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Abstract: Energy plays a crucial role in the sustainable development of modern nations. Today,
hydrogen is considered the most promising alternative fuel as it can be generated from clean and
green sources. Moreover, it is an efficient energy carrier because hydrogen burning only generates
water as a byproduct. Currently, it is generated from natural gas. However, it can be produced using
other methods, i.e., physicochemical, thermal, and biological. The biological method is considered
more environmentally friendly and pollution free. This paper aims to provide an updated review
of biohydrogen production via photofermentation, dark fermentation, and microbial electrolysis
cells using different waste materials as feedstocks. Besides, the role of nanotechnology in enhancing
biohydrogen production is examined. Under anaerobic conditions, hydrogen is produced during
the conversion of organic substrate into organic acids using fermentative bacteria and during the
conversion of organic acids into hydrogen and carbon dioxide using photofermentative bacteria.
Different factors that enhance the biohydrogen production of these organisms, either combined or
sequentially, using dark and photofermentation processes, are examined, and the effect of each factor
on biohydrogen production efficiency is reported. A comparison of hydrogen production efficiency
between dark fermentation, photofermentation, and two-stage processes is also presented.

Keywords: energy; photofermentation; dark fermentation; microorganisms; biohydrogen; microbial
electrolysis cell

1. Introduction
1.1. Global Energy Scenario and Global Warming

All the social, physical, and economic activities of human life are sustained by energy.
The continual energy supply needed for increasing global demand creates a substantial
challenge for our societies. According to the IEO reference case [1], the world energy need
is expected to rise by 50% from 2018 to 2050. This energy requirement has been satisfied
primarily by exploiting massive fossil fuels [1].

Carbon-rich energy carriers (fossil fuels) are produced in two steps. The first step
consists of photosynthesis, while the second consists of decomposing organic matter, which
has been compacted for millions of years under high pressure and temperature. The ability
of fossil fuels to act as efficient energy carriers and their easy transferability into different
types of energy has made them the motor of the industrial revolution [2]. However, the
other side of the picture shows that burning these fossil fuels creates a major drawback in
the form of greenhouse gas emissions, contributing to global warming and climate change.

Global warming is the central issue of today’s world because it continuously raises
the Earth’s temperature and drastically affects agriculture and food security [3,4]. The
developing regions of the world are principally affected. The expected results may include
social and political uncertainty, mass migration, and military conflicts. Sea level rise
and ocean acidification are the other significant problems [5,6]. In addition, greenhouse
gas emissions and climate change affect the globe and require solutions for clean and
sustainable energy usage [7–9]. Considering the danger of global warming to future
generations, the leaders of most countries have united to put forward their efforts to
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decrease the emissions of greenhouse gases and minimize average global warming to 2 ◦C
above the preindustrial average world temperatures during the United Nations Climate
Change Conference (UNFCCC) and the Conference of the Parties (COP) 2015 in Paris [2].

1.2. Sustainable Energy Economy

The states and governments of the world consider the possibility of sustainable devel-
opment not only in the context of industrial advancements but also for social, economic,
and environmental concerns. According to Davidson, the definition of sustainable energy
is as follows [10].

“Sustainable energy is defined as energy providing affordable, accessible and reliable
energy services that meet the economic, social and environmental needs within the overall
developmental context of the society for which the services are intended while recognising
equitable distribution in meeting those needs.”

Energy, economy, and environment are the three pillars of sustainable development
that join in the form of a triangle. Although renewable energy is considered the critical
component of sustainable energy, it does not fulfill the requirements of sustainable develop-
ment without knowing its significance to the economy and environment [11] and fulfilling
the five targets mentioned in Figure 1 [11].
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Figure 1. Five significant targets of sustainable energy.

Second-generation biofuels covered about 3% of the world’s energy requirements in
2013 [12]. They are considered more desirable fuels as there is no competition for land and
food. Nevertheless, technical problems, such as low energy conversion efficiencies, are
the foremost hurdle to their use. Microalgae are used as feedstock for the third generation
of biofuels [13,14]. Microalgae are vigorous unicellular organisms that can be grown in
wastewater or seawater and have higher energy efficiency than other fuels. However, a
considerable amount of carbon dioxide is released during the burning and production of
these biofuels, which is not compensated for by carbon dioxide fixation [2].

1.3. Sustainable Hydrogen Economy

Biohydrogen has become a promising biofuel in the modern era as it is a clean and
efficient energy carrier. Hydrogen (H2) has many benefits since it has the highest energy
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per unit mass (142 kJ g−1). Moreover, H2 produces only water as a byproduct and is called
zero-carbon fuel. It is also tasteless, odorless, colorless, and the lightest gas [15]. Therefore,
H2 gas is used in many applications, such as fuel cells for electricity generation and as fuel
in rocket engines, including transportation applications [16].

Furthermore, H2 is a significant industrial gas and raw material in various applications
and processes [17]. Nevertheless, the high cost of production, storage problems, trans-
portation, and an immature hydrogen infrastructure are the primary hurdles to economic
sustainability using H2 as a fuel source [17–21].

Biohydrogen can be produced in thermochemical [22–25] and biological ways [26–28].
The biological technologies for H2 production are preferred due to their ecological benefits.
These biological processes are also less energy intensive and more environmentally friendly
concerning the global reduction of carbon dioxide [18,20,29]. Furthermore, renewable
hydrogen production techniques can potentially become cost-effective because they can
use raw biomass as feedstock, e.g., agricultural, municipal, and industrial wastewater and
organic waste [18,20]. Biohydrogen production is classified into (i) the biophotolysis of
water using algae, (ii) dark fermentation using anaerobic bacteria, (iii) photofermentation
using photosynthetic bacteria, and (iv) microbial electrolysis cells (MECs). Dark fermenta-
tion has several advantages as compared to others. The process is less energy-intensive
because it can be carried out at an ambient temperature and pressure [30].

2. Biological Routes of Hydrogen Production

The synthesis of hydrogen by biological methods involves the active use of different
microbes under various environmental conditions (Figure 2). However, they have in
common the presence of hydrogenase or nitrogenase enzymes, which play a significant
role in metabolic pathways in the synthesis of hydrogen [31].
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Figure 2. Methods of biological hydrogen production.

2.1. Biophotolysis

Hydrogen can be produced by photosynthetic microorganisms, such as green algae,
cyanobacteria, and diatoms. These organisms integrate and store light energy as H-H
bonds. Carbon dioxide (CO2) and water are used in this process, thus reducing greenhouse
gas emissions [26]. Biophotolysis can be divided into direct and indirect forms.

For direct biophotolysis, several green algae, such as Chlamydomonas reinhardtii,
Scenedesmus obliguus, Chlorella vulgaris, and Tetraspora sp., have been extensively studied
for their efficiency in hydrogen production [27,28]. During the process of direct photolysis,
light radiation causes hydrogen evolution. Unique pigments in photosynthetic microor-
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ganisms absorb light energy, which is mediated by nitrogenase and hydrogenase enzyme
activity. The absorbed energy is then used to elevate the energy level of the electrons of
water molecules. Some atoms attain sufficient energy to split water molecules into H and
OH atoms.

Consequently, the free hydrogen atoms combine to form hydrogen molecules and
are released as hydrogen gas. Green algae were used to achieve 6–24% energy efficiency
under low light intensities under laboratory scans during direct photolysis [16,26]. The
sensitivity of the hydrogenase enzyme to oxygen generated during photosynthesis is the
major drawback of this process. The evolved oxygen constrains the enzyme’s activity,
producing low H2 yields [16,26]. Another limiting factor for microalgal cultures is the low
biomass concentration because of reduced light penetration. The drying of algal biomass
also makes it an energy-consuming process. The higher capital cost and the intensive
care of microalgal farms are significant barriers to executing this process on a commercial
scale [32].

Indirect biophotolysis needs photosynthetic bacteria (e.g., blue-green algae) to utilize
CO2 in the presence of light to produce carbohydrates, which are fermented in the presence
of light to produce energy and, thus, liberate high yields of hydrogen molecules as byprod-
ucts (Figure 3) [33,34]. The cyanobacteria, Anabaena variabilis, was reported as a probable
candidate for hydrogen production via indirect photolysis [35]. In this method, oxygen is
the inhibiting factor for carbon dioxide-consuming bacteria. Besides, the requirement for a
continuous light source is another limiting factor.
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2.2. Photofermentation Process

The process of photofermentation utilizes purple non-Sulfur bacteria to produce H2 in
the presence of light. These bacteria use organic acids (lactic acid, acetic acid, and butyric
acid) as a carbon source and produce H2 by nitrogenase enzyme action in N2-deficient
conditions. The purple non-Sulfur bacteria utilize organic acids as a source of electrons for
photosynthesis, while the external source of light energy is utilized to oxidize the volatile
organic acids to generate electrons for the synthesis of H2 [36]. The released electrons are
driven via electron carriers, and the protons are pushed across the membrane. A gradient
is formed due to high and low concentrations of hydrogen ions. The energy produced by
the protons is used to make adenosine triphosphate (ATP) from adenosine diphosphate
(ADP) by the ATP synthase enzyme. The electrons are then transferred to the ferredoxin
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by utilizing surplus ATP energy. The nitrogenase enzyme takes electrons derived from
ferredoxin and accelerates the reduced protons into H2. All the reactions occur in the
absence of nitrogen and the availability of excess energy of ATP [26]. This way, the organic
compounds are entirely converted into H2 and CO2.

The significant advantage of photofermentation is the 100% release of electrons from
organic acids by photosynthetic bacteria to synthesize carbon dioxide and hydrogen. There
is no inhibitory effect of oxygen on the performance of the nitrogenase enzyme, as this
process occurs in the absence of oxygen. This technology uses a wide range of feedstock and
generates fewer byproducts in the waste stream. The feedback on cost-effective photofer-
mentation technology benefits waste management and the H2 economy. Some studies have
reported using industrial wastewater as an effective raw material [37]. Although much
research has been reported on this process, some technical obstacles avoid its large-scale
usage, including low light conversion efficiency, hydrogen production by nitrogenase,
and low photosynthetic conversion efficiency [26]. A study using Rhodobacter sphaeroides
with various volatile acids as the carbon source reported a maximum hydrogen yield of
17.8 L H2/mol-substrate for 2 g/L lactate and 2 g/L succinate [38]. The reactor design for
photofermentation and the selection of biohydrogen specialists are the most critical factors
for improving production yields [39]. Akroum et al. observed an optimal operational pH
of 7.5 for hydrogen production in a column bioreactor using Rhodobacter sphaeroides [40].
The study reported a maximum hydrogen production rate of 0.04 L/L/h compared to
0.03 L H2/h studied in the dark fermentation process [41]. However, recent research shows
that the combination of photofermentation with the dark fermentation process can boost
hydrogen yield. An integrated photo and dark fermentation study investigated by Ghameri
et al. resulted in a 40% rise in H2 production when compared with the singular processes of
photo and dark fermentation [20]. It was reported that different fermentation parameters,
such as substrate concentration, pH, and temperature, are automatically controlled by
the microbial cultures and help to enhance hydrogen yields [42]. A study conducted by
Policastro et al. used the ethanol-rich wastewater produced during dark fermentation as a
substrate for light-fermentative hydrogen production with a 0.31 L H2/g COD yield [43].

2.3. Dark Fermentation Process

Dark fermentation works with microorganisms that use various organic materials, such
as industrial and agricultural wastes, to generate H2 without oxygen and light [44,45]. These
bacteria are either facultative or obligate anaerobes, but the process occurs without light
when organic carbon is used as energy. The fermentation process involves the production
of volatile or intermediate chemicals, including butyrate or propionate, ethanol, and acetate,
depending on the mechanism used. The way of acetate byproduct generation is the most
promising when compared to butyrate because it can give maximum yield. This is because,
theoretically, four molecules of H2 are produced per hexose in the acetate pathway, called
the ‘Thauer limit,’ while two molecules of H2 are formed in the butyrate pathway. The
accumulation of H2 as a metabolic inhibitor is a major drawback for the commercialization
of bio-H2 production [46–48]. The oxygen sensitivity of the hydrogenate enzyme in dark-
fermentative bacteria is another limiting factor that reduces the H2 yield [49].

The research on molasses wastewater gave a dominant pathway of acetate and ethanol
with a maximum yield of 0.20 L H2/g-COD sucrose. The final gas composition from a
reactor depends on the fermentation substrate and operating conditions [35,50].

Biohydrogen production involves the ethanol-type fermentation of molasses in an
expanded granular sludge bed reactor. Another study showing a process dominated by the
butyrate pathway observed a general decrease in butyrate concentration for reduced HRT,
also marked by increased hydrogen productivity. Another study of the glucose substrate in
a batch reactor observed a maximum conversion of 0.01 L of H2 per g-COD/L, while the
side products of hydrogen generation were 14–63% butyrate, 10–45% formate, and 16–40%
ethanol [51].
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In fermentative hydrogen production, three biochemical pathways may be used: (i)
the utilization of pyruvate-formate lyase (PFL) and formate-hydrogen lyase (FHL), (ii)
pyruvate-ferredoxin oxidoreductase (PFOR) and Ferredoxin (Fd)-dependent hydrogenase
(HYD) under strict anaerobic conditions, and (iii) the utilization of NADH-ferredoxin
oxidoreductase (NFOR) and HYD (Figure 4) [52].

Different strategies have emerged to overcome the limitations of the dark fermentation
process. The single-stage fermentative hydrogen process produced large amounts of acids
and alcohols as byproducts. These liquids can be used as feedstock in photofermentation
and MECs to enhance H2 generation. The integration of dark fermentation with other
techniques has evolved to enhance the production of H2 through the complete conversion
of the substrate [53]. Metabolically or genetically engineered bacteria are other ways of
producing H2 [54]. However, this method is not economical at an industrial scale.
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Enterobacteriaceae. (blue pathway) Clostridium sp. and (green pathway) thermophilic bacteria). Abbre-
viations: NFOR = NADH-ferredoxin oxidoreductase, HYD = ferredoxin-dependent hydrogenase,
PFOR = pyruvate-ferredoxin oxidoreductase, LDH = Lactate dehydrogenase, PFL = pyruvate-formate
lyase, FHL = formate-hydrogen lyase.

2.4. Microbial Electrolysis Cell

Microbially catalyzed electrolysis cells produce H2 during the fermentation of soluble
organic matter found in wastewater when an electric current is passed through a small
amount [55–57]. The simplest carbon source for H2 generation in MECs is acetate. However,
the presence of volatile fatty acids in the effluent of biohydrogen production via the
dark process is considered favorable for producing hydrogen via microbial electrolysis
cells [44,58]. The MEC consists of four main parts: the cathode and anode, the external
electrical connection, and a cationic exchange membrane between the electrodes (Figure 5).

In the cell, bacteria inhabit the anode surface and oxidize the carbon sources of the
waste to carbon dioxide, electrons, and protons over a series of redox reactions. The
produced electrons are transferred to the surface of the anode by the bacteria. At the same
time, the proton diffuses freely into the solution and migrates via the cation exchange
membrane to the cathode compartment, contributing to the reduction reactions occurring
on the cathode electrode surface. At the same time, the electrons are transported via an
external power source to the cathode electrode, which couples with the free proton in the
electrolyte solution to produce H2 gas [59]. An AC/DC electricity source is required to
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energize the MEC. The energy required by MEC is only 0.11V, which is lower than water
electrolysis (1.8–2.0) [60]. Therefore, this technology is considered to have high potential
and to surge, having few limitations, such as reduced mass transfer and energy loss. The
five major challenges faced by MECs are the loss of methanogenic electrons, metabolic
diversity, and electrode resistance (anode), complex wiring in cell design, power supply,
membrane problems (high cost, biofouling, substrate, and gas crossover and long-term
stability) and cathode related obstacles (long-term stability, high catalyst cost, side reaction,
and electrode resistance). Future research in this field is based on the improvements in
the challenges mentioned above [49]. Microbial electrolysis cells work efficiently when
combined with dark fermentation techniques. The MEC–DF combined process produces
about a 98% H2 yield as compared to the single-stage process [61].
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3. Feedstock for Biohydrogen Production

Biological hydrogen production has been carried out using several waste materials
and lignocellulosic materials, depending upon their availability and suitability in particular
geographic situations. Table 1 shows the utilization of different feedstocks for hydrogen
production. Numerous raw materials such as sugarcane and sugar beet molasses [62–67],
cheese whey powder [68], coffee drink manufacturing wastewater [69], corn stalk [70],
crude glycerol [71], rice slurry [72], starch wastewater [67], paper and pulp industry
effluent [30], baggase [73], dairy wastewater [37], vegetable waste [74], palm oil mill
waste [75], distillery wastewater, and waste barley [76,77] have been reported.
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Table 1. Utilization of different feedstocks for hydrogen production.

Type Feedstock Fermentation Process Substrate
Conc. pH Hydrogen % Yield Ref.

Solid food
waste

Wheat bran and flour

Anaerobic degradation - 5.0 0.13 L/g [78]

Dark fermentation 10.7 g/L 4.5 0.24 L/g glucose [79]

Photofermentation 5 g/L 7.0 0.15 L/g glucose [80]

Waste barley Photofermentation 11 g/L 7.0 0.4 L/L culture [77]

Cheese whey powder Dark fermentation - - 0.11 L/g sugar [81]

Oil palm waste Photofermentation - 7.0 0.02 L/L/h [82]

Sugar cane bagasse

Photofermentation
- 7.0 0.04 L [73]

10% w/v 7.0 0.35 L/L [42,83]

Dark fermentation
22.8 g/L 6.0 6.98 L/L [84]

- 6.8 0.76 L/L

[42]Two-stage anaerobic
digestion - 6.5–7.0 6.2 L/L

Vegetable and fruit
waste

Photofermentation
- 6.8 0.004 L/L/h [74]

- 7.1 0.11 L/g [85]

Dark fermentation
- 5.0 0.51 L/g

volatile solid [86]

- 5.9 0.12 L/g TOC [87]

Food and
beverage
industry

wastewater

Brewing industry
wastewater

Anaerobic dark
fermentation - 5.95 0.15 L /g COD [88]

Photofermentation 10% v/v 7.2 2.24 L/L medium [37]

Sugarcane and sugar
beet molasses

Photofermentation
28 g/L 7.0 1.01 L/L culture [65]

10 mM 7.5 1.24 L/g sucrose [66]

Dark fermentation
- - 0.37 L/g glucose [89]

- 5.5 0.02 L/g glucose [90]

Distillery wastewater
Dark fermentation - 5.8 0.04 L/g COD [76]

Photofermentation - 6.5 - [91]

Soy sauce
wastewater Photofermentation - 7.0 0.2 L [73]

Dairy industry
wastewater Dark fermentation 21.1 g/L 7.0 0.29 L/g COD [92]

Tofu wastewater
Photofermentation

- 7.0 2.2 L/L [93]

- 7.2 - [94]

Dark fermentation 20 g COD/L 5.5 0.11 L/g COD [95]

Palm oil mill
wastewater

Photofermentation - 6.0 0.66 L/L POME [96]

Dark fermentation 48 g/L 4.5 0.06 L/g [97]

Algal
biomass

Dark fermentation
50 g/L 7.5 0.07 L/L/h [98]

5.0 g/L 7.4 0.31 L/g glucose [99]

4. Diversity of Biohydrogen-Producing Bacteria

There are numerous types of fermentative hydrogen-producing bacteria. Clostridium
sp. is one of the most common anaerobic bacteria. Different species of Clostridium, such
as Clostridium butyricum, Clostridium beijerienckii, Clostridium amygdalinum, Clostridium
cellolosi, and Clostridium acetobutylicum, have been reported for fermentative hydrogen
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production [100–104]. Anaerobic bacteria utilize glucose to produce hydrogen, while
butyric acid or acetic acid is produced as the product—Chong et al. isolated Clostridium
butyricum from POME [105]. The optimum hydrogen production was obtained at pH 5.5.

Some facultative anaerobic bacteria (e.g., Enterobacter aerogenes) have also been recog-
nized as H2 producers since the hydrogenase enzyme was found in these bacteria [106]. The
critical parameters, such as substrate concentration, temperature, pH, inoculum size, and
yeast extract, were optimized to obtain a maximum H2 yield of 0.21 L H2 /g glucose. The
culture and maintenance of facultative anaerobes are more feasible than obligate anaerobes.

These microorganisms are further classified into mesophylls and thermophiles based
on their growth temperatures. Although thermophiles are cultivated at elevated tempera-
tures, with highly intensive energy requirements, their H2 production can be closer to the
theoretical yield than mesophylls by overwhelming the thermodynamic barrier [107,108].
Some photofermentative bacteria require light energy to produce H2 in anoxygenic con-
ditions. Without O2, these photoautotrophs, including cyanobacteria and green algae,
produce H2 through biophotolysis using their specific metabolic routes advantageously
under defined conditions [107]. Mixed cultures are also considered the best choice for
maximum H2 yield. A study by Nicolau shows hydrogen production using heat-treated
mesophilic anaerobic sludge inoculum instead of pure culture [109]. The hydrogen yield at
pH 5.5 was 0.37 mol H2/mol of carbohydrate, equal to 18.14 L H2/kg of dry solid.

5. Enzymes

Life depends on several chemical reactions, most of which are slow. Therefore, en-
zymes are naturally occurring catalysts to speed up biochemical reactions. The two enzymes
involved in hydrogen production are hydrogenase and nitrogenase (Figure 6). The enzyme
hydrogenase catalyzes the consumption and generation of H2. After the discovery of this
enzyme in 1930 by Stephenson and Stickland, numerous experiments have been conducted
to learn more about it. Despite this, its crystal structure was elucidated approximately
20 years ago [110]. It is present in dark fermentative hydrogen-producing bacteria, green al-
gae, and cyanobacteria. The hydrogenase enzyme is classified into three types based on the
structure of active sites: NiFe-, Fe-Fe-, and Fe-hydrogenase. The NiFe-hydrogenase is only
present in bacteria and archaea, while algae and bacteria have FeFe-hydrogenase. Hence,
Fe-hydrogenase is a homodimer and is only present in methanogenic archaea [16,110,111].

Energies 2022, 15, 7783 10 of 22 
 

 

 

Figure 6. Enzymes involved in hydrogen production. 

Nitrogenase is another enzyme responsible for the production of H2. It is found in 

purple non-Sulfur bacteria, archaea, and cyanobacteria [111]. Most atmospheric nitrogen 

is fixed by cyanobacteria and generates H2 as a byproduct. There are three forms of 

nitrogenase enzyme: Molybdenum, iron, and vanadium. They are located at the active 

sites of nitrogen reduction and bind with rare metal centers. Mo-nitrogenase consists of 

two proteins: dinitrogenase (MoFe protein) and dinitrogenase reductase (Fe protein). The 

nitrogenase helps to generate ammonium from nitrogen, but in nitrogen-deficient 

conditions, it starts producing hydrogen in an anaerobic environment [16]. The structure 

of iron and vanadium nitrogenases are similar to the structure of the Mo form, but they 

have FeFe and VFe cofactors, respectively. The FeFe and VFe nitrogenases enhance 

hydrogen production compared to Mo nitrogenase. Only one type of photofermentative 

bacteria, R. palustris, has been reported to have all three types of these nitrogenases [111]. 

6. Factors Affecting the Production of Hydrogen 

The production rate and yield of hydrogen depend on many factors during dark and 

photofermentation processes, including the following. 

6.1. Pretreatment Methods 

The use of food waste and food processing wastewater as feedstock provides several 

organic compounds and nutrients with enhanced hydrogen production, but some 

inhibitory compounds affect the production and yield of hydrogen [112]. In addition, 

different pretreatment methods have been reported to increase the utilization of raw 

materials for successive hydrogen generation.  

Among the pretreatment methods, hydrolysis and preheating are the most preferred 

methods. Hydrolysis can be acid/alkaline or ultrasound-assisted. The six-hour alkaline 

hydrolysis increases H2 generation 206 times at a pH level of 12 [113]. Meanwhile, acid 12 

h hydrolysis enhances the production of H2 three-fold at a pH of 2. Hence, the main 

disadvantages are the utilization of chemicals in large quantities and the requirement of 

some other processes to neutralize the pH [114]. The ultrasonication of food waste, 

assisted with hydrolysis, increases H2 yield by 75–88% [115–118], but investment in 

equipment and energy cost are the major hurdles to commercializing this method. 

H2-producing enzymes

Hydrogenase

NiFe

FeFe

Fe

Nitrogenase

Mo

MoFe

Fe protein

Fe

FeFe

V

VFe

Figure 6. Enzymes involved in hydrogen production.



Energies 2022, 15, 7783 10 of 20

Nitrogenase is another enzyme responsible for the production of H2. It is found in
purple non-Sulfur bacteria, archaea, and cyanobacteria [111]. Most atmospheric nitrogen
is fixed by cyanobacteria and generates H2 as a byproduct. There are three forms of
nitrogenase enzyme: Molybdenum, iron, and vanadium. They are located at the active
sites of nitrogen reduction and bind with rare metal centers. Mo-nitrogenase consists
of two proteins: dinitrogenase (MoFe protein) and dinitrogenase reductase (Fe protein).
The nitrogenase helps to generate ammonium from nitrogen, but in nitrogen-deficient
conditions, it starts producing hydrogen in an anaerobic environment [16]. The structure of
iron and vanadium nitrogenases are similar to the structure of the Mo form, but they have
FeFe and VFe cofactors, respectively. The FeFe and VFe nitrogenases enhance hydrogen
production compared to Mo nitrogenase. Only one type of photofermentative bacteria, R.
palustris, has been reported to have all three types of these nitrogenases [111].

6. Factors Affecting the Production of Hydrogen

The production rate and yield of hydrogen depend on many factors during dark and
photofermentation processes, including the following.

6.1. Pretreatment Methods

The use of food waste and food processing wastewater as feedstock provides several
organic compounds and nutrients with enhanced hydrogen production, but some inhibitory
compounds affect the production and yield of hydrogen [112]. In addition, different
pretreatment methods have been reported to increase the utilization of raw materials for
successive hydrogen generation.

Among the pretreatment methods, hydrolysis and preheating are the most preferred
methods. Hydrolysis can be acid/alkaline or ultrasound-assisted. The six-hour alkaline
hydrolysis increases H2 generation 206 times at a pH level of 12 [113]. Meanwhile, acid
12 h hydrolysis enhances the production of H2 three-fold at a pH of 2. Hence, the main
disadvantages are the utilization of chemicals in large quantities and the requirement of
some other processes to neutralize the pH [114]. The ultrasonication of food waste, assisted
with hydrolysis, increases H2 yield by 75–88% [115–118], but investment in equipment and
energy cost are the major hurdles to commercializing this method.

The preheating of food waste is another pretreatment method [119]. The results
depicted that, prior to starting fermentation, heating waste for at least 20 min at 90 ◦C could
increase the H2 yield.

6.2. Effect of Substrate Concentration

The substrate concentration plays a vital role in H2 production by dark fermentation.
When substrate concentration increases, it creates unfavorable conditions and consequently
changes the pH, H2 partial pressure, and the concentration of volatile fatty acids. Therefore,
substrate inhibition may be minimized by arranging the optimum initial concentration of
the substrate [120]. Many researchers have reported inhibition by substrate concentration,
but the main focus was on the sources of carbohydrates. The use of wastewater and organic
waste as a substrate has rarely been reported in the literature [121]. The fed-batch reactors
can be used to avoid substrate inhibition. Some bacteria, such as Enterobacter aerogens, can
reduce substrate inhibition by stimulating the microbial activity of H2 production [120].
The effect of substrate concentration on hydrogen production by Lactobacillus casei and
Clostridium butyricum was also evaluated [122]. Glucose and galactose were used as carbon
sources during the batch process. The results were based on the inoculum utilization
of a single species or a mixture. It was observed that L. casei could not utilize galactose
properly when used alone, while C. butyricum gave a fast response to galactose usage as
a carbon source. On the other hand, the response for glucose utilization was faster by
L. casei than C. butyricum under low concentrations of glucose, and, in turn, low hydrogen
production was observed because Lactobacillus outcompeted the most significant H2-
generating bacteria.
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6.3. Effect of Initial pH

Initial pH is another essential factor to be considered in the dark fermentation process,
and it is noted that each microbe can function effectively in different conditions. For
example, the effective pH for hydrogen production is 5–8. When the initial pH becomes
lower than 5, hydrogen production reduces by half [123]. A pH range of 5–9 also has been
used during the batch fermentation process, but a PH range of 5–6 has been reported as
the initial optimum pH [124]. During fermentation, volatile fatty acids reduce the pH of
the medium. Therefore, the initial pH was set from 6-7 to compensate for the end of the
process [114].

The effect of pH on hydrogen production by green algae was evaluated [125]. The
results showed that the pH of the medium affects the activity of the hydrogenase enzyme.
They controlled the pH by adding NaOH and HCl over the range of 6.5–9.0, which does
not affect algae growth. It was observed that an increased yield of 2.4% was obtained at a
pH of 6.5. A considerable pH value is also required for Purple non-Sulfur bacteria (PNSB)
to produce hydrogen via photofermentation. According to studies on hydrogen production
during the photo-biological fermentation process, a pH of 7 is best for transporting electrons
to the nitrogenase enzymes for H2 generation in the media [126].

6.4. Effect of Operational Temperature

The operational temperature significantly affects the production of hydrogen and the
activity of enzymes involved in hydrogen generation [127,128]. Thermophilic bacteria ob-
served an enhanced biosynthesis of hydrogen at high temperatures compared to mesophilic
bacteria during dark fermentation. The temperature range of 30–55 ◦C has been reported as
optimal for enhanced biohydrogen production [128,129]. Hence, it has been reported that
the activity of H2 producers is inhibited at a very extreme temperature of more than 60 ◦C.
Only hyperthermophilic bacteria (Pyrococcus furiosus and Thermotoga maritime) can produce
H2 at extreme temperatures. These bacteria can produce H2 at temperatures greater than
80 ◦C [130].

PNSBs are also sensitive to different ranges of temperature. For example, a study
conducted to show the effect of cultural conditions on H2 production by photofermentation
described that the growth rate and the rate of H2 production initially increased with an
increase in temperature up to 30 ◦C. However, after 30 ◦C, the production rate of H2 gas
decreased rapidly because the higher temperature above 30 ◦C inhibits the activity of the
enzyme nitrogenase [126].

6.5. Effect of Nutrients

The macronutrients also play a vital role in the growth of bacteria to produce H2. The
essential nutrients are sulfur, phosphorus, and nitrogen. The common form of inorganic
sulfur in many organic wastes is sulfate (SO4

2−) [131]. The sulfate-reducing bacteria reduce
sulfate into sulfide during the process of fermentation. The sulfur-containing proteins also
produce sulfide in the fermentation medium. Studies have been reported about the toxic
effects of high sulfide levels in a medium, which inhibit the activity of microorganisms
from producing H2. The increased sulfide concentration also decreases the bioavailability
of some trace elements [132].

Another essential nutrient for the growth of anaerobic bacteria is nitrogen. The high
concentration of ammonia hydrogen decreases the activity of fermentative bacteria and
the rate of H2 production [133,134]. The degradation of proteins and amino acids also
produces a high amount of ammonia in the fermentation media. The high concentration of
nitrogen also interferes with the intracellular pH and affects the performance of microbes
responsible for H2 production. The inhibition of nitrogen can be overcome by diluting the
feedstock [135]. Besides nitrogen and sulfur, phosphorus is another nutrient required to
enhance hydrogen production [136]. It was observed that a high rate of H2 can be obtained
in the presence of 600 mg L−1 K2HPO4 [137]. A 40% increase in the production of H2 was
observed at a 30% increase or decline in the respective chemical compound.
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6.6. Effect of Light Intensity

Light intensity plays a significant role in producing H2 by PNSB. It was shown that the
performance of PNSB increases with an increase in light intensity from 2500–5000 lx, but a
further increase in light intensity reduces the growth and production of hydrogen [138].
It was also observed that the photosynthetic system of PNSB demanded more ATP and
reduced power with increasing illumination intensity [138]. The enzyme nitrogenase also
requires high ATP to sensitize the cells and produce H2. Hence, the high intensity can
become a limiting factor in photohydrogen production.

Photoinhibition in PNSB was also investigated [139]. They suggested that hydrogen
production decreased when light intensity was increased above 200 Wm−2, while a study
conducted by Cai and Wang found that the H2 production decreased at an illumination
intensity of 6000 lx. The favorable light source is LED because it has a wavelength range of
770–920 nm, which is considered best for the activity of PNSB. Furthermore, LED light is
cost-effective in terms of heat generation, energy consumption, and life expectancy [40].

6.7. Effect of Metal Ions

Different metal ions are used for microbes’ growth and to optimize the activity of
the enzyme during dark- and photofermentation. These metal ions are required only in a
moderate amount. When they are used in high quantities, they inhibit the fermentation
process by inhibiting the growth of the bacteria. The effects of using higher concentrations
of metals include destroying membrane function and eliminating the transmission of
valuable ions and nutrients to the cell and intracellular accumulation of metals [140,141].
A study was conducted to describe the importance of Fe for metabolic changes and its
involvement in the expression of non-Fe-S and Fe-S proteins in hydrogenase enzymes.
However, when the concentration of Fe increases in the medium, it makes cell clumps and
reduces the mass transfer activity. It has been reported that the pure culture requires very
little Fe, while mixed culture can tolerate high doses of Fe without an inhibitory effect [124].

Trace metal ions, such as sodium, magnesium, and calcium, are also needed for the
growth of bacteria. High amounts of these trace metals slow down the growth of microbes
and become toxic at higher concentrations. The authors of [142] observed a high hydrogen
yield in the absence of sodium. The higher concentrations of sodium raise the osmotic
pressure, affect the activity of bacteria, and sometimes cause bacterial death. It has been
recommended that the sodium concentration should be kept under 20 g L−1 to achieve a
maximum level of hydrogen production [143]. Ca2+n is another trace element required for
the growth of bacteria and H2 production [144]. Mg2+ is also responsible for cell function
and reaction. It is the most demanding ion as a cofactor for 10 types of enzymes involved
in the glycolysis process. The Ni2+ has no inhibitory effect on the yield of H2 at a level of
0.1 mg L−1. Hence, no significant measure has been taken to control metal inhibition during
fermentation, but a few pretreatment techniques, such as biosorption, electrodialysis, and
cofermentation, can effectively overcome metal inhibition problems [145].

7. Nanotechnology and Biohydrogen

The vast and newly emerging field of nanotechnology deals with nm-sized particles.
The nanoparticles (NPs) have been utilized in several fields, such as biosensors, medicines,
immobilization, and the production of biofuels [146–148]. The NPs also help produce bio-
hydrogen by influencing the metabolic activities of microbes under aerobic conditions [149].
Nanoparticles prepared by different methods (biological, physical, and chemical) have
been reported for H2 production. The NPs of gold, silver, copper, nickel, iron, zinc oxide,
palladium, titanium, silica, carbon nanotubes, and activated carbon have been used to
enhance H2 production [146,150–152]. These nanoparticles provide a larger surface area
to adsorb electrons and, hence, enhance the production rate of H2 by stimulating the
hydrogen-producing enzymes [153].
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Enhancement of Biohydrogen by Metallic Nanoparticles

Zhang’s group was the first to use gold nanoparticles to enhance the biosynthesis of
H2 [153]. They used artificial wastewater for H2 production via dark fermentation. The
preheated and non-heat-treated cultures were used as inoculum. It was observed that the
gold nanoparticles successfully increased the metabolic activity of the microbes, enhancing
the rate of H2 compared to the control. The cumulative hydrogen yield was maximum
when 5 nm gold particles were used [153]. A study evaluating silver NPs for hydrogen
production has also been conducted [154]. They used mixed culture and Ag-NPs to produce
H2 from glucose. When the concentration of the Ag-NPs was increased up to 20 nM, it
affected the activity of the bacteria for enhancing H2 generation. However, there was no
increase in hydrogen production rate at more significant concentrations. The higher yield
of H2 observed at 20 nM Ag-NPs was 67.6%. The Ag-NPs also increased cell biomass and
decreased the lag phase for H2 production.

Han and colleagues investigated the effect of hematite NPs and initial pH on hydrogen
production in mixed bacteria in an anaerobic fed-batch process. The maximum observed
H2 yield was 3.21 mol H2/mol−1 sucrose. A transmission electron microscope was used
to check the slow discharge of hematite nanoparticles and their effect on the shape of
bacteria. Furthermore, a study was conducted utilizing biogenic palladium nanoparticles
and palladium ions [150]. The leaf extract of Cortandrum sattvum was used to synthesize
palladium nanoparticles. They obtained a maximum H2 yield of 1.48 mol H2/mol−1

glucose using a 5 mg L−1 palladium nanoparticles concentration because of the higher
activity of the hydrogenase enzyme. On the other hand, palladium ions showed a negative
impact on the yield and lag phase of hydrogen.

Many bacterial cultures have been investigated for producing H2 via iron NPs. For
example, Fe-NPs and iron ions were used to investigate their possible enhancement effect
on the production of H2 [155]. Both showed a positive impact on the hydrogen yield
compared to the control. However, Fe+2 ions and Fe-NPs illustrated different behavior
towards the generation of intermediate metabolites. The propionate production declined
by 75% with Fe-NPs compared to a 35% reduction by the Fe+2 ions. The enhancement effect
of phytogenic iron nanoparticles and iron ions was also investigated. The green Fe-NPs
were prepared using the extract of leaves and bark of Syzygium cumini and FeSO4. The
mesophilic bacterial strain of Enterobacter cloacae DH-89 was isolated from the soil and used
to produce hydrogen. A 100% increase in hydrogen production (1.9 mol H2/mol−1 hexose)
was observed under 100 mg L−1 Fe-NPs compared to the control (0.95 mol H2/mol −1

glucose). Meanwhile, Fe+2 ions helped to raise the yield of hydrogen to 1.45 mol/mol−1

glucose) [156]. Similarly, some other researchers have also reported Fe, Fe2O3, and Fe3O4
NPs prepared by different physical, chemical, and biological methods for the enhanced
biosynthesis of hydrogen [101,157–162].

The effect of ZnO nanoparticles on hydrogen production was also reported [163]. The
ZnO-NPs were synthesized by the typical precipitation method. The pretreated biomass
of water hyacinth was saccharified by the enzyme activity and used for the fermentative
production of H2. It was observed that the ZnO-NPs reduced the hydrogen yield compared
to the control. On the other hand, metallic NPs (copper, nickel, silicon dioxide, and titanium
dioxide) positively affected the rate of generation and yield of H2 [164–168].

Many studies have reported an enhancement of H2 production via metallic NPs us-
ing the dark fermentation process, but few studies have been found in the literature for
enhanced photofermentative H2 production by nanoparticles. Zhao et al. investigated the
effect of TiO2-NPs on photofermentative H2 production using the effluent of the dark fer-
mentation process as a feedstock [165]. It was observed from the results that the TiO2-NPs
enhanced the activity of PNSB for the production of H2 and reduced the activity of the
uptake of hydrogenase enzyme. Another study by Pandey et al. reflected a similar enhance-
ment effect of TiO2-NPs for photofermentative H2 production [164]. Meanwhile, Kanwal
and colleagues investigated the effect of a phytofabricated nanoscale iron complex for H2
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production using photofermentative PNSB [169]. The use of carbon nanotubes (CNTs) has
also been reported for improved hydrogen generation by H2-producing bacteria [170].

8. Future Perspective of H2 Production

The selection of favorable biological H2-producing technology for future research
is based on different factors. Hossienzadeh et al. conducted technoeconomic and life
cycle assessments of H2-producing techniques [49]. From the technological perspective,
dark fermentation was chosen as a better process than others. The combination of dark
fermentation with MECs and photofermentation generated around 1 L H2/g organic waste.
Among biological H2-producing techniques, the dark-fermentative process (2.3 US $/g) is
the most cost-effective, followed by MECs (2.8 US $/g) and photofermentation (3.5 US $/g).
According to an environmental impact assessment, low greenhouse gas emissions were
observed from both fermentation processes compared to MECs [49].

According to EIA, the hybrid dark fermentation and MEC technology can biosynthe-
size 105 million tons of H2 gas from 1.3 billion metric food waste. This represents a 120%
higher potential than the actual demand in 2020 (90 million metric tons) [1].

9. Conclusions

Using biomass to harvest hydrogen gas is a promising and sustainable method for
producing clean energy. Even though there are several renewable energy options, no single
energy source can fully replace fossil fuels. However, hydrogen production, in this way,
might be highly beneficial as it can reduce greenhouse gas emissions while future energy
demands are met. Different routes of biological hydrogen production, such as photolysis,
photofermentation, dark fermentation, and microbial electrolysis cells (MECs), represent
the different categories of solid and liquid waste feedstock, microorganisms, and enzymes
involved in biohydrogen production, which were discussed. In addition, various factors
affecting the production rate (e.g., substrate concentration, temperature, and pH) were
also examined.

Furthermore, several studies regarding the use of nanomaterials for the enhanced
production of hydrogen were investigated. Of course, all techniques have some pros and
cons. However, after analyzing various studies, dark fermentation was found to be the
most suitable method when integrated with MECs. Besides, the utilization of engineered
bacterial cultures and the role of nanotechnology have also enhanced hydrogen biosynthesis.
However, the practical implication of these processes still requires further efforts from
engineers and researchers.
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