), indirect, soft computing algorithms,
and others. Finally, Ahmed, M., et al. in [11] present the most-recent classification: conven-
tional methods, intelligent techniques, and nature-inspired or metaheuristic algorithms.

Among those classification, the common ground is that direct or traditional MPPT
methods are based on observations by applying a control signal (voltage or duty cycle)
directly to the power converter; meanwhile, indirect methods require more parametric in-
formation regarding the characteristics of the solar panel; and finally, intelligent techniques
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are based on soft computing approaches that are sometimes nature-inspired or based on
metaheuristic methods.

Moreover, between the most implemented and studied solutions, traditional MPPT
algorithms such as perturb and observe (P&O), hill-climbing (HC), and even incremental
conductance (IC), have been widely implemented for many PV energy systems; the P&O
algorithm has been the cornerstone that inspired many other MPPT approaches, even IC
and HC MPPT (as validated by Lee, H. S., and Yun, J. J., in [12]).

Those classic approaches based on P&O, have been validated many times (such as
in [13] by Sahnoun, M. A., et al.) as reliable trackers with low dependence on parametric
calibration, which together with their mathematical simplicity make these types of algo-
rithms suitable for physical implementations. Nevertheless, the MPPT review presented by
Derbeli, M., et al. in [14] addresses that these algorithms have a critical trade-off between
settling time and steady-state oscillations, mainly due to the magnitude of the perturbations
that are continuously injected into the system. Additionally, Derbeli, M., et al. in [14] also
explain that continuous weather variations may also harm the optimization process of
approaches based on P&O.

Then, nature-inspired solutions emerged in response to those issues for MPPT ap-
plications, leading to algorithms with enhanced MPPT efficiency and improved dynamic
performance (as studied by Meddour, Sami, et al. in [15]), where metaheuristic optimization
algorithms contributed solutions with reduced settling time and decreased steady-state
oscillations. Hence, as P&O served as inspiration for many classic methods, the parti-
cle swarm optimization (PSO)-based MPPT proposed by Ishaque, Kashif, et al. in [16]
served as a starting point for different metaheuristic MPPT techniques, such as the gray
wolf optimization (GWO)-based MPPT algorithm presented by Eltamaly, A. M., and
Farh, H. M., in [17], or the firefly-based algorithm with simplified propagation proposed
by Huang, Y. P., et al. in [18]. Nonetheless, Dolara, Alberto, et al. in [19] analyzed that the
performance of PSO-based techniques is critically susceptible and vulnerable to correct
and precise parameter calibration, which can dramatically affect the searching features
of the algorithm depending on the selected optimization agent population size or the
algorithm’s coefficient initialization, as validated by Koad, R. B., et al. in [20]. More-
over, Mendez, E., et al. in [21] validated that those liabilities make PSO-based approaches
less suitable for physical implementations, which, by the way, is sustained by [14], since
Derbeli, M., et al. state that PSO-MPPTs are complex for hardware implementation and
have greater risks of falling into local MPPs.

Henceforth, Mendez, E., et al. in [21] presented a novel MPPT based on the general
structure of the earthquake optimization algorithm (EA) introduced by the same author
in [22]; thus, Mendez, E., et al. in [21] claimed to have found a feasible solution that inte-
grates improved dynamic behavior while retaining easy parametric calibration, bringing
the best of both worlds between classic and intelligent methods (from the classification
presented by Derbeli, M., et al. in [14]). Thereby, Table 1 shows where the EA-MPPT is
located among some of the MPPT techniques.

Table 1. Simple classification of MPPT techniques.

Traditional Methods Indirect Methods Intelligent Techniques

Perturb & Observe Fractional Short-Circuit Current ([23]) PSO-MPPT ([16])
Hill Climbing Fractional Open-Circuit Voltage ([24]) Fuzzy-Logic Control ([25])

Incremental Conductance Pilot Cell ([26]) GWO-MPPT ([17])
Variable step P&O ([27]) Firefly-MPPT ([18])

EA-MPPT ([21])

Furthermore, in [21], the EA-MPPT was tested under several simulation cases to
analyze its dynamic features. The quantified results showed an average energy waste
reduction under low-power applications of 17.12% and 12.4% compared to P&O and
PSO, respectively; meanwhile, for high-power applications, the reduction averaged 33.8%
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compared to PSO-MPPT and 36.48% against classic P&O. Thus, the main contributions of
the EA-MPPT are found in the feasible implementation of an algorithm with low calibration
dependence and improved dynamic performance with low steady-state oscillations.

Nevertheless, despite the research presented in [21] that validated the low calibration
requirements to achieve low steady-state oscillations and enhanced dynamic behavior,
Mendez, E., et al. in [21] only theorized the suitability of the algorithm for real implementa-
tion because the COVID-19 pandemic delayed experimental tests due to the confinement
conditions. As a consequence, this research is focused on filling the experimental void
left in [21] through the first experimental performance evaluation of the algorithm under
physical conditions.

1.2. Power Conversion for PV Systems Contribution

On the other hand, it is crystal clear that the reliability of experimental data can only be
as good as the quality of the designed testbed on which the algorithms are validated, which
leads to the final contribution of this work. Accordingly, as MPPT algorithms are usually
applied through DC–DC converters, this work takes advantage of the design methodology
for DC–DC converters proposed by Mendez-Flores, E., et al. in [28], with its complete and
extended version introduced in [29].

Firstly, Mendez-Flores, E., et al. in [28] presented a single-objective optimization
process for a non-inverting buck-boost converter designed as a supercapacitor charger, and
they sought to optimize the charging process of the supercapacitor; still, results revealed
that for power converter designs through metaheuristic algorithms, multi-objective opti-
mization is required in order to safely manage the dynamics of both voltage and current at
the output. Therefore, Mendez-Flores, E., et al. in [29] introduced the complete structure
for the design, with optimal component selection that sought particularly to address the
present-day electronic component shortage by finding optimal replacements; their results
showed even better performance for a given application than that of the previous design.

This work uses Efrain’s methodology for the optimal design of DC–DC converters on
an application that it has not been tested on before: a Buck converter is designed through
metaheuristic optimization for a photovoltaic application inspired by a typical cellphone
charger that requires 5 V and 2 A at the output of the system, which means optimization is
performed to properly design a 10 W validation testbed for PV MPPT algorithms.

The design was optimized through the earthquake optimization algorithm, for which the
objective function was taken as the transfer function validated in [29] by Mendez-Flores, E., et al.,
and the dynamics of the converter were validated through a Simscape simulation in the
MATLAB/Simulink environment to ensure safe implementation of the design under the
expected conditions.

Thereby, multiobjective optimization led to a design that reaches almost 90% efficiency
when operating at 10 W, whereas Würth Elektronik in [30] highlights that the typical
efficiency of non-synchronous buck converters is usually around 85%. Meanwhile, the ex-
perimental current ripple of the design was measured to be around 7.3%, which is between
2.7 and 12.7% less than typical industrial converters (as sustained by Erickson, R. W., and
Maksimovic, D., in [31]). Moreover, the converter’s dynamics showed remarkably steady
features against multiple duty-cycle perturbations, which finally validated the suitability
of the design for MPPT applications.

The layout of this work is as follows: Section 2 studies the mathematical model of
PV modules, after which Section 3 addresses the general operation of DC–DC converters;
thereby, Section 4 highlights the general frame of the EA-MPPT to be experimentally
validated through the DC–DC converter design through the methodology broken down in
Section 5. Moreover, Section 6 describes the whole design of the validation case study, for
which the results are presented in Section 7. Finally, Section 8 presents the main conclusions
of this research.
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2. Mathematical Model for PV Modules

Among the different RES, PV modules are the ones that enable sunlight conversion into
electrical energy; they directly depend on climatic conditions. Therefore, Femia, N., et al.
in [4] explain how the current, voltage, and, consequently, the power generated from PV
arrays can be estimated from temperature and solar irradiation.

Despite the different characterization techniques to analyze the dynamics of PV genera-
tion systems, Mendez-Flores, E., et al. in [21] address that one of the best and most-common
ways to simulate those dynamics under different simulated environments is through the
adoption of an equivalent model with the key features of the system embedded into their
most relevant equations.

The single-diode equivalent model allows understanding of how input parameters
affect the power supplied by the PV sources and is taken in this work together with some
of the ohmic losses to better explore dynamic optimization through MPPT algorithms.
Thereby, the equivalent electric frame described by the single-diode model is presented in
Figure 2.

Figure 2. Electric diagram of the single-diode equivalent model with ohmic losses for PV modules.

According to Femia, N., et al. in [4], the main limitations of the single-diode model are
found under low irradiance conditions for thin-film-based solar cells; still, this model fulfills
the dynamic characterization requirements of this work, particularly for the proposed
validation case study. Therefore, the selected model enables the I–V (Current–Voltage) and
P–V (Power–Voltage) feature characterization of the solar cells.

Hence, by applying Kirchhoff’s current law (KCL) to the circuit in Figure 2, the output
current from the PV module, I, can be defined as presented in Equation (1).

I = Iph − Id − Ip (1)

where Iph is the generated current from the solar cell, Id is the current through the diode,
and Ip represents the current through the parallel parasitic resistor.

On the other hand, Mendez-Flores, E., et al. in [21] explains that the generated current
can be rewritten in terms of solar irradiation (G) and Temperature (T), which is addressed
by Equation (2).

Iph =
G

GSTC
[IphSTC + µsc(T − TSTC)] (2)

where G stands for the irradiance, T for the PV cell’s temperature, and µsc is the temper-
ature coefficient at the short circuit current. Nevertheless, it is important to address that
terms with subscript STC represent the same variables but under Standard Test Conditions
(G = 1000 W/m 2 and T = 25 °C ).

Then, Equation (3) represents the mathematical features of the diode’s current Id from
Equation (1), expressed after evaluating irradiation and temperature.
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Id = I0 exp
(

V + I · Rs

a
− 1
)

(3)

where I0 represents the reverse saturation current from the diode, V is the voltage supplied
by the module, and Rs is the series parasitic resistance of the module (as presented in
Figure 2).

On the other hand, Mendez-Flores, E., et al. in [21] explain that a is also known as the
“modified ideality factor”, which, by the way, induces a change of variable for Equation (4).

a =
NS · A · k · Tc

q
= NS · A ·VT (4)

where VT is known as the thermal voltage term, A is the ideality factor of the cell, Ns is the
number of cells connected in series on the module, k is the Boltzmann constant (defined
as 1.381× 10−23 J/K), Tc is the temperature of the cell, and q is the electron’s charge factor
(taken as a constant 1.602× 10−19 C).

Additionally, from Equation (3), the saturation current I0 can be rewritten as defined
by Equation (5).

I0 =

[
IscSTC exp

(
−Voc

a

)](
Tc

TcSTC

)3
exp

[( qεG
AK

)( 1
TcSTC

− 1
Tc

)]
(5)

where Isc is the short-circuit current, Voc is the voltage in an open circuit, and εG is the
material’s band-gap energy.

Finally, and also from Equation (1), the current leaked through the parallel resistor Ip
can be expressed as shown in Equation (6).

Ip =
V + Rs · I

Rp
(6)

Thereby, Figure 3 presents a complete breakdown of the different equations that
integrate the model introduced in Equation (1), highlighting the different parameters that
require other mathematical expressions to figure out the dynamics of the PV modules for
the designed case study.

Figure 3. Equation (1) broken down into its multiple components for implementation, where colors
are used to address how each variable is estimated through time and where they are substituted.

Consequently, through the mathematics from Figure 3, the voltage-against-current
profile can be developed by sweeping voltages in order to estimate the current at every
point; meanwhile the voltage-against-power profile can be delivered by the existing relation
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P = V · I. Therefore, Figure 4 presents a graphical example of how maximum achievable
power can be modified under different climatic conditions.
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Figure 4. Graphical exemplification of the maximum power point for different irradiation (a,b) and
temperature (c,d) variations.

Therefore, Figure 4a,b represent how the I–V and P–V features, respectively, behave
when the temperature remains the same but the solar irradiation changes’ thereby, the
MPP has greater effect on the achievable current at MPP (IMPP). Meanwhile, Figure 4c,d
represent how the I–V and P–V profiles, respectively, behave at different temperature
conditions with a static solar irradiation value, where the MPP presents greater changes to
the voltage at MPP (VMPP).

The dynamics of the MPP against different climatic variations clearly highlight the
optimization issue to be addressed through MPPT algorithms, since in real applications
neither the temperature nor irradiance conditions remain static during a regular day.

Nonetheless, this model is taken for design purposes in order to verify the conditions
for proper power electronics design, since parametric characterization of the solar cells
is taken for the designed case study to ensure achievable nominal power ranges for the
converter performing the dynamic optimization.

Hence, the following section introduces basic power conversion concepts through
DC–DC converters from the perspective of simple PV applications, seeking to create a path
to a testbed design methodology optimized for MPPT validations.

3. Basic DC–DC Converters for PV Applications

As introduced in Section 2, many typical photovoltaic applications use DC–DC con-
verters to modulate the energy harnessed from PV sources, serving as dynamic optimizers
to find the MPP through MPPT algorithms. Therefore, as this work also contributes to
power conversion design for PV applications, the basic concepts of DC–DC converters are
introduced, which allows us to properly address how the components are optimized for
the validation case study.

DC–DC converters are usually selected for power regulation for PV sources since
Mendez-Flores, E., et al. in [21] present that, in those applications, efficiency is more
important than output noise. Thereby, Erickson, R. W., and Maksimovic, D., in [31] explain
that typical classification of DC-to-DC converters is done according to whether they increase
(step-up) or decrease (step-down) the output voltage.
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On the one hand, step-down converters are usually known as buck converters
(Figure 5); on the other hand, step-up converters are usually known as boost convert-
ers (Figure 6). In both cases, the key elements to carry out power conversion are the input
voltage Vg, the circuit’s inductance L, the output capacitance C, and the load of the system
(resistance R in this case).

Figure 5. Basic topology of a buck converter.

Figure 6. Basic topology of a boost converter.

The configuration and the way in which the components interact are what enable
power conversion through gate commutation on MOSFETs (Q in Figures 5 and 6) and the
conduction states from the diode (D in Figures 5 and 6). The commutation stages allow
switching between the charge and discharge phases of inductance and capacitance, leading
to an average reduced or boosted voltage at the output.

Accordingly, Erickson, R. W., and Maksimovic, D., in [31] explain how the buck and
boost topologies are the foundation of many other topologies, since series or parallel
interconnection of buck and/or boost converters leads to the formation of many other
topologies, such as inverting and non-inverting buck-boost converters (as stated by Mendez-
Flores, E., et al. in [29]).

Henceforth, those switching properties from the converters enable impedance mod-
ulation at the terminals of the PV source, which, by the way, allows modulation of the
I–V features towards the MPP through the MPPT algorithm. The integration of PV energy
sources with DC–DC converters is exemplified by Figure 7, in which the renewable energy
source replaces the input voltage Vg from the perspective of Figures 5 and 6.

Moreover, it can be clearly appreciated in Figure 7 that the buck and boost structures
remain almost the same for the implementation, but this time they are coupled to the PV
source through a parallel coupling capacitor, which is the key element to provide steady
dynamics for the tracking algorithms since the capacitance enables decoupling of the noise
from the PV source from the oscillating features of the power converter; in other words,
coupling capacitors allow linking of the transferred energy from one segment of a circuit
to another.
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Figure 7. Basic DC–DC converter designs for PV applications.

For this paper, a 10 W experimental case study is designed for the MPPT algorithm
validation; the selected circuit structure is similar to the one analyzed in the buck topology
with a PV source from Figure 7. Optimal component selection for the case study is discussed
later in this paper; still, the following section briefly explains the frame of the validated
EA-MPPT algorithm to be embedded through the buck converter.

4. Earthquake Optimization Algorithm-Based MPPT

As highlighted by Femia, N., et al. in [4], the maximum amount of achievable energy
that PV sources can deliver (Ppvmax ) relies on weather conditions, particularly solar irradia-
tion (G) and temperature (T). Thereby, following the notation from Mendez-Flores, E., et al.
in [21], the power generated from a PV source is addressed as Ppv, which is estimated
through time by the acquired current (Ipv) and voltage (Vpv) from the PV source.

Therefore, as studied by Riquelme-Dominguez, J. M., and Martinez, S., in [32], many
practical applications require an electronic interface between the PV source and the load in
order to find the optimal permutation between Ipv and Vpv that provide the MPP under the
actual weather conditions.

Nevertheless, under the assumption that the maximum achievable power is a dynamic
point with unpredictable variations, the issue has to be addressed through a dynamic
optimizer capable of fulfilling the dynamic requirements of the system, which is why MPPT
algorithms are applied through power electronic systems that allow dynamic variation of
the impedance at the terminals of the PV source. Moreover, Riquelme-Dominguez, J. M.,
and Martinez, S., in [32] explain that many of the MPPT algorithms for PV applications are
applied through DC–DC converters, where the duty cycle (d) is the input of the control
system (as highlighted in Figure 7).

In this work, the dynamic optimizer to be experimentally validated is the earthquake
optimization algorithm-based MPPT (EA-MPPT), which is a metaheuristic MPPT algorithm
firstly introduced by Mendez-Flores, E., et al. in [21], where the algorithm’s frame proved
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to be a reliable solution with formidable results when compared to different MPPTs such as
P&O and particle swarm optimization-based MPPT (PSO-MPPT).

The classic Earthquake Algorithm (EA) on which the EA-MPPT is based on is the first
geo-inspired metaheuristic algorithm; it was introduced by Mendez-Flores, E., et al. in [33],
with its extended version in [22]. As explained by Ponce, P., et al. in [34], it takes advantage
of the wave velocities from real earthquakes, where the P-wave is faster and is based on
earth material compressibility; meanwhile, the S-wave is slower and directly depends on
rock elasticity, causing epicenters that move up and down—always perpendicular to the
wave direction.

Hence, Equations (7) and (8) represent the mathematical expressions for the P and S
waves velocities, respectively.

vp =

√
λ + 2µ

ρ
(7)

vs =

√
µ

ρ
(8)

where vp and vs are the waves velocities, λ and µ are the Lamé parameters, and ρ is the
material density. Thus, Mendez-Flores, E., et al. in [5] explain that the optimal relation for
the Lamé parameters is 1.5; consequently, :

λ = µ = 1.5 GPa (9)

Therefore, the classic EA takes the solid’s density parameter ρ as the random value
that gives the algorithm its metaheuristic features, which is taken from a range between
2200 and 3300 kg/m3, as also validated by Ponce, P., et al. in [34]. Yet in order to choose
whether to use vp or vs, the algorithm takes an operating range around the global best
solution for the finer search performed by the vs wave velocity, which is referred to by
Mendez-Flores, E., et al. in [5] as the S-range or Sr.

Thus, according to [21] by Mendez-Flores, E. et al., the fine optimization features
enhanced by Equation (8) are the ones that inspired the EA-MPPT algorithm, whose
general structure is shown in Figure 8, where it is clear that S-wave searching features are
exploited for the fine search in this application due to the fact that the control variable d
has to remain between 0 and 1, which highlights the small searching area where small
perturbations can have great effects on the system.

On the other hand, Mendez-Flores, E., et al. in [21] explain that the EA-MPPT uses
a searching flag (S f lag) to insert the duty cycle where the actual MPP was found within
the searching agents, which extends the time that the system remains on the MPP before
inducing another perturbation to the system. In this application, and also from Figure 8, Tp
is the time between perturbations and the time that the control signal (d) remains on the
actual best solution (d = xbest).

In other words, the EA-MPPT intersperses the search for the MPP with states where
the best solution at the moment is loaded in order to achieve fixed states in the actual
MPP where the system, instead of looking for another solution, is taking advantage
of the actual best solution without perturbations. Those features were validated by
Mendez-Flores, E., et al. in [21], where different simulated scenarios were analyzed; yet
until this work, those results were never experimentally validated.

Therefore, the following section explains the optimal design methodology for the
experimental testbed into which the EA-MPPT is finally embedded to enable its validation
under more realistic conditions.
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Figure 8. Basic flowchart structure of the EA-MPPT.

5. Optimal Design of DC–DC Converters for PV Applications

To properly analyze and validate the performance of the EA-MPPT, a reliable testbed
is required to provide accurate data for the dynamic evaluation. Therefore, this paper
follows Efrain’s optimal DC–DC converters design methodology presented in [29] in order
to provide an optimized design for the current PV application.

Thereby, Mendez-Flores, E., et al. in [29] state that the design methodology is de-
veloped as an optimal component selection tool that can be adapted to the conditions of
a given application. Hence, the main design stages of the methodology are outlined in
Figure 9, which also addresses the iterative process that occurs when the optimization
boundaries require adjustment to fulfill the application’s needs.

Consequently, from the perspective of the photovoltaic case study, the designing stages
presented in Figure 9 are listed below to provide greater details of how the methodology
can be applied for optimal testbed design:
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Figure 9. Optimal design methodology applied for this case study.

5.1. Converter Modeling

As addressed by Mendez-Flores, E., et al. in [29], the methodology requires multiobjec-
tive optimization to provide reliable dynamic features; thereby, the mathematical model to
be taken as the objective function for the system should include the dynamics of the output
voltage and the inductance current of the system.

Consequently, the small-signal model addressed by Erickson, R. W., and
Maksimovic, D., in [31] is taken for the objective function evaluation, where the trans-
fer functions can be analyzed depending on whether the input is taken as the source
voltage (line-to-output transfer function) or the control signal d (control-to-output transfer
function); hence, Figure 10 exemplifies the expected input–output relation between the
different modeling approaches.

Figure 10. Input/output block diagram exemplification for each small-signal transfer function for
DC–DC converters.

Moreover, also from Figure 10, Gvd and Gid represent the control-to-output trans-
fer functions for the expected outputs are the voltage and current, respectively, and
Gvg and Gig are the line-to-output transfer functions for the output voltage and current
signals, respectively.

Henceforth, from the perspective of the PV case study analyzed in this work, the de-
signed DC–DC converter should be optimized to ensure reliable conditions under the duty
cycle (control signal) perturbations induced by the MPPT algorithm. Consequently, Gvd and
Gid are taken as the objective functions for the DC–DC converter optimal design strategy.

5.2. Cost Function Selection

The following step of the methodology is to find the proper evaluation criteria for the
DC–DC converter; from the perspective of PV power dynamic optimization, the converter
should achieve a low transient state where steady-state is reached quickly with low ripple
on the voltage and current signals.
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Hence, to address multiobjective optimization for converter design, Mendez-Flores, E., et al.
in [29] explain that the iterative process for the optimization of the output voltage and the
current from the inductance can be evaluated and ranked through different performance in-
dexes; such as the well-known ISE (integral of square error), IAE (integral of absolute error),
ITSE (integral of time multiplied by square error) and ITAE (integral of time multiplied by
absolute error), which can be easily suited to the optimal design process depending on the
expected output conditions of the converter.

Thereby, Mendez-Flores, E., et al. in [29] address how optimization of the output volt-
age and current through inductance can be developed through evaluation of the simulated
response of the converter under different design conditions (different inductors and/or
different capacitances). Consequently, the performance indexes need to include a voltage
and current stage to ensure reliable behavior, which is why the error evaluation function
can be taken as the sum of two indexes depending on the expected dynamics.

The multiobjective optimization design in this work is carried out through Equation (10),
which is a function composed of two ITAEs: one to evaluate the error in the voltage signal,
and the second to evaluate the error in the current.

Err =
∫ T

0
t · |ev(t)|dt +

∫ T

0
t · |eiL(t)|dt (10)

where ev(t) is the error of the output voltage through time, eiL(t) is the error of the current
through the inductor in time, and Err is the total error to be minimized. Nonetheless, it is
critically relevant to address that, as Ogata, K., et al. in [35] explain, functions based on
the ITAE are related to the absolute error value in time, giving more importance to the last
errors than the initial ones.

Those features lead to an optimization with fast responses, small overshoots, and
damped oscillations, enhancing an optimization that prioritizes the convergence and
velocity of the converter, where the most-recent error is weighted with greater relevance
(as validated by Mendez-Flores, E., et al. in [29]).

Hence, as the objective and cost functions have been introduced, the following step
is to iterate the design through the metaheuristic optimization algorithm to provide an
optimal power electronics design.

5.3. Metaheuristic Optimization

Following the metaheuristic track of this research, the classic version of the earthquake
optimization algorithm (EA) is taken as the optimization tool for the design methodology,
which also enables us to highlight the frame differences between the EA and the EA-MPPT
discussed in Section 4. Therefore, Figure 11 presents the general structure of the EA from
the perspective of the design methodology, highlighting where the objective functions and
cost functions are embedded into the system.

As introduced in Section 4, the earthquake algorithm in its classic metaheuristic
optimization structure takes advantage of the natural behavior of P- and S-wave velocities,
which are featured in Equations (7) and (8), respectively. Additionally, also from Section 4,
the way in which the algorithm decides whether to use the faster features of the P-wave
or the finer ones from the S-wave relies on whether the searching agent is in or out of the
S-range (Sr), which is the range around the global best solution where the S-wave operate;
outside of those boundaries, the searching agents (epicenters) explore the optimization
zone through the P-wave.
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Figure 11. General structure of the earthquake algorithm from the perspective of the optimal
design methodology.

Therefore, Mendez-Flores, E., et al. in [29] explain that the recommended value for the
Sr is around 2% from the global best solution; still, it is important to address that since both
velocities are estimated through a square root, the final result for the taken velocity for the
i epicenter (vi) results as a positive number, which is why the EA’s frame has a random
selection of a positive or a negative velocity value, so that vi can be free to take ±vs or ±vp
as exploration velocities.

Consequently, the position of the searching agents in each iteration is updated through
Equation (11).

Xt
i = Xt−1

i + Vi, (11)

where Xt
i and Xt−1

i are the actual and previous positions, respectively, and Vi is the current
velocity of the epicenter (vs or vp).

On the other hand, after the velocity for the i epicenter decision, an additional heuristic
freedom degree is taken into consideration for the earthquake algorithm, where Mendez-
Flores, E., et al. in [33] explain how random selection from an exponential distribution
reduces the probability of revisiting explored areas. Thereby, [22] explains that the EA takes
the random value from a range between ± the maximum value of vp/vs, i.e., ± 1.91 (taken
from [29]), which can be expressed by Equation (12).

Xt
i = Xbest + Expµ(s), (12)

where Xbest is the global best solution, and Expµ(s) is the random value generated through
the exponential distribution from the value of µ. Moreover, since after some iterations
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all the epicenters tend to converge due to the small velocity (vs) around the global best
solution, the additional heuristic degree given by Equation (12) allows boosting of some
epicenters out of the S-range in order to prevent getting trapped in local minimums.

Hence, Figure 11 summarizes the implementation of the EA through the described
equations for optimal converter design application, where it is clear that the epicenter’s
positions are taken as the components to be optimized on the design, depending on whether
the methodology is applied for optimal inductance selection or optimal estimation of both
inductance and capacitance components. Then, the following step validates the viability of
the proposed design before its implementation.

5.4. Results Validation

Before the experimental implementation of the optimized design, the selected com-
ponents should be firstly validated in a safe environment; such as a digital twin or, in this
case, through a MATLAB/Simulink simulation by means of the Simscape Power Systems™
(The MathWorks, Inc.; Torrance, CA, USA) components.

Moreover, Erickson, R. W., and Maksimovic, D., in [31] explain that the small-signal
transfer functions allow proper modeling of the dynamic features of the converters, but this
is still from an averaged approach without taking into consideration the system’s ripple,
which is an intrinsic feature of DC–DC converters. Figure 12 presents a comparison between
the dynamics of the small-signal approach and the Simscape model, highlighting how the
design can be validated even with the ripple features through the Simulink environment.

Figure 12. Dynamic feature comparison between the small-signal Gvd transfer function and the
Simulink digital twin profiles.

Hence, Figure 12 may lead to questioning the reason why the Simscape simulation is
not taken for metaheuristic iterative optimization, where the justification relies on the com-
putational costs regarding Simscape components, since it is clear that they are significantly
higher compared to transfer functions simulations. Consequently, this results in a more-
efficient procedure to optimize the design by iterating the design through the small-signal
model and validating it before implementation through the Simulink environment.

Therefore, this step has the main objective of providing a validation stage before
implementation in order to enable an evaluation stage: if the dynamic features of the
converter fulfill the expected behavior of the system, the design can move forward for
implementation; meanwhile, if the dynamics of the converter were not as expected, the
optimization boundaries and the cost function should be adjusted, and the metaheuristic
algorithm is executed again with the adjustments (as highlighted in Figure 9).

5.5. Converter Implementation

The final step regarding Efrain’s design methodology is taken after fulfilling all the
design requirements of a given application for which the designed DC–DC converter is
implemented; yet the efficiency of the design critically depends on proper component
selection with low parasitic resistance and proper thermal features for the application.
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Hence, this design methodology is what was implemented to design the experimental
testbed for the EA-MPPT validation, where the design requirements and the resulted design
are presented in the following section.

6. Experimental Validation Case Study

As stated before, Mendez-Flores, E., et al. in [21] proposed a novel MPPT approach
inspired on the EA; nevertheless, the research did not provide an experimental validation
case study. Thereby, this work fills the experimental gap left by [21] due to the COVID-19
pandemic conditions.

Hence, for this research, the experimental validation case study is inspired by a typical
DC–DC converter application, which is a 10 W cellphone charger that requires an output
voltage of 5 V at 2 A of maximum output current, where the input source is a PV array that
supplies 10 V at 1 A at its maximum power point (MPPT) under Standard Test Conditions
(STC); Figure 13 presents the selected topology for the task.

Figure 13. Experimental case study buck converter topology for the validation tests.

The following subsections address with greater detail the main features of the designed
PV array and the main features of the DC–DC converter designed through the optimal
design methodology from Section 5. Nonetheless, it is important to highlight that this case
study was designed as a portable testbed for the algorithm to overcome the confinement
risks produced by the ongoing pandemic.

6.1. PV Array

For this particular case study, the PV array structure was designed for a nominal 5 W
application with a maximum achievable power of 10 W; thereby, to fulfill the requirements,
the PV array is composed of two series-connected FIT0600 semi-flexible monocrystalline
solar panels , since DFRobot® claims in [36] that each module can efficiently deliver 5 W
of output power, which is transduced to an output voltage of 5 V (VMPP) at 1 A (IMPP)
when operating at the MPP. Consequently, Table 2 summarizes the main parameters of
each FIT0600 PV module.

Thus, the maximum expected output power from the module array is estimated to
be 10 W, as the series connection of the modules lead to a maximum of 10 V at VMPP with
a maximum current of 1 A at IMPP. Nevertheless, it is important to address the dynamic
behavior of the PV array, which can be better analyzed through characterization of the
power and current against voltage profiles, which were estimated through the mathematical
model from Section 2 and are presented in Figure 14.
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Table 2. Main operating parameters of the FIT0600 PV module.

Variable Parameter Value

MP Maximum power 5 W
CPM Cells per module 10
Voc Open-circuit voltage 6 V
Isc Short-circuit current 1.1 A

Vmp Voltage at MPP 5 V
Imp Current at MPP 1 A
TVoc Temperature coefficient of Voc −0.223 [%/°C]
TIsc Temperature coefficient of Isc 0.065 [%/°C]
IL Light-generated current 1.0869 A
IO Diode saturation current 9.9377 × 10−14 A
n Diode ideality factor 0.77907

Rsh Shunt resistance 119.9356 [Ω]
Rs Series resistance 0.35553 [Ω]
PS Parallel strings 1
SS Series-connected strings 2
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Figure 14. Current (black) and power (Red) against voltage feature profiles for the PV array from the
experimental case study.

Additionally from Figure 14, it is worth highlighting that currents vs. voltage profiles
were plotted against the left-hand vertical axis; meanwhile the right-hand axis presents
the power vs. voltage features of the modules. On the other hand, the maximum power
points (MPPs) are highlighted with red circles on each plot to address how the MPPs move
under different solar irradiation conditions. Then, the profiles from Figure 14 also allow
validation of the suitability of the designed PV array for the proposed case study, which
would allow the DC–DC converter to operate at a maximum of 10 W under STC conditions.

Moreover, to ensure reliable and safe connections between the photovoltaic modules
and the DC–DC converter, a PCB was designed to avoid the risk of any connection errors
throughout the experimental trials. Consequently, Figure 15 shows the schematics diagram
of the designed circuit, where it can be also seen how both of the PV modules are internally
connected in series to provide a single PV source for the DC–DC converter.
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Figure 15. Schematic diagram of the circuit designed for PV module integration.

Additionally, Figure 15 shows where bypass diodes were added to the circuit, since
those are a standard addition to prevent hot-spot phenomena, which, as explained by Solar
Edge in [37], can produce serious damage to solar cells in the array, even causing them
to ignite, particularly when sunlight does not uniformly hit the surface of the PV cells in
the array.

Nevertheless, it is still important to highlight that the bypass diodes ideally do not
provide any efficiency liability to the system, since they are acting as additional protec-
tion to the circuit and do not act when the PV array is operating in normal irradiation
conditions—in other words, under conditions where both solar panels receive the same
amount of solar energy on their surface. On the other hand, it is also clear in Figure 15 that
we selected a Schottky diode as the blocking diode, since the blocking diode is continuously
in contact with the output power supplied by the array and its only objective is to block
reverse energy flow from the converter into the PV array. Thereby, Figure 16 presents the
PCB layout designed from the schematics from Figure 15.

Figure 16. PCB layout design of the PV module integration circuit.

In order to address the transition from circuit conceptualization to the manufacturing
stage, the PCB design from Figure 16 was developed into an experimental PCB for the
portable testbed; Figure 17 shows the printed board circuit with all the soldered elements,
for which it can be analyzed that the PCB was designed as intuitively as possible, with
multiple labels to ensure proper connections.
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Figure 17. Manufactured experimental PCB design for PV supply integration.

Then, to explain how the designed circuit together with the PV system are connected
as the source of the DC–DC converter, Figure 18 embeds the connections of the PV cells
and the manufactured PCB from Figure 17 into the case study topology from Figure 13,
addressing where and how the elements are interconnected on the experimental testbed.

Figure 18. PV array integration for the case study topology.

Nevertheless, since proper validation requires fully repeatable experiments to enable
other researchers to achieve and reproduce the same results, the photovoltaic system
was characterized to replicate its behavior by means of the Photovoltaic Array Simulator
N8937APV, which, according to Keysight’s datasheet in [38], is a DC power supply with
PV mode with an operating voltage range between 0 and 1500 V at a current between 0
and 30 A, which enhances dynamic simulations of the output characteristics of PV arrays
under different environmental conditions such as temperature, irradiance, age, and even
cell technology. Therefore, Keysight addressed in [38] that the equipment is particularly
useful to enable quick and comprehensive tests for MPPT algorithms.

Then, to ensure proper representation of the dynamic features of the experimental PV
array by its mathematical model, and also to enhance PV emulation through the N8937APV
PV array simulator, the PV array and the N8937APV were subjected to variable voltage
ramp characterization through a Keithley 2461 SourceMeter®, which, according to Keithley
(Tektronix company) from [39], is optimized for characterizing and testing high-power
materials, devices, and modules; the 2461 SourceMeter® features a 10 A/1000 W pulse
current and 7 A/100 W DC current capacity. Consequently, the performed tests enabled
us to obtain and compare the IV profiles of the PV arrays and the N8937APV, which, in
addition to the mathematical model profile, are presented in Figure 19.



Energies 2022, 15, 8043 20 of 35

0 2 4 6 8 10 12 14

Voltage [V]

0

0.2

0.4

0.6

0.8

1

1.2

C
u

rr
e
n

t 
[A

]

Mathematical Model

N8937APV

FIT0600

Figure 19. Current against voltage under STC profile comparison.

Consequently, we clearly validated that the IV dynamics of the mathematical model
and the N8937APV are reliable representations of the dynamic features of the real FIT0600
PV array. Still, to fully address the power signal dynamic features, Figure 20 compares the
power vs. voltage curves obtained through the acquired data from Figure 19. Moreover,
Figure 20 allows graphical validation of the representation of the real PV array, mostly
since the slopes are dynamically consistent between them, and the achievable MPP still
remains around 10 W.
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Figure 20. Power against voltage under STC profiles comparison.

Furthermore, in order to sustain that the dynamics of the N8937APV and the math-
ematical model are valid representations of the real power behavior of the PV array, the
errors and the precision of the representations against the experimental PV arrays were es-
timated through the quantified data; the N8937APV PV array simulator achieved 12.8089%
average error that led to 87.1911% precision; meanwhile, the mathematical model compared
to the experimental array achieved 84.7796% precision with an average error of 15.2204%.



Energies 2022, 15, 8043 21 of 35

Thereby, to enhance the reproducibility of the results and to ensure equal test condi-
tions in all the experimental validation test trials, the structure presented in Figure 18 was
rearranged into the experimental topology addressed by Figure 21, which can be inferred
as valid through the dynamic comparison from Figure 20.

Figure 21. Topology with the N8937APV PV array simulator integrated for the case study.

Therefore, the following section details the main features of the designed DC–DC buck
converter for the case study that enabled the experimental validation trials for the proposed
improved EA-based MPPT algorithm.

6.2. DC–DC Converter

After exploring the main features of the PV source designed for experimental vali-
dation, the DC–DC converter developed for this application was developed through the
optimal design methodology addressed in Section 5. Then, the classic EA was implemented
for the design technique, where the optimization was carried out through a set of 20 epi-
centers (searching agents) through 100 iterations in each optimization trial (three trials),
where the results were taken from the mean values among the trials; additionally, the
algorithm was configured to find an inductance with low ESR, which, together with the
new capacitance, could enable fast dynamic behavior while retaining low ripple-effect on
the converter, which obeys the requirements of the continually induced perturbations from
the MPPT algorithm.

Therefore, Figure 22 presents the convergence plots of the optimization process
throughout the 100 iterations. On the one hand, Figure 22a shows how the global er-
ror, estimated through Equation (10), is reduced through iterations. On the other hand,
Figure 22b breaks down the global error profile into its voltage and current components,
since Equation (10) highlighted, through ev and ei, where the ITAE from the voltage and
current errors are estimated.

Consequently, profiles from Figure 22a,b show how multiobjective optimization en-
ables equilibrium between the errors, where the metaheuristic algorithm finds the optimal
components for which the converter has the best performance for the given application
(MPPT tests in this case). Accordingly, the inductance and capacitance results optimized
by the algorithm meanly settled at 79.677 µH and 215.64 µF, with a mean global error
measured through Equation (10) of 0.0054103 after 100 iterations (as seen in Figure 22a).

Subsequently, the experimental capacitor and inductor were selected through study of
the nearest available commercial values; thus, the selected capacitance was an aluminum
organic polymer 220 µF capacitor. Meanwhile, to meet the dynamics and efficiency require-
ments of the application, the inductance was taken as a fixed-shielded high-current molded
82 µH power inductor. Then, the main parameters from the selected inductor are presented
in Table 3, Table 4 presents the main parameters of the selected capacitor for the circuit, and
Figure 23 shows the schematics diagram of the circuit and where the capacitance and the
inductance were implemented.
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Figure 22. Convergence plots of the (a) global error and its breakdown into its (b) voltage and current
errors.

Table 3. Inductor’s main parameters summarized from the datasheet presented by Pulse Electronics®

in [40].

Inductance Test Frequency RL ISat IDCmax

82 µH 100 kHz 34.2 mΩ 9 A 15 A

Table 4. Capacitor’s main parameters summarized from the datasheet presented by Panasonic®

in [41].

Capacitance Rated DC Voltage RC Ripple Current

220 µF 36 V 20 mΩ 2 A

Additionally, Figure 23, shows at the top the required connections for the MOSFET’s
gate driver, which was selected to be the single-channel gate driver UCC27511A, as also
addressed in the experimental implementation presented by Mendez-Flores, E., et al. in [29];
since according to the datasheet presented by Texas instruments in [42], it is a compact,
high-speed solution suitable for DC–DC converters and also provides parasitic Miller
turn-on effect rejection.
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Figure 23. Schematic diagram of the PCB regarding the DC–DC converter optimally designed for the
PV application.

Moreover, in the middle of Figure 23, the main structure of the designed DC–DC
converter is presented; the figure also presents how the input and output LED indicators
can be decoupled from the system in order to enhance the possibility of tests through the
minimal required components without the case apart when fast input/output verification
is required.

Additionally, two different PV source connections were added to the design; on the
one hand, 5.5× 2.1 mm barrel was provided as an additional safety measure, which allows
the user to avoid the possible scenario where the PV source is mistakenly connected with
reversed polarity. On the other hand, source header pins were also provided on the design
to enable tests with additional fixed sources, thus, both headers enable a suitable option for
a different external sources for the system. The CIN capacitor below the barrel jack is the
coupling capacitor previously described in Figure 18, the capacitance of which is the same
as the output capacitance described in Table 4.

Hence, from the bottom of Figure 23, the two-pin connectors provide reconfigura-
tion options for the converter; if both INT_LOAD_NO_SENSE connectors are joined, the
INT_LOAD_SENSE terminals are useless since those terminals are bridged, but if they
are not bridged, INT_LOAD_SENSE can be used to connect a current sensor to monitor
the current through the internal load of the circuit. Still, the internal load (2.5 Ω) can be
removed from the test trials if the INT_LOAD terminals are detached.

Similarly, if the EXT_LOAD headers are bridged and the INT_LOAD terminals are
separated, an external load can be attached to the converter to enable tests under different
load experiments; therefore, the external can be connected and monitored through the
EXTERNAL_LOAD terminals. Finally, when the IL_NO_SENSE terminals are not united,
the current through the inductance can be monitored through an external sensor at the
IL_SENSE terminals.

Thereby, under those circumstances and with those design considerations in mind,
Figure 24 presents the PCB layout designed for the DC–DC converter implementation
for the PV experimental case study, where all the elements from Figure 23 were arranged
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and routed for the manufacturing stage of the converter. Then, Figure 25 presents the
manufactured PCB of the DC–DC converter.

Figure 24. PCB layout design regarding the DC–DC converter optimally designed for the PV application.

Figure 25. Manufactured PCB for the DC–DC converter optimally designed for the PV application.

Hence, keeping up with the figure sequence that shows how the experimental frame
was built for the validations tests, Figure 26 presents the case study topology, where
integration of the N8937APV PV array simulator, the 2461 SourceMeter®, and the optimized
buck converter (from Figure 25) is presented. Additionally, from Figure 26, it can be seen
where the main elements and variables from Figure 13 are implemented; also Figure 26
highlights the MPPT and the PWM stages, addressing where the microcontroller unit
(MCU) acquires and processes the data to provide the control signal to the system.

Yet it is critical to mention that from now on, the data acquisition process regarding the
voltage, current, and power signals for the implementation and evaluation of the proposed
MPPT algorithm are carried out through the INA219 (Qwiic) module, which is based
on the INA219 power monitor with I2C interface presented by Texas Instruments in [43].
Then, Qwiic is a rapid prototyping standard developed by Sparkfun® that uses 4-pin JST
connectors to quickly interface development boards with sensors, microcontrollers, and
displays, among others things.
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Figure 26. Case study topology with the N8937APV PV array simulator, 2461 SourceMeter®, and the
optimized buck converter integrated with the INA219 (Qwiic) power sensor.

The INA219 (Qwiic) module was selected for the experimental tests since the module
provides a reliable solution that reports current, voltage, and power through I2C protocol
with up to 1% precision, suitable for tracking solar power generation applications. Accord-
ing to [43] by Texas Instruments, the sensor can measure voltage up to 26 V and current
up to 3.2 A, which fits on the 10 W case study proposed to work at 10 V and 1 A at the
PV terminals.

Consequently, Table 5 summarizes the parameters of the buck converter for which its
design was optimized for the PV case study. Nevertheless, since the novel optimal design
methodology validated by Mendez-Flores, E., et al. in [29] is acknowledged as one of the
main contributions of this work, the dynamic performance profiles of the experimental
converter through multiple duty-cycle step signals are provided in the following section of
this work as part of the featured results.

Table 5. Buck converter optimized for the case study.

Variable Parameter Value

Vg Nominal input voltage 10 V
f Switching frequency 100 kHz
L Inductor 82 µH

RL L-series resistance 34.2 Ω
C Capacitor 220 µF

RC C-series resistance 20 mΩ
R Load resistance 30–150 Ω

Pout Output power 2.5–10 W
Vout Nominal output voltage 5 V
iout Output current 0.5–2 A

Therefore, the following section presents the main results of the experimental in-
tegration case study proposed to validate how the contributions of this work enhance
smarter photovoltaic systems. Then, among the results from the following section, it is seen
how the dynamic features of the optimized converter enable a prominent testbed for the
algorithm’s validation.

7. Results

Seeking to validate the contributions of this work, the developed results in this research
are mostly divided into two main subsections: the first one presents the main experimental
results of the DC–DC converter optimally designed for the PV case study; meanwhile, the
second one discusses the results from the perspective of the EA-based improved MPPT
algorithm embedded through the converter.
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Thereby, Figure 27 presents the implementation of the testbed integrated with the case
study topology and interconnected to the laboratory’s equipment just as schematized in
Figure 26, with the N8937APV PV simulator and the 2461 SourceMeter® are also shown.
Then, the following subsection addresses with greater detail the efficiency and dynamics
evaluation of the converter through the addressed equipment.

Figure 27. Laboratory equipment for the testbed experiments on the PV case study.

7.1. Optimized Converter Experimental Results

Since for this case study the DC–DC converter was designed to provide a nominal
5 V of output voltage at 2 A of output current at the MPP, the experimental testbed was
subjected to a current sweep to evaluate the efficiency of the design under different current
loads, which allowed validating the suitability of the converter for the 10 W proposed
PV application.

Therefore, Figure 28 presents the efficiency profile of the converter over the operating
range of the PV system. Hence, it is proven that the optimal design is perfectly suitable
for the case study, since the buck converter achieved almost 90% efficiency at the nominal
output power for the converter, which would efficiently harness energy at STC of the PV
array when it is supplying the maximum achievable power.
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Figure 28. Experimental efficiency of the designed converter through different current loads.
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Moreover, Nowakowski, R., and Tang, N., in [44] explain that commercial nonsyn-
chronous buck converters meeting the same power range of operation can usually achieve
up to 85% efficiency, which ensures that the converter designed for experimental validation
has outstanding features, even compared to some commercial converters. Then, after
validating that almost 90% efficiency is achieved under the STC conditions of the proposed
PV case study, the dynamics of the buck converter had to be evaluated in order to feature a
proper implementation of the MPPT.

Thereafter, Figure 29 shows the dynamic behavior of the converter against different
duty cycle (control signal) steps, which validates that under the required conditions, the
control signal is still achievable even under the greatest current loads that the PV array can
provide. Yet it is important to address that the data acquisition for the voltage profiles from
Figure 29 was acquired through the Keysight InfiniiVision DSOX2014A Digital storage
oscilloscope, which has a bandwidth of 100 MHz and a maximum sample rate of 2 GSa/s,
which is more than enough to uncover the dynamic performance of the circuit.
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Figure 29. Experimental performance evaluation of the optimized converter against multiple duty-
cycle step signals, highlighting where the nominal operation is achieved.

It is important to address that the voltage profiles from Figure 29 were obtained by
determining the duty cycle needed to meet the nominal conditions of the converter under
different continuous current loads, which were taken from the current boundaries in the
proposed 10 W case study. Additionally, to feature the precision that the control signal can
achieve, a duty-cycle sweep was performed around the nominal duty cycle for which the
converter finds the 5 V output voltage.

Hence, it is clear from Figure 29 that the converter achieves remarkable precision
through duty-cycle changes, since the step changes allow us to obtain fine results at the
output voltage of the converter, which is a feature that was also a key result from the first
experimental validation of the design methodology provided by Mendez-Flores, E., et al.
in [29]. Therefore, the consistency of the dynamic features of the converters designed
through the contributed methodology double-checks the reliability and suitability of the
design methodology for multiple applications.

However, Figure 29 also allows evaluation of the transitory state of the system through
the slope of the voltage profiles, which provides enough information to analyze the suitabil-
ity of the converter for MPPT applications, since it was validated in [21] by Mendez-Flores,
E., et al. that a typical sample rate for MPPT algorithms can be similar to or near 0.1 s.

Nevertheless, it is still relevant to evaluate the inductance current of the optimized
design in order to fully validate whether the design objectives were completely fulfilled,
which is why Figure 30 shows how a hall-effect current tip was connected to the IL terminals
of the converter, which allowed us to acquire the inductance current signal of the converter
operating at an output current of 2 A.
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Figure 30. Oscilloscope hall-effect current tip connection for inductance current evaluation.

Therefore, Figure 31 shows a screenshot from the oscilloscope taken during the
inductance current evaluation, which validates once again that the proposed design
methodology leads to converters with reduced ripple effect. Still, Erickson, R. W., and
Maksimovic, D., in [31] explain that for buck converters, the ripple can be defined as
presented by Equation (13).

∆iL =
Vg −V

2L
DTs (13)

where ∆iL is the ripple current through the inductor, which is defined as the average-to-peak
current. Then, the theoretical ripple of the converter should be near 0.1524 A, which rep-
resents almost 7.6% of current ripple. Subsequently, Erickson, R. W., and Maksimovic, D.,
in [31] explain that commercial converters typically achieve ∆iL values that lie in the range
of 10% to 20%, which sustains even more the quality of the designed converter, since
Figure 31 measured a 0.140 A ∆iL.

Figure 31. Oscilloscope’s printed screen from the inductance current evaluation.

Still, to properly evaluate the experimental data regarding the ripple on the induc-
tance current, the acquired data were post-processed to digitally obtain and evaluate the
experimental ∆iL results. Thus, Figure 32 presents the current ripple data acquired from
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the oscilloscope, but this time, they are plotted in the MATLAB environment and are
additionally compared to the simulated iL profile of the converter.
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Figure 32. Acquired data from the oscilloscope plotted in the MATLAB environment.

Then, the experimental inductance current ripple ∆iL was estimated through the data
plotted in Figure 32, leading to the precise 0.1468 A calculated ripple, which is transduced
into almost 7.3% of current ripple. Therefore, the simulated behavior of the converter was
96.32% precise when compared to the dynamics of the experimental converter. Henceforth,
after validating that the dynamic features of the converter were suitable for the case study,
the MPPT experimental results were carried out through the optimally designed converter
and are presented in the following section.

Consequently, this subsection fully validated and experimentally double-checked the
claimed contributions of the optimal design methodology proposed by Mendez-Flores, E., et al.
in [29], where the quality of the provided design perfectly enhances the quality of
the methodology.

7.2. Improved MPPT Experimental Results

After validating that the dynamics of the experimental DC–DC converter design were
reliable for MPPT applications, we present the results from the experimental validation
tests performed to ensure the suitability of the EA-based MPPT algorithm for real-life
applications. Nonetheless, in the same validation track, an Arduino UNO development
board was taken as the MCU to embed the algorithm, since it is a well-known testbed for
rapid algorithm prototyping. Still, the Arduino UNO has limited processing capacity based
on the ATmega328P microcontroller, which under the development board design can only
achieve 16 MHz clock speed and has 32 KB of flash memory, 2 KB of SRAM, and 1 kB
of EEPROM.

Nevertheless, the Arduino UNO enables validation of the simplicity of the contributed
MPPT, with easy suitability for the application through the pre-existing INA219 current
and voltage sensor libraries, which are sustained by the few required connections, as
appreciated in Figure 32. Still, it is important to address that the updating time for all the
algorithms tested in this paper was 50.008 mSec.

Hence, the results from the contributed EA-based MPPT algorithm are evaluated
and compared against the classic P&O algorithm (as shown in Figure 33) in order to
provide a simple benchmark to address the magnitude of the results through a state-of-
the-art case, similar to the results validated in [21] by Mendez-Flores, E., et al., where the
simulated features of the algorithm were peer-reviewed and published due its contribution
to MPPT applications. Yet different from the validation presented by [21], this case study
did not consider the PSO-based MPPT for the benchmark comparison due to the constant
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oscillations from the optimization process, which, in addition, to the parametric calibration
features of the algorithm, may represent a risk for the whole system, mainly due to the
aggressiveness of the tracking behavior, also explored by Dolara, A., et al. in [19].
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Figure 33. Experimental performance of the MPPT algorithms, comparing the EA-based MPPT and
P&O algorithms.

As consequence, Figure 33 addresses the dynamic behavior of both EA-based and
P&O MPPTs, showing the energy harvested through time for both algorithms. Thus, it
can also be analyzed from Figure 33 that the EA-based MPPT managed to find the MPP
faster compared to P&O, and both algorithms behaved similarly to the simulated results
presented by Mendez-Flores, E., et al., in [21]. Therefore, the power profiles from Figure 33
allow evaluation of the consistency of the results, where the EA-based algorithm shows
once again that its greatest contribution is found in its MPP tracking speed, which exploits
more time for solar irradiation to be received on the photovoltaic system.

However, to provide a fair comparison between the algorithms, four more trials were
performed in addition to the test trial from Figure 33 to address the heuristic features of the
EA-MPPT. Yet since the sampled graphs would overlap between them, it would be difficult
to simultaneously analyze and compare the dynamics of the experimental testbed under
all the test trials. To overcome the issue and to have a better graphical evaluation, Figure 34
presents how the averaged smoothed profiles are obtained to still represent the dynamics
of the converter. Hence, the same profiles from Figure 33 are presented to validate that the
dynamic features of the curves are still conserved.
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Figure 34. Averaged experimental performance of the MPPT algorithms, comparing the EA-based
MPPT and P&O algorithm.
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Then, after dynamic feature validation from Figure 34, Figure 35 shows the averaged
experimental profiles of the P&O MPPT algorithm compared against five test runs of
the EA-based algorithm (since P&O is not heuristic); it is clear that the EA-based MPPT
improved the maximum power point tracking process even under its worst heuristic
behavior, which allows us to verify the proposed EA-based MPPT as a reliable improvement
for dynamic optimization.
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Figure 35. Averaged experimental performance of the MPPT algorithms, comparing different test
trials of the proposed EA-based MPPT and P&O algorithm.

Yet in order to quantify the results from the MPPT tests for each algorithm, Table 6
shows the quantified power data from each EA-MPPT test trial compared to the P&O
algorithm, which, for instance, sustains that all the EA-based MPPT trials managed to
harness more energy through time than the P&O algorithm, which was clear from the
dynamics featured in Figure 35. It is important to mention that the red values from Table 6
highlight the best features in terms of the different evaluation features.

Table 6. Quantified experimental results for each MPPT algorithm.

P&O PSO EA-Based MPPT

MPPT MPPT Test 1 Test 2 Test 3 Test 4 Test 5

Energy harvested (W) 43.3859 44.1619 46.2278 45.5358 46.7381 45.7817 45.3139
MPPT efficiency (%) 86.7718 88.3238 92.4556 91.0716 93.4762 91.5634 90.6278

Total wasted power (W) 6.6141 5.8381 3.7722 4.4642 3.2619 4.2183 4.6861
MPP Found (W) 9.6800 9.7200 9.7200 9.7000 9.7000 9.7500 9.7000

MPPT Precision (%) 96.8000 97.2000 97.2000 97.0000 97.0000 97.5000 97.0000

Moreover, Table 6 remarkably validates the consistency of the simulated features
of the EA-based and P&O MPPT algorithms, as compared to the results addressed by
Mendez-Flores, E., et al., in [21], since in all the tested cases, the EA-MPPT managed to
achieve more efficiency and precision than the P&O algorithm.

Then, the analyzed results presented by Mendez-Flores, E., et al., in [21] presented
that the MPPT efficiency under low power simulations of the P&O algorithm was simu-
lated to be around 96.6886%; meanwhile, the experimental validation in Table 6 shows
that P&O MPPT achieved around 86.7718% efficiency. On the other hand, [21] showed
that simulated MPPT efficiency of the EA-MPPT was around 97.2558% for low-power
applications; meanwhile, Table 6 presents that the experimental efficiency achieved by the
EA-MPPT averaged 91.8389%. Despite these values being slightly different in magnitude
due to unpredictable experimental losses in the equipment, the efficiency improvement
remained a constant feature of the contributed MPPT, regardless of the case study being
simulated or experimental validation.
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Nevertheless, in terms of the total wasted power from both algorithms, P&O wasted
6.6141 W through the 5 Sec simulation, and the EA-based MPPT managed to reduce the
losses through time, achieving an average wasted power of 4.0805 W, which represents
an average 38% energy waste reduction, which is particularly similar to the simulated
energy waste reduction from the algorithms, since Mendez-Flores, E., et al., in [21] present
that under some simulated scenarios, the EA-based MPPT achieved a 36.48% reduction of
energy wasted compared to the P&O MPPT.

Subsequently, the quantified data in [21] show that the precision achieved by the P&O
MPPT was around 96.8%, but the precision of the EA was around an average of 97.14%
on the MPP found, which means that the error of P&O was around 3.2%, and the error of
the contributed algorithm was found to be around 2.86%. Therefore, the EA-based MPPT
achieved 10% error reduction when compared to the P&O solution.

Under those circumstances, it can be clearly seen that the dynamic features of the
optimized converter enhanced the implementation of the EA-based MPPT, since the in-
strumented power sensor is a key feature for MPPT algorithms because the noise can
dramatically affect the performance due to misleading power signals, which is avoided
by the low-ripple design with robust dynamic performance. Hence, the MPPT algorithms
implemented in this section managed to solve the optimization issue with remarkable
precision for an experimental case study. Therefore, the optimal circuit ensured that the
acquired and quantified data from Table 6 are a reliable representation of the experimental
behavior of the algorithms.

Consequently, the maturity of the technology developed in this work can be measured
through the Technology Readiness Levels (TRL) metric, which can be addressed through
Figure 36, where the highlighted red levels are the completed stages of the technology
maturity of the contributions in this work, since the developed technology has been taken
through all the research from conceptualization to an experimental prototype tested under
realistic conditions.

Figure 36. Technology Readiness Level (TRL) for the developed contribution in this work.

Yet the gray levels from Figure 36 highlight the future work of this research, address-
ing the improvement stages required for a fully matured technological product, where
the complete prototype has to be developed and tested under the actual environment
where the product will be used. Still, more rigorous tests should be executed in order to
fulfill the performance verification of the system in order to complete the technological
product development.

This PV application finds it greatest strengths in the simplicity of the experimental
implementation, but it still requires a closed loop to manage the output of the system,
which is where it finds its greater disadvantages against other solutions that are focused on
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the steady output of the converter. Yet this research validated that even under dynamic
changes in climatic conditions, this approach manages to effectively optimize the efficiency
of the energy harvested from the PV system.

8. Conclusions

As the main objective of this paper was to verify the implementation capabilities
of the EA-MPPT, this work validated that the frame based on the classic earthquake
optimization algorithm managed to be a prominent solution, particularly under scenarios
where parametric variations of temperature and solar irradiation are significant; this is
sustained by the experimental 38% power reduction of the energy wasted achieved by the
EA-MPPT algorithm compared to the classical P&O approach.

Therefore, The MPPT frame based on the EA was validated in this work as a reliable
algorithm for experimental applications, which leaves the state-of-the-art with a novel
solution that improves the energy harvested from PV sources. Still, the experimental vali-
dations in this work would not have been possible without the novel design methodology
for DC–DC converters enhanced through this research, which was validated through the
experimentally optimized DC–DC converter designed for the PV case study. In that case,
the designed converter for the MPPT application achieved up to 90% efficiency at nominal
operating parameters for the 10 W case study, which is above the regular efficiency of
typical non-synchronous buck converters.

Nevertheless, despite the remarkable features validated through the results of this
work, it remains as future work the implementation of a voltage and current cascade
controller in order to complete the control scheme to achieve a steady output voltage with
the maximum achievable current at the MPP from the PV array. This work did not provide
a control closed-loop structure to monitor and control the output of the controller due to the
fact that this work was focused on validating that the proposed algorithms could harvest
as much energy as possible from the PV source.

Therefore, the next stage of this research should be to fill the gap of the implementation
of the control structure that could achieve a steady energy source at the converter’s output,
which means that the next step in this research is to implement a closed-loop system for
the converter’s output. By achieving that step, an efficiency test of the MPPT algorithm
could be performed through the EN 50530 standard to further explore the limits and the
advantages of this novel MPPT.
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