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Abstract: Energy harvesters serve as continuous and long-lasting sources of energy that can be
integrated into wearable and implantable sensors and biomedical devices. This review paper presents
the current progress, the challenges, the advantages, the disadvantages and the future trends of energy
harvesters which can harvest energy from various sources from the human body. The most used types
of energy are chemical; thermal and biomechanical and each group is represented by several nano-
generators. Chemical energy can be harvested with a help of microbial and enzymatic biofuel cells,
thermal energy is collected via thermal and pyroelectric nano-generators, biomechanical energy can be
scavenged with piezoelectric and triboelectric materials, electromagnetic and electrostatic generators
and photovoltaic effect allows scavenging of light energy. Their operating principles, power ratings,
features, materials, and designs are presented. There are different ways of extracting the maximum
energy and current trends and approaches in nanogenerator designs are discussed. The ever-growing
interest in this field is linked to a larger role of wearable electronics in the future. Possible directions
of future development are outlined; and practical biomedical applications of energy harvesters for
glucose sensors, oximeters and pacemakers are presented. Based on the increasingly accumulated
literature, there are continuous promising improvements which are anticipated to lead to portable
and implantable devices without the requirement for batteries.

Keywords: bioelectronics; energy harvesting; wearables; implantable electronics

1. Introduction

Continuous monitoring plays a vital role in a timely medical diagnosis and prevents a
large spectrum of diseases [1]. In modern medical practice this approach is implemented via
wearable biosensors that register any anomalous biomarker deviations [2]. A core problem,
however, is that continuous monitoring via wearable biosensors cannot be developed
without a sufficient energy source. Typically, energy is provided by either a battery, by an
energy harvester, or a combination of both [3,4].

Energy harvesting is a process of collecting, converting and providing ready-to-use
energy for an arbitrary device. The circuitry for such a device consists of nanogenerators
(NGs) and a power management unit that conditions the scavenged energy into a usable
form [5]. Research into energy harvesting requires a multi-disciplinary approach which
considers both electrical and biological factors to achieve optimum conversion results.
Thermal, biomechanical, biochemical and solar energy (Figure 1) can be scavenged from
the ambient environment or the human body [3,6–9]. In addition, the same external stimuli
that are converted to energy can effectively be monitored by energy harvesters [10].

The history of energy harvesters can be traced back to 2006 when Zhong Lin Wang
published a report on piezoelectric nanogenerator that was comprised of ZnO nanowire
arrays [11]. This fundamental article became an instant classic among the scientific commu-
nity for its breakthrough novelty at that time. The microminiaturization trend goes back
to 1959 when Richard Feynman professed a famous lecture with a title “There’s Plenty
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of Room at the Bottom” [12] where he discussed the possibility of manipulating atoms to
severely reduce sizes of mechanical and electronic devices. The alluring capabilities of
micro-sized world echoed within the research and medical communities [1,13,14] and since
then a surge of interest in this area has been developed.
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bot’s biosensor, tends to drive higher the end price of the continuous glucose monitoring. 
Therefore, it is desirable to identify means and methods that allow biosensors to realize 
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Figure 1. Energy conversion methods based on applied physical principles.

Batteries are quite often used in glucose biosensors, for example, because they rep-
resent a reliable and long-lasting source of energy. Typical power values of biosensing
electronics are less than 10 µW [15] but due to the sole nature of continuous monitoring,
batteries become the bottleneck of the power design. For instance, glucose biosensors
have a needle that penetrates the skin in order to collect data (Figure 2) and any time the
battery needs to be replaced, the patient must go through a painful procedure of taking
the biosensor in and out which involves puncturing the skin. Low battery capacity neces-
sitates regular replacements, every week or two; each time the entire glucose biosensor
is replaced, not just the battery. The 1.55 V coin-cell battery, which is mounted inside the
Abbot’s biosensor, tends to drive higher the end price of the continuous glucose monitoring.
Therefore, it is desirable to identify means and methods that allow biosensors to realize
continuous monitoring at full potential without the requirement to depend on batteries.
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Figure 2. Abbott’s continuous glucose monitoring biosensor; https://diatribe.org (accessed on
9 October 2022).

This review is aimed towards offering a basic understanding of what energy harvesters
are, of the underlying physical principles, the technological challenges and the future
perspectives. Apart from well-known and researched energy harvesting methods such
as piezo- or triboelectricity, the review also focuses on some less known or exploited
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phenomena that are worthy of further investigation thus exposing a wide spectrum of
energy scavenging possibilities. The review intends to offer an overview exploring modern
energy harvesting techniques and materials and identifying the main trends of energy
scavenging. The presentation is kept to a “high-level” style explaining core ideas providing
the reader with the necessary references in case he is interested in more detailed descriptions
and explanations.

2. Biofuel Cells

The first major entry in nanogenerators are biofuel cells (BFCs) which form a subgroup
of fuel cells. Their modus operandi is based on biocatalysts [16–19] that cause a flow of
electrons between anode and cathode thus generating energy. BFCs are represented by
two main groups: microbial BFCs (Figure 3a) and enzymatic BFCs (Figure 3b). BFCs have
two electrodes, anode and cathode, that are submerged in an electrolyte. The oxidation
reaction of biofuel occurs at the anode, the oxidants are reduced at the cathode, and this
allows electrons to flow through the circuitry. Microbial BFCs exploit microorganisms
as biocatalysts forming a bioreactor while enzymatic BFCs utilize enzymes for oxidation
and reduction reactions. A major advantage of microbial BFCs is that exoelectrogenic
microorganisms operate in the environment that is akin to its natural biome and they have
a long life span of up to five years [17,19]. The main advantage of enzymatic BFCs is their
ability to effectively utilize glucose and lactate that is present in blood, sweat and tears as a
fuel for chemical reactions thus proving to be extremely useful in the field of wearable and
implantable electronics [16,20]. Yet, the lifespan of enzymatic BFCs is significantly shorter
than of the microbial ones (7–10 days) [19].

Elasticity of BFCs plays an important role in wearable electronics related to the number
of stresses and deformations they are subjected to. Electrodes of BFCs need to possess
characteristics such as elasticity, electrical conductivity and biocompatibility while simulta-
neously not impairing the biocatalyst-bioelectrode interface [21]. Carbon-based materials,
such as graphene, meet all the criteria. Carbon-based materials can be used in different
forms: nanotubes, nanosheets, nanodots, etc. [19]. Combined with flexible substrates, such
as elastomers, polymer films, hydrogels, they prove to demonstrate good results [21,22].

There are several materials that can be used as electrolytes. Biofluids such as sweat,
urine, tears, saliva, etc. [23] are a common choice for BFCs as they have the necessary fuel
to power the system. On the other hand, there are systems where the electrolyte is artificial,
such as hydrogel for example [24], and the fuel is supplied from elsewhere.
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taneously powering the system. Quantitatively, they managed to approach a power
density of 220 µWcm−2. Zhang et al. [28] took a rather unconventional approach and
designed an artificial enzyme which mimics its natural competitor with a power density
of 149.2 ± 4.0 µW·cm−2. A particularly unique case of microbial BFC was studied by
Jayapiriya and Goel [29] where a paper-based 3D printed microbial BFC was designed
that was capable of generating as much as 11.8 µW·cm−2. It is also important to add
that the manufacturing method employed is important for creating a cost-effective so-
lution for energy harvesters used in low-powered biosensors. An extraordinary power
density of 703.55 mW·m−2 was achieved by Yan et al. [30] with a nano enhancement of
electrode/electrolyte interface. Overall, BFCs are prominent sources of energy for wearable
and implantable bioelectronics though they have a number of drawbacks such as low power
density, low power output and they are prone to have high cost and short lifetime [31].

3. Thermal Generators

Thermal energy exists in abundance in the ambient environment. Both the human
body and the space around it can be seen as energy sources for thermoelectric and py-
roelectric devices [32–34]. The physical principle of thermoelectric energy generation is
based on the Seebeck effect that describes the generation of an electric current when n and
p type conductors are electrically connected under the presence of a temperature gradient
(Figure 4) i.e., charge carriers will move from the warmer to the cooler side of the formed
thermocouple [34]. Advantages of thermoelectric NGs are that they supply a DC voltage,
which means that they do not need to be rectified, thus making the process of energy
collection easier at a price of generally having a low voltage output.
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Pyroelectric materials (Figure 5a), are a subclass of piezoelectric materials that are not
gradient dependent, but instead they are prone to change polarization due to temperature
fluctuations [36]. Pyroelectric materials have an inherent dipole moment that adds up
to the spontaneous polarization. The dipole moment remains constant unless there is a
temperature fluctuation (Figure 5b). The polarization decreases when the temperature
increases (Figure 5c) while a decrease in temperature normalizes the orientation of dipoles
and causes the polarization to increase (Figure 5d). The main advantage of pyroelectrics is
that they possess piezoelectric properties as well and their main disadvantage is that they
depend on constant change of temperature.
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Thermal materials can be divided into three main groups: inorganic, organic and
hybrid (a combination of both). Inorganic materials consist mainly of bismuth telluride
(Bi2Te3) and antimony telluride (Sb2Te3) and their respective alloys [38]. Inorganic materi-
als possess qualities such as high electrical conductivity and they suffer from a mechanically
rigid structure and toxicity [39]. Organic materials are represented by carbon-based ma-
terials and conductive polymers [38]. They are much more flexible and biocompatible in
contrast with their poor electrical parameters. The combination of both types attempts to
synthesize materials with the best qualities of both worlds. In practice, thermal materials
sit in-between two material types. It is worth noting that usually an organic material is
doped by an inorganic one to boost conductive properties of the hybrid.

The human body maintains its temperature constant at approximately 37 ◦C which
allows thermal energy to act as a reliable source for energy harvesting. The ambient
temperature and solar energy in particular [40] can be used for conversion of thermal
energy. Recent advances in the field of thermoelectric harvesters, indicate that flexibility of
the harvester plays one of the most important roles. Klochko et al. [41] used biodegradable
polymer nanocellulose and biocompatible semiconductor copper iodide and this method
resulted in a flexible design that provided a power density of up to 44 µW·cm−2. A
different approach was followed by Bai et al. [42] who proposed a conductive quasi-solid
gel for an electrical interface. Changing flexible solids for a gel had a positive effect
on flexibility and proved to offer about 100 µA in parallel and a voltage of 24 mV for
25 generator units. Rösch et al. [43] reported the design of a 3D printable thermoelectric
generator with a meander structure. A highlight of this project lies in its 2D layout that
was later bent into a 3D origami-like shape which could be easily scaled up. This design
provided with an output of 47.8 µW·cm−2. Ren et al. [44] described a generator that
possessed self-healing capabilities, was made of recyclable material and had a modular
design which was implemented via making laser cuts in polyimine substrate and inserting
in an array of thermoelectric chips. Due to the bond exchange reaction of polyimine, the
substate restored its original form even when it was torn apart to a certain degree. Average
outputs of 45 and 83 nW·cm−2 were achieved while a wearer was sitting and walking
respectively. This approach was taken even to a greater extent when Liu et al. [45] described
a thermoelectric generator filled with gel that it also had self-healing capabilities meaning
it could repair self-inflicted damage to a certain degree and reached output voltage as high
as 172.9 nW. The idea of self-repairing generators echoes in the article by Wu et al. [46]
which reported the degenerative effect of repeated bending of flexible thermoelectric
generators. Pyroelectric harvesters are usually represented by a combination of hybrid
piezo- and pyro- effects that take place simultaneously [36]. Mahanty et al. [47] reported
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their findings from the design of such harvesters with an energy density of 34 µW·cm−2.
The hybridization trend is also reported in Li et al. [40] where an energy harvester that
produced 21.3 mW·m−2 was designed via a combination of solar, thermal and pyroelectric
physical interfaces. The device was integrated onto an outdoor bracelet and was reported to
charge after 1 h of exposure to the environment. Moreover, hand movement of the bracelet
increased pyroelectric output by more than 12.7 times. Thermoelectric and pyroelectric
harvesters represent a huge potential for energy scavenging. While being capable of
exploiting the highly stable and accessible energy source of the human body and the
ambient temperature, this group possesses good hybridization capabilities, especially when
paired with photovoltaic materials.

4. Biomechanical Energy

Biomechanical energy is one of the largest categories and one of the most utilized
among all other energy sources [3,7–9,48,49]. The human body is full of flexible joints and
points of concentrated pressure (Figure 6) that could be used for energy harvesting from
limb movement, respiration, chest and abdomen displacement, eyelid movement, body
pressure onto soil while walking, etc [50–53].
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4.1. Piezoelectric Nanogenerators

Piezoelectric nanogenerators (PENGs) are used in many applications such as sensors
and actuators [55–58], energy harvesters, micro-electromechanical systems (MEMS) [59]
and microfluidics [60]. Energy generation is possible because piezoelectric materials lack
central symmetry in their structure. An applied mechanical load induces spontaneous
polarization in PENGs and thus electricity is generated (Figure 7).Their popularity is
based on their scalability potential, high output power, simplicity of integration [57,61]
and availability of “of-the-shelf” energy harvesting solutions (Würth Elektronik, Physik
Instrumente, TE connectivity, etc). The downside of PENGs is that their output depends on
frequency and optimum actuation values lie in a high-frequency range.

Piezoelectric materials are classified into four main groups: inorganic, organic, com-
posites and biocomposites. Inorganic materials, such as lead zirconate titanate (PZT),
barium titanate (BT) and quartz have high values for their electric parameters (piezoelectric
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strain constant, electromechanical coupling factor and dielectric constant) but they are rigid,
brittle and require polling process to function [62]. Organic materials, represented mainly
by polyvinylidene difluoride (PVDF) and its copolymer trifluoroethylene (PVDF-TrFE), are
on the opposite side of the spectrum and have high elasticity, while having less electrical
efficiency. Polymer composites are intended to be the best of both worlds, combining the
high piezoelectric parameters of the inorganic materials while staying flexible and biocom-
patible like the organic materials. Mostly, this is performed by depositing ceramic element,
such as BT, on a polymer matrix, such as PVDF [34,63]. Biocomposites are biological tissues
that possess inherent piezoelectricity, such as hair, bone, fish bladder, etc. [63].
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The most commonly used materials are ZnO, polyvinylidene difluoride (PVDF) and
lead zirconate titanate (PZT) [57], all of which have inherent pyroelectric properties [36,64].

The recent advances in the field of piezoelectric energy harvesting build on develop-
ments in additive manufacturing capabilities [65]. Montero et al. [66] used inkjet printing
to deposit an interdigitated electrode which is subsequently coated with PVDF film. The
resulted power density was 0.5 µW·cm−3 with a maximum value of 2.4 nW for the device.
Potential applications are varied, for example, a backpack is a quite common form of an
attire and thus it is relevant to investigate how much energy can be harvested from it.
Zhang et al. [67] used force amplification via a double-bridge frame, studied effects of this
method via numerical simulations and experiments and presented a backpack with the
maximum output power of 4.13 µW. This power output was reached when the harvester
was integrated into a backpack and the person wearing it was jogging. Ruiz et al. [53]
demonstrated a respiratory piezoelectric based sensor which, not only provided data for
health monitoring, but also could act as an energy harvester. Beyaz [55] described a blood
pressure sensing technique which exploits PENGs. Three piezoelectric transducers were
used to exhibit and receive acoustic signals to detect geometrical changes in artery tissue.
In terms of biodegradable materials, Kumar et al. [68] used reinforced polycarbonate which
resulted in a flexible platform that provided high power density up to 2556 µW·cm−3 at
maximum. An unorthodox approach was taken by Sun et al. [69] who reported a PENG
made out of a wood sponge. Balsa wood was processed to remove lignin and hemicellulose
which resulted in a crystal structure that possessed a high piezoelectric coefficient. Not only
does this NG used a biodegradable material, but wood is also present in an abundance thus
making this PENG a prominent candidate for wearable harvesters. The scalability potential
of the PENG suggests that it can be used for application for wearable electronics and for
powering LED lights and LCD screens. The peak power density reached was 0.6 nW·cm−2.
Due to the way the internal electrostatic field propagates inside the piezoelectric material,
it is usually synonymous with relatively low current density and thus lower power density
output, especially compared to triboelectric materials. Gu et al. [70] proposed a variant
of PENG with high output current density. In order to achieve this, a high piezoelectric
coefficient material Sm-PMN-PT was selected, and an intercalation electrode structure was
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utilized. Essentially, the way to increase piezoelectric energy lies in increasing electrode
surface area. The authors of this work proposed a way to enhance PENG by integrating
multiple electrodes inside the piezoelectric film and sandwiching them together resulting
in a PENG which had as high as 12 units of this structure stacked together. As a result, a
maximum peak short-circuit current of 320 µA was obtained by the harvester. Xu et al. [71]
designed a PENG that can be attached to one of the leads of a pacemaker. The main
material used was microporous P(VDF-TrFE) thin film that was deposited onto Kapton
film and sandwiched between Au electrodes. From the engineering point of view, the
authors decided to implement a multibeam design. The harvester had a cylindric form
and its inner space was filled with piezoelectric films which play role of beams. Then, the
harvester was placed onto a lead. A pacemaker lead was fixed by these films and when
the lead was subject to movement, its energy was transferred to the PENG. The output
energy was 6.5 µJ that was stored in a 120 uF capacitor. It can be deduced that, despite
being relatively simple and long-studied subject, PENGs are in a high demand and present
a very prominent foundation for energy harvesting. Yet, their cost and dependence on
actuation frequency need to be taken into account during the design phase [72].

4.2. Triboelectric Nanogenerators

Triboelectric nanogenerators (TENGs) are used to power many sensors and energy
harvesters of different designs [52,73,74]. TENGs harvest kinetic energy of the human
body akin to PENGs and exploit the same points of mechanical pressure. The underly-
ing physical principle is the fact that materials have different tribopolarities and when
paired properly, spatial manipulation causes triboelectrification and electrostatic induction.
Surface porosity plays a vital role in the process of designing TENGs [75]. There are four
fundamental operational modes of TENGs as displayed in Figure 8, each utilized under
different circumstances [74]. In the vertical contact separation mode (Figure 8a) which
features two electrodes and a dielectric film, when the mechanical force is applied, tribo-
electrification charges the electrodes, and when the force is released and there is a small
gap between the electrodes, electrostatic induction causes current to flow. Contact-sliding
or lateral-sliding mode (Figure 8b) works similarly to the first mode, yet electrodes move to
the sides. In the single-electrode mode (Figure 8c), only one grounded electrode is present
which is spatially separated from a dielectric film. While approaching to and departing
from the electrode, electrical field changes due to the triboelectrification. The potential dif-
ference between the materials cause electrons to flow. In the freestanding triboelectric-layer
mode (Figure 8d) the dielectric layer moves, while the electrodes remain still. The major
advantage of using TENGs is their low cost per Watt at low frequencies [76], their high
output power and that the output voltage is independent of frequency. However, the issue
of the overvoltage influences the energy conditioning circuitry and TENGs tend to have
small currents.

Triboelectrification occurs between two materials, one of which has a higher electron
affinity (acceptor), while the other material has lower electron affinity (donor). Accord-
ing to the results of material selection summary [77], Polytetrafluoroethylene (PTFE),
polydimethyl-siloxane (PDMS), fluorinated ethylene propylene (FEP) and Kapton are
widely used as electron acceptors. As electron donors, materials such as aluminum,
cuprum, skin and Nylon are mostly used. In addition, triboelectric generators can be
represented as four (4) layers which are the charge-generating, charge trapping, charge-
collecting and charge-storage layers whereas the materials for such complex structure are
described elsewhere [78].

In terms of practical application, Zhang et al. [79] presented a paper-based TENG
capable of producing up to 171 mW·m−2. A highlight of this work is that a single-electrode
TENG can be produced relatively economically and fast from waste paper, which serves as
a triboelectric layer. Jiang et al. [80] described a TENG with self-healing capabilities. The
synthesized elastomer proved to be both extremely elastic (10000%) and could completely
repair itself while reaching an output of 450 mW·m−2. Another single-electrode mode
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TENG for tactile sensors was designed by Wu et al. [81] where the surface porosity was
optimized in order to provide the best results possible and a power density of 33.75 W·m−2

was achieved. Guan et al. [82] reported a TENG based on a two-electrodes contact-separate
mode that had a negative Poisson-ratio fiber inserted into positive Poisson-ratio hallow
cylinder. This synergistic structure could provide up to 52.36 mW·m−2. Liao et al. [83]
proposed an ion-gel based TENG that could heal itself, could effectively work in a wide
range of temperatures (−70 to 250 ◦C) and was transparent. The approach of using ion-
gel instead of regular electrodes allows to reach outstanding stretchability parameters
(1012%). The self-healing capability was tested by cutting the gel in half and sticking it
back together. The demonstrated TENG reached power density of 2.17 W·m−2. Another
unusual application of gel in TENG was suggested by Sheng et al. [84] who investigated the
application of highly stretchable (>10,000%) TENG as an arm training sensor or for helping
patients with self-rehabilitation. This harvester reached a power density of 30 mW·m−2.
Yang et al. [85] indicated that there are still ways to improve the design layout of TENG
instead of trying to improve harvesters on molecular level with a report on a honey combed
TENG. The outer layer which forms a carcass of the harvester is a 3D printed TPU material,
the top three honeycomb walls are coated with conductive fabric and PBAT film while the
bottom three walls are coated with Al film. In this case, PBAT and Al work as triboelectric
layers when being pressed against each other. Additionally, this design was very easily
manufactured making it extremely useful for prototyping and massive production. This
design solution reached a power output of 10.79 W·m−2 and a high voltage of 1500 V.
Ryu et al. [86] described a TENG producing 4.9 µW·cm−3 which is suitable for use with
IMDs and pacemakers. In this work, the TENG consisted of multiple stacked units, it
works in free-standing mode and harvests vertical displacement of the chest. The harvested
energy was subsequently conditioned and put into a Li-ion battery. This work also featured
an in vivo experiment involving an adult mongrel. Over a span of 24 h, 144 mW of power
was harvested considering both periods of low and high activity. Biocompatibility was
examined by the inflammation response of the animal which proved to be within limits and
no signs of infections or fever were observed. Overall, TENGs are a prominent method of
energy harvesting that has a considerable amount of output power that is achieved through
various intricate design choices. However, the conditioning circuit plays a huge role in this
type of harvesters due to the overvoltage [72].
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4.3. Electromagnetic Generators

Electromagnetic generators (EMGs) follow a variety of constructive implementations
that revolve around moving a coil relative to magnets thus exploiting Faraday’s law of
induction [9,10] which implies that a change in magnetic flux results in an induction of
electromotive force. It can be achieved through four main mechanisms: moving the magnet
perpendicularly relative to the coil (Figure 9a), moving the magnet in parallel to the coil
(Figure 9b), moving the magnet inside the coil (Figure 9c); and moving the coil in-between
magnets (Figure 9d). The current trend in EMGs lies in the hybridization of EMGs and
TENGs, which proves to have fruitful results. The main advantage of EMGs is that they
have low matching resistance values [87] and can be effectively used at low frequencies [88].
On the other hand, they have inherently rigid nature and might have reliability issues [89].
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Jiang et al. [90] presented a hybrid harvester where human body pressure from move-
ment is transformed via transmission into radial movement of a generator. The generator
consisted of rotating triboelectric blades which worked in the freestanding triboelectric-
layer mode, magnets and coils that were placed in the rotor and the stator respectively.
In terms of output power, the harvester provided 14.68 mJ when integrated into a shoe.
Li et al. [91] developed a magnetized microscale needle array which also possessed tribo-
electric properties. The device used microneedles that induced triboelectrification when
rubbed against the substrate, which also acted as a magnet moving up and down relatively
to the coil. This combination of energy harvesting generators achieved up to 16.19 µW·m−2

for a load of 106 Ω. Practical application involved putting the harvester into a shoe and the
values of collected voltage for walking and jogging were very different for the TENG (2.8 V
and 6 V respectively), whereas the collected current for the EMG indicated less difference
(4.5 µA vs. 5.3 µA). Iqbal et al. [87] described PENG mixed with EMG that could be inserted
into a shoe insole. As a result, the overall output was better than using PENG or EMG
separately and a power of 4.05 µW·cm−3 was achieved. On the other hand, Lai et al. [92]
reported on a hybrid harvester that scavenges electromagnetic energy from the ambient
environment such as a mobile phone, laptop or any other electronic device. The mechanical
energy was harvested via TENG that worked in the single-electrode mode. The peak power
was 360 µW·m−1. Li et al. [88] designed a hybrid PENG and EMG, where PENG was
connected to the EMG via a spring-loaded mechanism. In this harvester, two generators



Energies 2022, 15, 7959 11 of 24

harvested energy separately, but they were combined through the mechanical transmission.
A power output of 36.21 mW·cm−3 was reached. Electromagnetic energy is an underuti-
lized and unconventional source for biomechanical energy harvesting, but it may prove to
be useful in combination with other NGs.

4.4. Electrostatic Nanogenerators

Electrostatic generators (ESGs) are a type of a varying capacitor and their working
principle is described by electrostatic induction [8]. The capacitance of such a device
changes as a result of changes in the overlap area or in the gap between two electrodes,
caused by some external stimuli (Figure 10). The induced electrical charge will result
in electric current. There are four main shapes of ESGs: an in-plane gap closing ESG
where the electrode moves sideways (Figure 10a), an in-plane overlap ESG where the
counter-electrode moves in plane thus changing the overlap (Figure 10b), out-of-plane
gap closing converter where the gap between electrodes changes (Figure 10c), in-plane
ESG where the overlap varies by moving across one axis (Figure 10d). The application of
such varying capacitors ranges from biosensors, textile wearable electronics, biomechanical
energy harvesting to solar energy storage. The main advantage of using ESGs is their
simple structure and high output at high frequencies however they frequently need bias
voltage to function properly and most methods of increasing frequency of a harvester (or
self-oscillation feature) includes MEMS [93,94].
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Wu et al. [94] continued the trend of hybridization that is so prominent in other
NGs and described a rotatory disc-based EMG and ESG. The modus operandi of the
EMG followed the principles discussed in the previous section, while ESG consists of
an electret film and the respective electrode. The rotatory movement of the electret film
relative to the electrode causes a change in the overlap area. The maximum output density
is 2.5 W·m−3 for EMG and 107.8 W·m−3 for ESG. Pourshaban et al. [96] designed an
electrostatic generator which is integrated into a contact lens where a tear droplet plays the
role of the electret. The average obtained power is 0.265 µW. Erturun et al. [97] proposed a
hybrid of PENG and ESG. In this structure, a piezoelectric film is sandwiched between Au
and Al electrodes. The Al electrode is coated with Teflon on the opposite side to the PENG
and is isolated from the bottom Cu electrode via an air gap confined by two Styrofoam
pads. When the harvester is subjected to stress, the electron flow is directed to the Al
electrode and outwards, when pressure is released. The maximum attained power density
was ∼8.8 µW·cm−3. Cao et al. [98] proposed a hybrid of PENG and EMG where vibrations
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of a piezoelectric cantilever were also used to harvest electrostatic energy. This is due to
fluctuations of a beam that has ESG electrode on it which changes the gap distance and
induces change in capacitance. Capacitive harvesters represent a stable source of energy
and have been thoroughly investigated for a long period of time thus making them a very
suitable choice for a hybridization.

4.5. Reverse Electrowetting on Dielectric Phenomenon (REWOD)

Recently, a lot of attention has been drawn to the reverse electrowetting on dielectric
phenomenon (REWOD) [99–101]. This is a prominent subclass of ESGs which is based
on the direct electrowetting on dielectric (EWOD) phenomenon. EWOD exploits the
fact that the liquid-solid (droplet-electrode) interfacial energy can be manipulated by
the application of an electric field. This leads to a change in the apparent contact angle
between the droplet and the electrode which increases the overlap area (Figure 11). A
droplet could potentially be a physiological fluid [102] thus a biomolecular absorption
should be taken into account [103]. REWOD works in the opposite manner and when a
bubble of conductive liquid is pressed in-between electrodes, the overlap area changes thus
significantly increasing the capacitance of the system. Adhikari et al. [101] studied REWOD
phenomenon via changing different parameters of the system such as dielectric thickness,
electrolyte and dielectric concentrations. When two dissimilar dielectrics are introduced, the
system can work without the external bias voltage. A total power density of 53.3 nW·cm−2

was obtained. Tasneem et al. [104] proposed a wearable motion tracking sensor powered by
a REWOD principle. A significant focus of the work was oriented towards the conditioning
circuit. In this case, the authors used a rectifier based on a Schottky diode followed up
by a booster circuitry and the resulted power density of the harvester was 58 nW·cm−2.
Hsu et al. [93] described a REWOD harvester that could produce as much as 100 W·m−2

with a 4.5 V of bias voltage and it instantly became one of the most prominent works in the
field. The described harvester heavily relies on multiplication of the number of REWOD
units and the frequency of their oscillations. Thus, the REWOD method of harvesting
biomechanical energy holds a significant potential in what it can practically be achieved.
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5. Photovoltaic Materials

Solar energy is a renewable energy source with very high potential, it is abundant [105]
and can be harvested easily, under appropriate weather conditions [3,9,106,107]. Photo-
voltaic materials optically collect photons emitted by a light source. The harvested solar
energy is then transferred to the electrons, which makes them highly mobile, thus forming
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an electric current (Figure 12). Merits of using photovoltaic materials are their stable DC
output but for wearable electronics they usually need to be hybridized because of limited
day-time use.
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Zhang et al. [105] reported a photo-thermoelectric hybrid harvester. The seamless
integration with the textile fabric creates a possibility for an integration with the con-
tinuous monitoring system, while the output power under sunlight reaches 0.24 nW.
Zhang et al. [108] described another unconventional application of photo-thermoelectric
harvester which is conjugated with hydroelectricity. The hydroelectric effect helps to dras-
tically increase the total output voltage from −0.092 to 1.712 mV; and, in the wet state
the harvester reaches 2.45 µW. Moreover, the evaporated body fluid also produces steam,
and such a textile-based harvester can also serve as a human body humidity monitor. Yu
et al. [109] proposed a gauze kerchief made from photovoltaic textile. In this case, Cu
or Cu-coated polymer wires are sequentially coated with Mn substrate, ZnO nanowires,
ethanol solution of N719 and CuI forming photoanodes. The synthesized generator was
optimized via change of embroidery process parameters, different materials of the counter
electrode and how electrodes were connected to one another. 0.79 V were obtained with a
light intensity of 100 mW cm−2. Photovoltaic devices represent efficient energy harvesters
though it should be viewed as an addition to another NG that can constantly and reliably
provide power.

Selected types of NGs cover all the basics needed for design of the effective energy
harvester however this is not the end of it. As briefly mentioned in photovoltaic materials, a
new hydrovoltaic type of energy attracts a great deal of popularity [110]. Energy that comes
from water evaporation can be harvested with the help of a porous conductive structures.
The underlying physical principles can be explained through an electrical double layer and
electrokinetic effects but the exact mechanism is yet to be described [111]. Recent survey of
this topic can be found elsewhere [112].

6. Comparison of Nanogenerators

The energy harvesters that were reviewed in the previous sections and their respec-
tive features are compiled and compared in Table 1. Their main features, their electrical
properties, their size and their power output are presented and compared.
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Table 1. Comparison of Nanogenerators.

NG Type Authors Features
Voltage,

Load,
Frequency

Size Power Output

enzymatic BFC Zhang et al. [27] Integrated into a diaper 300 mV (OC) 6 × 5 cm2 220 µW·cm−2

enzymatic BFC Zhang et al. [28] artificial enzyme 400 mV (OC) n/a 149.2 µW·cm−2

microbial BFC Jayapiriya and
Goel [29]

3D printed,
paper-based 480 mV (OC) Coin size (~2 × 2 cm2) 11.8 µW·cm−2

enzymatic BFC Yan et al. [30]
high-power,

nano enhancements
of materials

~0.8 V
1000 Ω ~0.3 nm2 703.55 mW·m−2

thermoelectric NG Klochko et al. [41] Biodegradable materials 5 V (OC) 3 × 2 cm2 44 µW·cm−2

thermoelectric NG Rösch et al. [43] 3D printed
origami-like shape 534 mV (OC) 190 cm2 47.8 µW·cm−2

thermoelectric NG Ren et al. [44] self-healing
recyclable material 5 V 6 × 5 cm2 83 nW·cm−2

thermoelectric NG Liu et al. [45] self-healing 4.15 mV
600 Ω ~4 × 2 cm2 172.9 nW

pyro- and PENG Mahanty et al. [47] hybrid 35 V at 3.4 M Ω 8 × 7 cm2 34 µW·cm−2

Solar, thermal and
pyroelectric NG Li et al. [40] hybrid 93.1 (OC) 3 × 9 cm2 21.3 mW·m−2

PENG Montero et al. [66] 3D printed
1.1 V
60 Hz

100 MΩ
18 × 18 cm2 0.5 µW·cm−3

PENG Zhang et al. [67] integrated into
a backpack

~1.7 V
8 Hz

0.7 MΩ
3.5 × 3.5 × 9 mm3 4.13 µW

PENG Kumar et al. [68] nano enhancements
of materials

16.67 V (OC)
5 Hz 12 × 8 mm2 2556 µW·cm−3

PENG Sun et al. [69] made from
wood sponge

0.63 V
~1 Hz
80 MΩ

15 × 15 × 14 mm3 0.6 nW·cm−2

PENG Xu et al. [71] multibeam structure
implantable

0.3 V
1 Hz n/a 6.5 µJ

TENG Zhang et al. [79] paper-based
~95 V
2 Hz

130 MΩ
4 × 4 cm2 171 mW·m−2

TENG Jiang et al. [80] self-healing
75 V (calc)

2 Hz
5 MΩ

2 × 2 cm2 450 mW·m−2

TENG Wu et al. [81] optimized
surface porosity 78.7 V (OC) 8 × 8 × 0.5 mm3 33.75 W·m−2

TENG Guan et al. [82] different
Poisson-ratio materials

~25 V
10 MΩ 20 cm × ø 2 mm 52.36 mW·m−2

TENG Liao et al. [83] ion-gel
self-healing

189 V (OC)
1.5 Hz 3 × 3 cm2 2.17 W·m−2

TENG Yang et al. [85] 3D printed
honey-comb structure

1500 V (OC)
3 Hz 68 × 39 mm2 × 5 10.79 W·m−2

TENG Ryu et al. [86] implantable
stacked TENG structure 10 MΩ n/a 4.9 µW·cm−3

EMG and TENG Li et al. [91] hybrid
Microscale needles

10 V (OC)
1 Hz (TENG) 24 × 24 × 3.2 mm3 16.19 µW·m−2

EMG and PENG Iqbal et al. [87] hybrid 7.01 V (OC) 3.9 × 3.9 × 2.9 cm3 4.05 µW·cm−3

EMG and TENG Lai et al. [92]
hybrid

uses ambient
magnetic field

120 V/m
100 MΩ 5 cm (contact length) 360 µW·m−1 and

8 µW·m−1
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Table 1. Cont.

NG Type Authors Features
Voltage,

Load,
Frequency

Size Power Output

EMG and PENG Li et al. [88] hybrid
MEMS

18 V (OC) PENG
22 V (OC) EMG 4 × 2.5 × 5.8 36.21 mW·cm−3

ESG and EMG Wu et al. [94] hybrid
~40 V (OC) EMG
~0.1 V (OC) ESG

50 rpm
ø 50 mm 2.5 W·m−3 and

107.8 W·m−3

ESG Pourshaban et al. [96] contact lens 450 mV
100 kΩ 2 × 10 mm2 0.265 µW

ESG and PENG Erturun et al. [97] hybrid

4.2 V
1 MΩ—PENG

17 V
10 MΩ—ESG

20 Hz

ø 3 × 0.65 cm 8.8 µW·cm−3

REWOD NG Adhikari et al. [101] no bias voltage
0.103 V

0.15 MΩ
3 Hz

ø 50.5 mm 53.3 nW·cm−2

REWOD NG Tasneem et al. [104] conditioning circuit
943 mV pp

1.6 MΩ
10 Hz

4 mm gap between
electrodes 58 nW·cm−2

REWOD NG Hsu et al. [93] self-oscillation bias voltage used
0.877 MΩ

40 × 40 mm2

(628 mm2) 100 W·m−2

photo-
thermoelectric NG Zhang et al. [105] hybrid 0.56 mV

1.32 kΩ 4 × 0.3 cm2 0.24 nW

photo-, thermo-,
hydroelectric NG Zhang et al. [108] hybrid

hydroelectricity
12.5 mV
15.93 Ω 1.5 × 1.5 cm2 2.45 µW

photovoltaic NG Yu et al. [109] photovoltaic textile 0.79 V 4.5 mm pitch ~134 µW

A summary of the advantages and disadvantages of the main classes of NGs is
presented in Table 2.

Table 2. Advantages and disadvantages of various types of Nanogenerators.

Energy Harvester Type Advantages Disadvantages Voltage Output Current Density Power Density

BFCs

Microbial
No enzymes

Long life span (5 years)
DC output voltage

Need special
mediators

Low power density
100–500 mV 10–100 µA×cm−2 1–10 µW×cm−2

Enzymatic
Effective use of body liquids

(sweat, tears, etc) as fuel
DC output voltage

Short life span 0.1–1 V 100–500 µA×cm−2 10–100 µW×cm−2

Thermal

Thermoelectric DC output voltage Low voltage 0.1–1 V 0.1–10 µA×cm−2 0.1–10 µW×cm−2

Pyroelectric Are a sub-class of
piezoelectric materials

Require tempera-
ture fluctuations 0.1–10 V 0.01–10 µA×cm−2 0.1–1 µW×cm−2

Piezoelectric
Availability “of-the-shelf”

Can possess
pyroelectric properties

Frequency
dependent output 0.1–10 V 0.01–10 µA×cm−2 1–100 µW×cm−2

Triboelectric
High output

High elasticity
Low cost

Overvoltage
Small current 10–1000 V 1–10 µA×cm−2 1–100 mW×m−2

Electromagnetic
Hybridization with
TENGs and ESGs
Low impedance

MEMS (low reliability)
Rigid, non-flexible nature 0.1–10 V 1–10 µA×cm−2

10 µW×cm−2

(mostly used as a
hybrid with TENGs)

Electrostatic Simple structure Practical applications
involve MEMS 0.1–1 V 1–10 µA×cm−2 0.1–10 µW×cm−2
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Table 2. Cont.

Energy Harvester Type Advantages Disadvantages Voltage Output Current Density Power Density

REWOD High output voltage at
high frequencies

Needs bias voltage for
high output

Frequency dependent
10–100 mV 10–100 nA×cm−2 0.01–0.1 µW×cm−2

Photovoltaic DC current Needs hybridization
for constant energy 1–100 mV 1–100 µA×cm−2 0.1–10 µW×cm−2

7. Biomedical Application of Energy Harvesters

In addition to the aforementioned glucose biosensor, another example of a commonly
used biosensor is a pulse oximeter (Figure 13) biosensor that had seen an extensive use
throughout the COVID-19 pandemic [113–115]. A pulse oximeter is used to measure
the blood oxygen saturation level and the heart rate. Its working principle is based on
hemoglobin light absorption [116]. Near infrared and red LEDs are mounted on one side of
the device and the opposing side is equipped with photodiodes. Detection of oxygenated
and deoxygenated hemoglobin appears at the red-light wavelength while near infrared
is used as a reference. Because the heart pumps blood at certain frequency, this pulsative
nature or pulse can be monitored with the same method thus making a combined biosensor.
Batteries for pulse oxygen biosensors are replaceable and can last for 30 h and more.
Biosensors consume approximately 40 mW of total energy during continuous work [117].
Introduction of an energy harvesting module would allow pulse oximeters to continuously
monitor hemoglobin without the need to constantly replace or recharge batteries making it
fully autonomous.
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Figure 13. An example of a pulse oximeter from Kinetik wellbeing; https://www.kinetikwellbeing.
com/ (accessed on 19 August 2022).

A different application for energy harvesting can be found within cardiovascular
implantable medical devices (IMDs) such as implantable cardioverter-defibrillators (ICDs)
and pacemakers (Figure 14). ICD represents a combination of a continuous monitoring
system and actuator for administration of an electric stimuli if heart rate is higher than
a designated threshold (tachycardia) [118]. Pacemakers, depending on their type, can
sense intracardiac signal and stimulate the according chambers or ventricles thus pacing
heart [119]. Both devices follow a similar design and quite frequently they are combined
into one device. A pacemaker, for example, consists of a pulse generator module with
leads which are placed into hears chamber or ventricles. The electric stimuli are delivered
from the pulse generator to the heart. Typical power consumption values for pacemakers
are less than 100 µW while ICDs may reach more than 200 µW [120]. Depending on
the frequency of its use, a pacemaker may last up to 12 years [121] but an implantable
cardioverter-defibrillator lasts for 9 years [122]. However, when the battery runs out or
it depletes prematurely, which happens to 8% of IMDs [123], a new surgery needs to be
performed to replace an IMD thus involving health risks and financial implications [86].

https://www.kinetikwellbeing.com/
https://www.kinetikwellbeing.com/
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Clinical application of biosensors and sensors alike is vast. Apart from glucose and
pulse oximeter biosensors, human respiration efficacy, temperature, sweat content, intersti-
tial fluid and heart electrical signal. Such types of sensors and biosensors can be integrated
into clothing, wristbands, contact lenses, skin or be implanted into the human body [8,124].

Overall, almost all sensors for monitoring human biomarkers rely on batteries to a
certain degree which creates a gap in continuous monitoring and necessitates additional
actions to be performed by a patient. Energy harvesting offers a solution which can reduce
the size of batteries or get rid of them completely offering more stable and comfortable
monitoring platform.
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8. Discussion on Current Trends

This brief review of energy harvesting identifies two main current trends: hybridiza-
tion of several NGs and manipulation of material structure. In addition, the overall
application of the harvester is of paramount importance because it largely influences the
design of harvester. Extensive presence of TENGs and PENGs indicates that biomechanical
energy is one of the most used and effective sources for scavenging. Since TENGs and
PENGs already represent an established field, prototyping and manufacturing of these
devices is lower compared to other NGs. However, the choice between the two is not
the simplest decision to make because, as previously mentioned, PENG has lower output
than TENG and its impedance is dependent on actuation frequency while TENG have a
necessity to come with complex energy conditioning circuitry to combat overvoltage. ESGs
and EMGs are essentially MEMS meaning that their mechanical reliability is going to be a
prime issue during the design stage [89].

Judging from the comparison presented in Table 1, it can be observed that PENGs and
TENGs dominate the area by analyzing how many research publications deal with these
types of harvesters and their hybrid derivatives. Moreover, both harvesters seem to be
equally frequently chosen for hybridization purposes.

From the same table, it can be discerned that EMGs and ESGs that are based of MEMS
are slowly being replaced by solid state NGs such as TENGs and PENGs because of the
reliability issues and rigidity. EMGs and ESGs are quite often found in hybrid harvesters as
an auxiliary unit while their use as a single harvester is less frequent. This can be expanded
as a forecast that MEMS are going to be driven out of this field and solid-state single and
hybrid harvesters are going to take their place. This does not mean that EMGs and ESGs
are going to cease to exist, they will become more flexible, less dependent on actual MEMS
structures and the energy generation is going to take place at nano-scale level, like using
magnetized microneedles [91]. Thermoelectric and pyroelectric NGs tend to be hybridized
with other NGs more frequently than any other NGs due to nature of the energy source
and low power density they exhibit. BFCs are a good choice for specific biosensors, where
chemical reactions may be chained in order to harvest energy, but this comes with the cost
of manufacturing combined with short life span and low power density.

https://www.stanfordchildrens.org/
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Looking at the various types of NGs, it is apparent that flexibility plays a major
role during the design stage regardless of the chosen type. Due to inherent flexibility of
the human body (skin, muscles, joint movements) and unique body structure of every
individual, it is imperative to look at flexible materials such as elastomers, polymers, gels.
A good description of the challenges of flexible and conductive materials was analyzed in
recent works [125–127], where bioinspired by cuit cocoon structure significantly increased
foldability of electrodes. In particular, foldability of electrodes was significantly increased
by utilizing two principles: firstly, a rigid web structure of a raw cocoon is tough but reeling
process forms fibers that can slide one against the other and the layers become separable in
a cuit cocoon. Secondly while folding, the cuit cocoon bends into an ε-shape at the crease.
These features of the cuit cocoon can be combined with other biological structures, such
as leaves. For example, a cockscomb petal has a spring-like structure which allows it to
be flexible in terms of compression and tensile and it can be also viewed as a membrane
for attachment of substrates, [127]. Combined biological structures of the cuit cocoon and
the cockscomb petal were used to design a super-foldable C/NiS nanofiber electrode. In
another case [126], a Mimosa leaf structure was used to ensure scatheless foldability of
electrodes by addition of cone-like arrays (bottom diameter was ~100 nm and top diameter
was ~20 nm) on top of the C-fiber/FeOOH electrode.

A more general trend is emerging when the overall use of electronic sensors and
electronics in general is expected to increase in the following years [128]. The same trend
also correlates with the rising interest in the field of biosensors as a whole [129]. This
in turn will increase the total energy consumption which can be balanced out with the
use of energy harvesters. Therefore, the multi-disciplinary field of energy harvesting will
highly likely experience even bigger influx of research articles and industry interest in the
following years.

9. Conclusions

Continuous monitoring of biomarkers and reliable supply of energy to implantable
bioelectronics are topics that are closely interrelated with energy harvesting. As this review
indicated, there are numerous biosensors that are used in medical practice today that can
be improved by integrating them with efficient energy harvesters.

The human body produces several types of energy such as biochemical, thermal and
mechanical. Biomechanical energy is the largest and most well-refined energy type that is
currently used for harvesting. The most prominent type of harvesters employed here are
piezoelectric and triboelectric harvesters. Photovoltaic materials had also seen an increase
in popularity in a form of wearable energy scavengers.

The main problem of energy harvesters is their low power density and there are
two main design philosophies that try to solve this issue. It is possible to alternate ma-
terial structure in nanoscale employing different manufacturing processes. This usually
increases complexity of the material while improving its output parameters. Another way
of maximizing the power output is through the hybridization of different harvesters in one
compact structure. A resulting harvester offers a better output power at the cost of more
complex external conditioning circuitry. Flexibility and foldability are important material
properties and increasing research accumulates in order to accomplish this requirement.
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Abbreviations

BFC Biofuel cell
EMG Electromagnetic generators
ESG Electrostatic generators
EWOD Electrowetting on dielectric
ICD Implantable cardioverter-defibrillators
IMD Implantable medical devices
MEMS Micro-electromechanical system
NG Nanogenerator
OC Open-circuit
PENG Piezoelectric nanogenerator
PVDF Polyvinylidene fluoride
PZT Lead zirconate titanate
REWOD Reverse electrowetting on dielectric
TENG Triboelectric nanogenerator
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