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Abstract: The rapid adoption of the smart grid’s nascent load-management capabilities, such as
demand-side management and smart home systems, and the emergence of new classes of controllable
high-wattage loads, such as energy storage systems and electric vehicles, magnify the smart grid’s
exposure to load-altering cyberattacks. These attacks aim at disrupting power grid services by staging
a synchronized activation/deactivation of numerous customers’ high-wattage appliances. A proper
defense plan is needed to respond to such attacks and maintain the stability of the grid, and would
include prevention, detection, mitigation, incident response, and/or recovery strategies. In this
paper, we propose a solution to detect load-altering cyberattacks using a time-delay neural network
that monitors the grid’s load profile. As a case study, we consider a cyberattack scenario against
demand-side management programs that control the loads of residential electrical water heaters in
order to perform peak shaving. The proposed solution can be adapted to other load-altering attacks
involving different demand-side management programs or other classes of loads. Experiments verify
the proposed solution’s efficacy in detecting load-altering attacks with high precision and low false
alarm and latency.

Keywords: smart grid; cybersecurity; demand-side management; peak shaving; load-altering attacks;
detection; time-delay neural networks

1. Introduction

Using demand-side management (DSM), utilities can improve the power grid effi-
ciency by eliminating power demand peaks and valleys [1]. DSM programs interact with
customers’ appliances to read measurements and possibly send control commands using in-
formation and communication technologies (ICT) such as the Internet in internet-of-things
(IoT)–enabled smart home systems and the advanced metering infrastructure (AMI) in
indirect and direct load control [2,3]. The fact that DSM runs on ICT makes it inherently
exposed to cyberattacks, including load-altering attacks (LAAs), whereby attackers engage
customers’ high-wattage appliances in a manner that leads to negative and potentially
catastrophic consequences to the power grid [2–6].

LAAs against smart home systems via IoT have recently come into the spotlight [4–7] due
to the proliferation of Wi-Fi connected household appliances and the literature discussing
their vulnerability to cyberattacks [8,9]. Other potential targets of LAAs are indirect and
direct load control programs [2,3], wherein utilities, through the AMI, control participating
customers’ loads either directly through remote commands or indirectly using energy
pricing signals. The serious impacts of LAAs have been repeatedly demonstrated in the
literature [3–6,10,11]. With just 1% increase in power demand, attackers might be able to
bring down the majority of a grid of roughly the same size as Canada—by attacking just a
few tens of thousands of residential electric water heaters [6,7]. Power systems’ protection
equipment and operational responses to sudden load changes can impede LAAs, yet they
cannot eliminate the risk of bulk power system partitioning and forced load shedding [10].
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The existing literature on LAAs focuses on mitigation and resilience strategies de-
veloped using control-theoretic approaches which develop a model for the power grid
response to LAAs, and then formulate an optimization problem to identify vulnerable
appliances [2,3,12], robust operating points [13], placement of protective equipment [14],
or optimal load shedding [15]. Alternatively, one can mitigate LAAs using the cybersecurity-
by-design concept, wherein the mitigation mechanism is embedded in the appliance con-
troller [16].

Stabilizing load fluctuations—caused by faults or LAAs—is crucial to avoid adverse
consequences, such as frequency and voltage instability, load shedding, equipment damage,
line failures, and blackouts. An appropriate response plan should consist of a series
of mitigative actions involving the grid’s operating reserve and autonomous protection
systems [10,17,18]. Actions, such as engaging spinning reserves or shedding responsive
loads, aim at maintaining power system stability and power service reliability. A key
ingredient in any such plan is the speedy detection of malicious activity; the timely detection
and localization of LAAs enhance the grid operator’s situational awareness and increase
the defensive actions’ success probability, thus contributing to better attack response
outcome. Despite its importance, the literature on detection of LAAs remains limited [19,20],
in contrast to the more mature areas of modeling, risk assessment and mitigation.

Related Work and Contributions

Cyberattack detection techniques can be classified as signature based or anomaly
based [21]. Signature-based methods rely on detecting the impact (or signature) of a
specific attack on a grid application’s normal state. Thus, they are more effective against
known attacks with predefined signatures [22]. In contrast, anomaly-based methods model
a grid application’s normal state and then monitor it for deviations caused by suspected,
and possibly unknown, attacks.

An anomaly detection technique has been proposed to address LAAs in [19] based on
a cross-correlation approach using load and frequency measurements. Semi-supervised,
machine-learning-based anomaly-detection techniques were considered in [20], using high-
resolution phasor measurement unit (PMU) data of the phase angle and frequency at every
bus in the system. Defining the threshold—at which deviations of grid measurements are
considered anomalous—is a major challenge for anomaly-based detectors, as this threshold
controls the trade-off between the detector’s sensitivity to unknown attacks and the false
alarms triggered by normal grid behavior fluctuations. This challenge is exacerbated in the
detectors of [19,20] because they exclude any offline training and so any opportunity to
incorporate historical patterns in the current decisions made by the detectors.

Both anomaly and signature-based detection techniques have their strengths and
drawbacks. Selecting one approach over the other depends on the nature of the input data,
type of anomaly, and availability of expert-labeled training data [23]. These three factors are
determined by the cyberattack scenario and the targeted power grid environment. Hence,
while one can draw from certain aspects of prior art on LAA detection, every distinct
scenario presents a unique detection challenge where one approach might prevail over
the rest.

In this paper, we consider a LAA scenario wherein threat agents employ malware to
successfully infiltrate a DSM program—particularly a peak shaving program—involving
the load of residential electric water heaters (EWHs). Exploiting existing, legitimate, remote-
control channels to the EWHs, the attackers effect a simultaneous activation of numerous
EWHs during peak shaving, thus triggering a massive load surge that could disrupt power
services [16]. We also consider the case where attackers activate a smaller subset of EWHs,
thus causing a smaller power demand fluctuation, aiming at exhausting grid resources. A
real-life example of successful malware cyberattacks is the one that targeted the Ukrainian
power grid in December 2015, where the BlackEnergy 3 malware was used to infiltrate the
power utility’s data network and send malicious commands to power switches and circuit
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breakers, leading to massive power outages affecting about 230,000 customers for several
hours [24].

The synchronized activation of EWHs carries a distinct signature on the load profile—
especially during peak shaving, thus motivating us to employ supervised machine learning
to detect such signature. The simulation environment, developed in [16], facilitates creating
comprehensive training/testing datasets comprising both normal and attacked load profiles.
Both the distinct attack signature and availability of labeled data motivate us to harness
the power of supervised-learning algorithms over known attacks [25]. In particular, we
propose a signature-based detector using a time-delay neural network (TDNN) to monitor
the grid’s power demand profile. The TDNN learns temporal patterns in the grid’s demand
profile in normal conditions as well as under LAAs. The contributions of this article can be
summarized as follows:

• A signature-based detector using TDNN for LAAs targeting residential EWHs partici-
pating in a peak shaving program. The detector monitors smart meter data.

• Extension of the LAA model to include smaller attacks that are harder to detect.
• Extensive analysis of the proposed detector using load profiles that represent di-

verse normal consumption and attack patterns—including the presence of mitigation
strategies. The detector is shown to successfully detect these attacks with very high
sensitivity and precision, and very low false alarm rate and detection delay.

The existing works on LAA detection consider customer loads as black boxes that
the attacker can manipulate, and so they do not take into account the electrodynamics of
a particular class of loads or the impact of client behavior on LAA detection—especially
in EWHs, where hot water withdrawal patterns significantly shape the EWHs’ energy
consumption. This article tries to fill in this knowledge gap by studying the LAA detection
problem over a simulation environment that accurately models the load profiles of residen-
tial EWHs and accounts for changes in client consumption patterns. This approach allows
for the accurate assessment of the impact of a potential LAA targeting EWHs, and for
designing a precise detection method, using a TDNN that is capable of learning the sig-
natures made by maliciously activated EWHs. Leveraging a signature-based approach
leads to the elimination of false alarms, which constitute the main ailment of anomaly
detection methods.

Using a similar machine-learning-based detection technique, [26] considered a differ-
ent variant of EWH LAAs, labeled as the wear-down attack, which aims at causing small
load fluctuations that force more frequent tap changes by the distribution grid transformers,
thus shortening their lifespan and increasing both operational costs and equipment failure
probability. In addition to the smaller LAAs, such as those studied in [26], we consider
catastrophic, destabilizing ones. Unlike [26], where the detector uses transformer control
and operational data (e.g., tap settings, voltage, current, and power measurements), we rely
on smart meter data for detection. Furthermore, while [26] employs a deterministic simula-
tion with fixed household demand, our simulation environment models real consumption
behavior and embeds a peak shaving program that controls the EWHs’ set points. Finally,
unlike the decision-tree-based detector of [26] that operates on instantaneous snapshots of
the grid state variables and neglects any time-series dependencies, we leverage the ability
of TDNN to capture temporal patterns to effectively distinguish malicious activities from
normal load fluctuations.

The rest of this article is organized as follows. In Section 2, we describe the peak
shaving program involving EWH load and the supporting ICT infrastructure. We present
the LAA scenario and assess its potential impacts in Section 3. Section 4 details the proposed
detector. In Section 5, we discuss a mitigation strategy using the cybersecurity-by-design
principle. We provide the details of our experimental analysis in Section 6, and report and
discuss the results of this analysis in Section 7. Section 8 concludes the article and outlines
future research.
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2. Peak Shaving Using Smart Electric Water Heaters

Peak shaving is a DSM application aiming at reducing peaks in a grid’s power demand
profile by shifting parts of the load to off-peak hours. The load of domestic EWHs is
a natural candidate for peak shaving because it tracks the grid’s demand profile and
contributes a significant percentage to the peak residential demand [27,28]. In addition,
their ability to store energy in the form of hot water allows shifting their load away
from peak-demand hours. Smart EWHs occupy a growing share of the market. Besides,
affordable solutions are available that retrofit legacy EWHs to make them ‘smart’ by
enabling them to send measurements to and receive commands from the owners, the utility,
or both. Furthermore, more utilities are offering incentive programs for customers to adopt
these solutions and subscribe to the utility’s DSM programs.

2.1. Peak Shaving Using Direct Load Control

Controlling EWHs for peak shaving can be done either directly via commands or
indirectly using energy pricing signals. We focus on direct load control (DLC) since it
represents the highest cybersecurity risk due to the direct link to customer high-wattage
appliances. If such direct access were to be infiltrated in a cyberattack, threat agents
would be able to synchronously engage numerous appliances to the grid’s detriment.
Peak shaving using DLC of EWHs entails sending commands to participating customers’
EWHs to curb their consumption during peak demand hours—either by lowering their
supply voltages [28–30] or thermostat set points [16,31,32], or by completely deactivating
them [33–35].

In this article, we consider the peak shaving algorithm employed in [27] wherein
the utility controls the thermostat set points of a population of EWHs during two peak-
demand periods—from 6:00 to 10:00 a.m., and between 4:00 and 9:00 p.m. The algorithm is
constrained by two conditions: the water temperature must be maintained above 45 oC
for health reasons, and the reactivation of interrupted EWHs after peak shaving must be
spaced out to reduce the rebound magnitude [27].

2.2. Internet of Things for Demand-Side Management

Utilities can communicate with customer appliances through an IoT architecture as in
Figure 1 (adapted from [36,37]). Each participating appliance reports measurements and
receives commands from the energy service interface (ESI) over the home area network
(HAN). The ESI is connected to the Internet and the smart meter, and acts as a gateway to
customer appliances within the HAN—connecting them to cloud servers that provide DSM
capabilities to utilities. The cloud servers can also provide personal energy management
and other services to consumers through smart phone applications. They can be located in
the utility’s data center and/or in the cloud of an IoT-system vendor/manufacturer or a
third-party cloud service provider. The AMI provides an alternative way for the utility to
communicate with customer appliances through smart meters [16].
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Figure 1. IoT-enabled DSM and smart home architecture.

2.3. Diversified Load Profile of Electric Water Heaters

A diversified load profile (DLP) of a group of EWHs represents the time evolution of
their average power consumption. Let P = [p1 , p2 , . . . , , pj , . . . , pNdlp

] denote the vector of
DLP measurements over a window of width Ndlp, then pj can be expressed as

pj =
1

Newh

Newh

∑
k=1

Qj,k (1)

where Newh is the number of EWHs in the DLP and Qj,k is the thermostatically controlled
power demand of the kth EWH at time j—given by

Qj,k =


Ek, Tj−1,k ≤ Tlb(k)

0, Tj−1,k ≥ Tub(k)

Qj−1,k, otherwise

(2)

where, for the kth EWH, Ek is the heating element’s power rating, Tj,k is the water temper-
ature at time j, and Tlb(k) and Tub(k) are the lower and upper bounds of the thermostat’s
deadband. These bounds are controlled during peak shaving by the grid operator who
sends out DLC commands instructing the EWHs to lower/restore their set points. The vast
majority of commercial EWHs come with two interlocking (mutually-exclusive) heating
elements. Therefore, the consumption Qj,k in (2) corresponds to the active element at time j.

In [16], we present a model of residential EWH loads that is driven by realistic hot
water draw profiles generated using the Building America Benchmark [38], and adapted to
Québec’s climate and population. The complete modeling method is described in detail
and all of its assumptions discussed and validated by references, experiments, or both
in Chapter 2 of [39]. We employ this method to simulate the EWH loads in normal
conditions, under peak shaving, and in case of LAAs.

3. Cyberattack Scenario

We consider a LAA scenario wherein threat agents infiltrate the ICT infrastructure that
supports a peak shaving program involving residential EWHs. In case of IoT-enabled peak
shaving (Figure 1), the attackers may target the utility’s IoT platform, the vendor (or third
party) cloud, or the end-user mobile application. We consider LAA points of entry for AMI-
enabled peak shaving in [16]. The infiltration can be accomplished using malware delivered
through an infected email attachment. Once installed, the malware creates a backdoor to
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the infected device, thus enabling the attackers to perform reconnaissance to learn how
to communicate with the EWHs participating in peak shaving. Then, the attackers inject
malicious commands to numerous EWHs during the peak shaving period, instructing them
to raise their set points, thus effectively pulling them out of interruption.

3.1. Attack Impact Analysis

Simultaneously activating numerous EWHs would create a surge in demand that
requires suitable response by the grid in order to contain it and avoid possible complications,
such as power quality degradation, voltage problems, damage to the customers- and utility
equipment, and blackouts [2,6]. The impact of such a demand surge on benchmark power
systems is evaluated with simulations in [6]; a LAA can cause line failures with a demand
increase of only 4–10 kW per 1 MW of total grid capacity [6]. Line failures, which, depending
on the grid operational state at the time of the LAA, can trigger a cascade of failures, in turn
would force load shedding and even a system-wide blackout [6]. Our simulations show that
a well-timed LAA can generate more than 2 kW of demand for every attacked EWH [16].
Hence, threat agents would need to target 2–5 EWHs per 1 MW of total grid capacity
to trigger the consequences anticipated by [6]. Extrapolating the findings of [6] merely
provides a sense of the potential consequences of our LAA scenario; an exact evaluation of
these consequences requires detailed modeling of the power system under study—taking
into account the grid’s operational state as well as available protection equipment and
operational responses to sudden load changes.

3.2. Attack Model Extension

In [16], we assume that the LAA activates all EWHs participating in peak shaving.
Observing the attack instance depicted therein, the resulting demand surge can be easily
detected by monitoring the DLP. Therefore, we extend here the threat model to include
LAAs that activate only a subset of the EWHs, expecting to cause a smaller change in the
DLP that might evade cyberattack detection. In this LAA scenario, attackers first acquire
information about the ICT infrastructure, described in Section 2, over which the peak
shaving application is running. Aiming to masquerade their attack, threat agents use this
information to target subsets of EWHs that belong to different neighborhood area networks
(NANs) and whose measurements are being aggregated in different DLPs, thus resulting in
multiple partially-attacked DLPs. We show that this attack model can result in important
demand surges that necessitate an intervention by the grid automated protection systems
and possibly by the grid operators themselves. Therefore, it is crucial and time sensitive to
inform the operators of the attacker’s presence in their systems. We consequently propose
a solution that triggers alarms with high accuracy and low latency; it involves a detector
that is powered by machine learning and monitors the DLP of a population of EWHs to
detect LAAs.

4. Proposed Cyberattack Detection Method

We propose to employ a TDNN [40] which belongs to a class of neural networks
capable of learning temporal patterns in time series. TDNNs gain such capability by
modifying the basic building unit of neural networks, the neuron, to include a tap delay
line at its input which enables each neuron in the TDNN to process both current and
previous inputs at each time step.

4.1. Why TDNN?

TDNNs are shift invariant, i.e., capable of learning and detecting temporal patterns
regardless of where they occur in the time series [40]. They acquire this property by
adjusting the conventional backpropagation learning algorithm to train—simultaneously—
on all time-shifted copies of the training patterns. This learning is accomplished by first
creating time-shifted replicas of the TDNN, and then running a single backpropagation
iteration on each replica independently. The key adjustment in applying backpropagation
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for TDNN lies in the weight update step; instead of updating each replica’s weights
independently using its backpropagation error gradient, the weights of all time-shifted
replicas are updated with the same value: the average error gradient across all replicas.
This adjustment constrains the weight matrices to be equal in all replicas, thus removing
any shift dependence in the resulting TDNN. Sharing the weights along the temporal
dimension makes the TDNN a one-dimensional convolutional neural network [41]. The
ability of TDNNs to detect a temporal pattern with shift invariance suggests the possibility
to train a single TDNN to detect the LAA, presented in Section 3, irrespective of when
it is launched during the peak shaving period, thus motivating us to explore TDNN for
LAA detection.

4.2. Architecture of Proposed Detector

The proposed TDNN architecture is shown in Figure 2. Input layer has a tap delay
line of (ND − 1) delays and is fully connected to a single hidden layer of Nh neurons and
hyperbolic tangent activation functions (denoted by F). Output layer has a signum activa-
tion function. The parameters ND and Nh are selected using cross-validation. Although the
original TDNN [40] includes delays in both the network’s input and hidden layers, our
preliminary experiments showed that introducing delays only at the input layer yields
equal or better detection performance with lower complexity and training time.

Figure 2. Proposed TDNN architecture for LAA detection.

4.3. Detector Input Features

The proposed TDNN-based detector monitors a sliding measurement window of DLP
measurements. This window, denoted as xm, where m is the discrete time variable, has a
fixed width ND and can be defined as a time-sliding segment of the DLP. Hence,

xm =
[

pis−ND+m , pis−ND+m+1 , . . . , pis+m−1

]T
, (3)
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where pj as in (1); m = 1, 2, . . . , Ndlp − is + 1; is points to the measurement following the
earliest possible attack onset; and Ndlp is the number of DLP measurements in the peak
shaving period. The detector classifies xm using the function

Ĝ(xm) = sign
(
[F(W xm + b)]Twop + bo

)
(4)

where W ∈ RNh×ND and b ∈ RNh are respectively the hidden layer’s weight matrix and
bias vector, wop ∈ RNh and bo ∈ R are respectively the output layer’s weight vector and
bias, and F represents the hidden-layer’s hyperbolic tangent activation functions. Each
activation function F : R→ R is applied to the sum of inputs of a corresponding hidden
neuron, i.e., to a different element of the vector W xm + b, thus yielding an Nh-element
vector which can be expressed, using the hyperbolic tangent function [42], as

F(W xm + b) =
2

1 + exp(−2(W xm + b))
− 1 (5)

As long as Ĝm(xm) = −1, ∀m, the detector considers the DLP to be normal. Otherwise,
if an anomalous measurement window xm is detected at any given time, i.e., Ĝm(xm) = 1,
the detector labels the DLP attacked.

4.4. Availability of EWH Consumption Measurements at the Utility

The EWH measurements used by the proposed detector can be collected from smart
meters over the AMI [16] or from the ESI through the cloud server in Figure 1. Such gran-
ular, appliance-level data might be unavailable in certain cases; while there are available
smart meter and AMI implementations that can collect such data, the vast majority of
current market implementations worldwide can only collect readings of total household
consumption [43]. Customer privacy laws may forbid the gathering of such granular
data [44]. In such cases, wherein only total household consumption is available for LAA
detection, one could use these measurements directly to retrain the TDNN. Alternatively,
one might perform load extraction to disaggregate the EWH consumption from the total
consumption reading [45]. This latter approach is known in the literature as nonintrusive
load monitoring (NILM), where disaggregation techniques are used to separate appliance-
level data from total consumption. Both approaches constitute noisy versions of the original
detection problem.

4.5. Detector Implementation

The proposed detector is implemented, trained, and tested using Matlab R2019a
Deep Learning Toolbox. We use the “timedelaynet” function with default settings and the
default Levenberg–Marquardt backpropagation learning algorithm [46]. Given that the
“timedelaynet” output layer’s activation function is linear, we feed the output to a signum
function to obtain the desired binary classification behavior. Finally, in order to create
time-shifted replicas of the input patterns, we utilize Matlab’s “preparets” function [47].

4.6. Leveraging ICT/OT Convergence

The proposed LAA detector is not meant to replace existing ICT cybersecurity mea-
sures, but rather complement them by adding another layer of security to the peak shaving
program’s defense strategy. Such an additional layer would be critically important in
case existing attack prevention and detection measures fail to stop or detect the attacker’s
actions prior to broadcasting the malicious commands to the EWHs during the LAA. An-
other distinction can be made between the proposed detector and more traditional defense
measures encountered in ICT networks; measures such as traditional security information
and event management (SIEM) solutions rely on data reflecting the health and status of the
ICT infrastructure, i.e., ICT data, to detect malicious activities. In contrast, the proposed
detector relies on operational technology (OT) data, i.e., data associated with the monitoring



Energies 2022, 15, 7807 9 of 19

and control of the power grid’s physical equipment and processes, in the form of EWHs’
power demand measurements. Hence, this article demonstrates the value of integrating OT
data to enhance the cybersecurity of the smart grid, and industrial control systems (ICS)
in general.

5. Cyberattack Mitigation

Detection is merely a single layer in smart grid’s multilayered cybersecurity defense
strategy—preceded by attack prevention and followed by mitigation. In [16], we motivate
and propose an automated, cybersecurity-by-design, mitigation mechanism to reduce the
impact of LAAs targeting smart EWHs. This mechanism entails a hardwired, random,
activation delay circuit embedded in the smart control unit of every EWH. It aims to stop
the EWH from instantly activating following a remote activation command, and instead
wait for a random time—within a preset period—before activating. It successfully restrains
the post-attack power demand surge, thus reducing the operating reserve capacity needed
to stabilize the grid during LAAs, as well as providing grid operators with crucial time
to execute elaborate incident response plans [16]. The proposed TDNN-based detector is
meant to complement this mitigation mechanism. Therefore, we analyze its performance in
both cases with and without mitigation.

6. Experimental Setup

We start this section by defining a detector utilizing support vector machines (SVM)—a
benchmark of supervised, machine-learning classifiers—to gauge the proposed TDNN-
based detector’s performance. We then specify the dataset generation process and the
performance analysis metrics.

6.1. Comparison with Benchmark

SVM classifiers [48] are supervised-learning classifiers which construct an optimal sep-
arating hyperplane that maximizes the margin between classes of training data. The maxi-
mized margin leads SVM to achieve good generalization on many problems, making SVM
a benchmark for machine-learning classification [49]. SVMs are widely adopted in smart
grid’s cyberattack detection research [50], thus motivating us to use them as a benchmark
against which we measure the proposed TDNN-based detector’s performance. We describe
next the suggested SVM-based detector to facilitate the replication of experiments and
reproduction of results.

6.1.1. Architecture and Input Features of SVM-Based Detector

We utilize a set of SVMs to monitor the DLP time series. Each classifier examines a
window of DLP measurements that starts at the same predefined instant, and its width
grows by one measurement with each successive classifier. This measurement window—
which represents the input vector (features) to the mth classifier—can be expressed as

xm =
[
pα , p

α+1 , . . . , p
α+Lm−1

]T, m = 1, . . . , Nsvm (6)

where Nsvm is the total number of classifiers needed to monitor a peak shaving period
which can be determined by dividing the peak shaving period’s duration by smart meters’
reporting interval, α is the starting instant of all measurement windows, and Lm is the mth

measurement window’s width, given by

Lm = L1 + m− 1, m = 1, . . . , Nsvm (7)

where L1 is the minimum window width which belongs to the first classifier. We heuris-
tically tune L1 using preliminary experiments. Moreover, we set α such that the earliest
possible attack onset coincides with the last measurement of the first window, i.e., p

α+L1−1 .
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Recall is, the index of the DLP measurement following the earliest possible attack onset,
then α can be calculated by

α = is − L1 + 1 (8)

The SVM-based detector operates on expanding measurement windows in contrast to
the proposed TDNN-based detector which monitors a sliding measurement window of
fixed width ND. We found that a sliding window in the SVM-based detector increases false
alarms without improving other detection performance criteria.

6.1.2. Implementation of SVM-Based Detector

The detector is implemented, trained, and tested using the Matlab R2019a Statis-
tics and Machine Learning Toolbox. We use the “fitcsvm” function with default settings,
the sequential minimal optimization (SMO) learning algorithm, and the automatic hyperpa-
rameter optimization option [51]. While “fitcsvm” provides additional learning algorithm
choices, our preliminary experiments showed that the SMO algorithm delivers the highest
accuracy for our purposes. The automatic hyperparameter optimization, by minimizing
the cross-validation error rate, tunes the penalty parameter γ of the convex optimization
problem that computes the SVM’s separating hyperplane, and selects and scales a kernel
function [49]. Matlab offers a few algorithm choices for hyperparameter optimization. We
use the default Bayesian optimization algorithm with default options, and we enable the al-
gorithm’s parallel execution using Matlab’s Parallel Computing Toolbox. Finally, regarding
the first measurement window’s width L1 of (7), preliminary testing showed that a range
around 20 min yields stable results. Thus, we set L1 = 20 in all experiments henceforth.

6.2. Datasets

We use the same datasets to train and test both the TDNN- and SVM-based detectors.
The datasets are created using the simulation environment outlined in Section 2.3 and
detailed in [16]. Every example in these datasets represents a different daily DLP of
1000 individual EWHs’ profiles of one-minute resolution. In addition, half of the examples
in each dataset represent normal peak shaving control and, half are attacked.

6.2.1. Normal and Attacked Patterns

For normal-class DLPs, we implement the peak shaving strategy described in Section 2.1
which includes two peak shaving periods. As for the attacked class, each example is
formed by sending malicious commands to EWHs at a specific instant during peak shaving.
The command instructs EWHs to restore their set points to their normal, pre-peak-shaving
settings. We assume that LAAs could occur at any time from 30 min after peak-shaving’s
onset to 10 min before its end, i.e., [6:30, 9:50] a.m. and [4:30, 8:50] p.m. for the morning
and evening periods, respectively. Plugging this detail into (3) yields is = 31. Delaying
the earliest possible LAA launch instant by 30 min ensures a large demand surge; by
allowing the EWHs to stay deactivated for a while, their water temperature will drop and,
hence, a larger number will activate when they receive the malicious command. Moreover,
by terminating the LAA launch window 10 min before the end of peak shaving, we ensure
that the LAA aftermath occurs during peak shaving when the utility is expecting a reduced
EWH load.

6.2.2. Training Datasets

The attacked-class training patterns include LAAs that simultaneously activate 100%
of EWHs launched at specific times: at seconds 0, 15, 30, or 45 of every minute within
the launch interval, thus leading to 800 and 1040 attacked training patterns for morning
and evening peak shaving periods, respectively. Since malicious activation signals can be
broadcast to EWHs at any second during the smart meters’ one-minute reporting interval,
including the LAA patterns that cover the four quarters of every minute prepares the
detector for all such variations. Including the normal-class training DLPs yields a total of
1600 and 2080 training examples for morning and evening periods, respectively.
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6.2.3. Testing Datasets

In order to maintain the standard 2:1 train/test ratio, we generate for each experiment
a total of 800 and 1040 test examples for morning and evening peak shaving periods,
respectively. These numbers include both normal and attacked examples. Attacked patterns
are formed by sending malicious activation signals at random instants within the launch
window. The first testing dataset has LAAs that activate 100% of the EWHs. As for the
remaining datasets, in each new example therein, a random percentage of EWHs are
attacked. These random percentages are uniformly sampled from a limited range. Every
dataset considers a different range, specifically, 80–100%, 60–80%, 40–60%, 20–40%, 10–20%,
and 5–10% of EWHs. Finally, each LAA is launched at a random instant within the launch
window. Figure 3 illustrates four attacked DLPs from these datasets as well as two DLPs
reflecting normal operation with and without peak shaving.

Figure 3. DLPs of 1000 EWHs in six cases. In the order they appear in the legend: (1) typical normal
operation without peak shaving, (2) normal operation with peak shaving, and (3)–(6) peak shaving
under LAAs launched at random times activating a subset of EWHs.

6.2.4. Mitigation Delay

For each training/testing dataset, there are equivalent ones realizing the mitigation
delay proposed in [16] and briefly described in Section 5. Different delay durations are
considered, specifically, 15, 30, and 45 min.

6.3. Performance Metrics

The proposed detector monitors an EWH DLP over time by continuously examining
and classifying segments of it. The classification performance on individual segments
does not accurately reflect the overall performance on the DLP. For example, misdetecting
a single attacked segment does not necessarily mean that the LAA has gone completely
undetected; in fact, it could be detected in a following segment, i.e., misdetecting segments
might delay LAA detection rather than completely missing it. Therefore, in order to fully
gauge the proposed detector’s performance, we use two different levels of granularity:
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metrics that gauge pattern- or segment-level performance and ones that analyze profile-
level performance.

For pattern-level performance, we use the standard metrics of binary hypothesis
testing [52], namely, accuracy, true positive (TP) rate, false positive (FP) rate, and precision.
As for profile-level performance, we define three metrics, namely, detection rate, false
alarm rate, and average detection delay. The detection rate is the profile-level version of
segment-level TP rate. It is the ratio of the number of detected LAAs to the total number
of attacked DLPs, thus representing the probability of detecting a LAA by monitoring the
whole DLP. Similarly, the false alarm rate is the profile-level version of FP rate. It is the ratio
of number of false alarms to the total number of DLPs, thus representing the probability
of triggering a false alarm by monitoring the whole DLP. Note that the denominator in
false alarm rate includes both normal and attacked DLPs since it is possible for an attacked
profile to trigger a false alarm before the actual attack onset. The third profile-level metric,
the average detection delay, represents how quickly—on average—the detector can detect
LAAs. This metric is crucial since early detection allows more time to utilities to respond
and prevent the worst of consequences [16].

7. Results and Discussion
7.1. Model Tuning

We use cross-validation to perform hyperparameter tuning using the training dataset
wherein 100% of EWHs are simultaneously activated by the LAAs.

7.1.1. TDNN

We perform 4-fold cross-validation over a grid of TDNN parameters, namely, number
of input layer delays ND and number of hidden layer neurons Nh. We form this grid
with ND = {5, 10, 15, 20, 25, 30, 35, 40} and Nh = {5, 10, 15, 20, 25, 30}. All considered
{ND, Nh} pairs have 100% detection rate. However, low values of {ND, Nh} have higher
false alarm rates. Among the pairs with 0% false alarm rate, the {ND = 30, Nh = 25} pair
has the smallest detection delay. It also scores the best in pattern-level metrics. This pair’s
performance on the testing dataset is listed in Table 1. We omit the detailed performance
results of all {ND, Nh} pairs due to space limitations. Moving forward, we employ this
TDNN configuration {ND = 30, Nh = 25} in all experiments.

Table 1. Performance of tuned detectors on winter morning peak shaving.

Detector TDNN SVM SVM SVM
Training Configuration {ND = 30, Nh = 25} fitcsvm ‘all’ fitcsvm ‘auto’ γ = 40

Profile
Level

Detection Rate (%) 100 100 100 100
False Alarm Rate (%) 0 1 0.375 0
Detection Delay (s) 2.1 14.85 16.80 9.30

Accuracy (%) 99.99 99.93 99.93 99.96
Pattern TP Rate (%) 99.94 99.73 99.71 99.84
Level FP Rate (%) 0 6.29× 10−3 2.36× 10−3 0

Precision (%) 100 99.98 99.99 100

7.1.2. SVM

We compare three variations to select and tune the SVM classifiers’ parameters. In the
first, we utilize Matlab’s automatic hyperparameter optimization “fitcsvm” [51] and set
the “OptimizeHyperparameters” option to ‘all.’ Such settings instruct Matlab to optimize the
penalty parameter γ, the kernel function and scale, and whether to standardize input data.
The default kernel function choices are linear, Gaussian, and second- and fourth-order
polynomials. The second tuning variation sets the “OptimizeHyperparameters” option to
‘auto,’ which limits the optimization to γ and the linear kernel’s scale (a scalar multiplier
of the Gram matrix). The third variation avoids automatic hyperparameter optimization
and instead performs 4-fold cross-validation over a log-scale of the penalty parameter
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γ = [0.01, 100], and a linear kernel without scaling. These settings are uniform across
the set of SVM classifiers in the detector. A penalty parameter of γ = 40 produces the
smallest cross-validation error. Table 1 reports the SVM-based detector’s performance
produced by these three tuning settings. Among them, the detector with single-fixed
γ = 40 and unscaled linear kernel delivers the best performance on the testing dataset.
Moving forward, we adopt this configuration.

7.1.3. TDNN vs. SVM—Initial Comparison

Table 1 shows that both TDNN and SVM perform almost perfectly on the testing
dataset containing LAAs that activate 100% of EWHs. These attacks lead to massive load
increases that are easily detected. Between the two, the proposed TDNN detector performs
as well as or better than the SVM-based one in all criteria.

7.2. LAA Detection Performance Analysis
7.2.1. Attacking a Subset of EWHs

We consider now the LAA scenario described in Section 3.2 wherein attackers activate
only a subset of EWHs. In order to evaluate whether this strategy could evade detection
and—if it could—to what extent it could harm the grid, we designed a set of experiments
in which we feed new test examples to the proposed TDNN-based LAA detector, with and
without the 15 min mitigation delay. In each new example, a random percentage of EWHs
are attacked. In every experiment, these random percentages are uniformly sampled from
a different range, respectively, 80–100%, 60–80%, 40–60%, 20–40%, 10–20%, and 5–10% of
EWHs. Every LAA in every DLP is launched at a random instant during morning peak
shaving, in the window [6:30, 9:50] a.m. We do not retrain the detectors of Table 1 on the
new datasets, but rather test them with new examples.

7.2.2. Detection Performance

Figure 4 plots the LAA detection performance results for both the TDNN- and SVM-
based detectors, with and without mitigation. It shows, in the case without mitigation,
that detection rate only starts to drop at the 20–40% range—specifically when the number
of attacked EWHs drops below 25%. In addition, detection becomes very challenging for
less than 10% attacked EWHs as the changes to the DLP become less noticeable. The effect
of subtler changes is also reflected in detection delay which generally grows with lower
numbers of attacked EWHs. As for the case with mitigation, Figure 4 shows that the SVM-
based detector’s performance starts to struggle much earlier, with a completely undetected
attack at the 60–80% range and two at 40–60%. Missing LAAs at these ranges is significant,
as activating such numbers of EWHs is expected to generate substantial demand surges.
On the contrary, the proposed TDNN-based detector maintains its detection rate and delay
performance. Overall, Figure 4 highlights the superiority of the TDNN-based detector over
the SVM-based one against this variation of the LAA model; superiority, reflected in both
the detection rate and delay, is evident in both cases with and without mitigation. (One
should disregard the decrease in average detection delay at the 5–10% range in “SVM with
mitigation” curve in Figure 4. This value belongs to the only detected LAA in that range
and, thus, does not reflect a real trend.)
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Figure 4. Impact of attacking subsets of EWHs on the detection rate and average detection delay of
the proposed LAA detector with and without mitigation.

As for false alarm rates, both detectors achieve 0% in all cases, except for the TDNN
detector with mitigation, where the rates are below 2%. However, there is no obvious trend
linking the false alarm rate to the number of attacked EWHs.

7.2.3. Cyberattack Impact Assessment

From the moment a LAA is launched until its threat is completely neutralized, grid
operators must rely on the grid’s operating reserve to manage the generated excess demand
to avoid its cascading damaging effects. The operating reserve is a diversified collection of
supply/consumption capacity that is available to grid operators to respond to the expected
and unexpected changes in the power system in order to maintain its reliability. Elements
of this reserve may be additional generation capacity that can be engaged or responsive
loads that can be shed depending on the grid’s needs. They could operate autonomously
or under operator control. Each of these reserves has a unique combination of response
speed and duration, and frequency of use, thus making each suitable for specific change
events [17].

Pre-detection, the excess post-attack demand must be managed by the autonomous
protection systems responsible for under-frequency contingencies and sudden load changes
in power grids, e.g., [18]. It is, therefore, crucial to asses this excess demand so that the grid
operator can plan the required operating reserve capacity, speed, and duration to respond
to LAAs in order to avoid load shedding. Therefore, Figures 5 and 6 plot the pre-detection
excess power demand per EWH generated by both detected and undetected attacks of this
LAA model. Figure 5 compares the SVM- and TDNN-based detectors without mitigation,
whereas Figure 6 does the same but with the 15 min mitigation delay.
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Figure 5. Excess power demand generated by DLC attacks activating a subset of EWHs in the absence
of mitigation—winter mornings.

Figure 6. Excess power demand generated by DLC attacks activating a subset of EWHs with the
mitigation delay of 15 min—winter mornings.

In both Figures 5 and 6, the red, black, green, and purple boxes represent maximum
pre-detection excess demand generated by LAAs over the period extending from attack
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launch until detection—or until the end of peak shaving for undetected attacks. The blue
and purple boxes are, respectively, the detected and undetected LAAs in the case of the
proposed TDNN detector. Similarly, the red and green boxes belong to the SVM detector.
To put this pre-detection surge in context, we compare demand levels added by the LAAs
to those removed by peak shaving. Thus, in both figures, the blue box represents the
minimum power demand levels that would have been removed from the grid by peak
shaving in normal operating conditions over the same period as in attacked cases.

Figure 5 shows that the TDNN detector succeeds in reducing the number and gener-
ated power demand of undetected attacks compared to SVM. In addition, the TDNN detec-
tor’s faster detection results in lower excess demand. However, for LAAs that activate more
than 60%, the demand grows to important levels that approach or exceed—significantly, at
times—the peak demand of EWHs in normal conditions before peak shaving. Although de-
tection delay is very low in these cases, such surge in demand occurs instantaneously
such that by the time the very first measurement reaches the data center following a LAA,
the power demand is already far higher than what the power grid is used to supplying, thus
significantly increasing the probability of outages, equipment damage, cascaded failures,
and even large-scale blackouts. This observation highlights the motivation behind the
mitigation mechanism in Section 5, which serves as an additional layer of protection that
complements the proposed LAA detector.

Figure 6 illustrates the crucial impact of the mitigation mechanism in allowing LAA
detection while the demand is still below normal levels before peak shaving, thus reducing
the autonomous operating reserves needed to stabilize the grid in a LAA event, and pro-
viding utilities with crucial time to mount a response. Because the mitigation delay spreads
out the demand surge, it leads to a more challenging classification problem as reflected
in the increased misdetections in Figure 6. Among the SVM detector’s misdetections,
the undetected LAA, at the 60–80% range, generates demand that exceeds normal demand
levels before peak shaving, thus revealing a major vulnerability in that detector. In con-
trast, Figure 6 shows that, for the proposed TDNN detector, none of the undetected LAAs
can generate demand that approaches normal levels before peak shaving, thus providing
evidence that the proposed detector can be successfully paired with the 15 min mitigation
delay to secure the grid against this LAA model.

8. Conclusions

In this article, we study a LAA scenario against peak shaving programs involving the
loads of residential EWHs. The scenario entails threat agents, targeting the power grid,
infiltrating the ICT infrastructure over which the DSM application is running. The attackers
then manage to inject malicious commands to activate numerous interrupted EWHs during
peak shaving, thus triggering a surge in power demand during peak-demand hours. We
extend this attack model by including stealthier LAAs that activate only a subset of EWHs—
aiming to create a less noticeable demand increase while exhausting the grid operating
reserve capacity, thus reducing the grid’s readiness to respond to other contingencies. We
then propose a signature-based cyberattack detector powered by a TDNN. The detector
operates on consumption data that can be collected using smart meters, thus demonstrating
the potential of integrating OT data to better defend the smart grid. The proposed detector
is shown to be very effective and to outperform another that employs a series of SVM
classifiers. In addition, we demonstrate the detector’s ability to detect different variations
of LAAs which were not encountered during training including weaker, subtler, attacks.
Furthermore, the proposed detector is shown to maintain its detection performance even
in the presence of attack mitigation measures that impact the shape of the load profile.
The combined detection and mitigation solution is effective in detecting LAAs accurately
and early—before power demand, generated by the LAA, approaches demand levels before
peak shaving.

For future work, we aim to explore adversarial machine learning techniques to design
undetectable LAAs that can evade detection while maximizing harm to the grid. In addition,
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we shall extend the simulation environment to include a detailed model of the power
system under study, taking into account the grid’s operational state as well as available
protection equipment and operational responses to sudden load changes. Such an extended
environment shall provide precise evaluation of the potential consequences of LAAs on the
power system under various operating conditions and in the presence of innovative smart
grid technologies, such as distributed energy resources (DERs), energy storage systems,
grid-connected microgrids, etc. Furthermore, we intend to generalize the work presented
in this article to include other smart home high-wattage appliances and other IoT use cases.
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