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Abstract: In the design of electric vertical takeoff and landing (eVTOL) vehicles, coaxial rotors
have garnered significant attention due to their superior space usage and aerodynamic efficiency
compared to standard rotors. However, it is challenging to study the flow field near the rotors due
to the blade–vortex interface (BVI) and vortex–vortex contact between two rotors. Using sliding
mesh technology and Reynolds-averaged Navier–Stokes (RANS) solvers, a numerical method was
established to simulate the flow field of a coaxial rotor in hover, which was verified by experiments.
Using this method, this paper analyzes the relationship between position and intensity of the tip
vortex of the upper rotor, the axial velocity of induced flow and the load distribution on the blades
at the azimuth when the BVI phenomenon occurs with a difference in rotational speed and rotor
spacing. The results indicate that, when the BVI phenomenon appears, the blade-tip vortex of the
top rotor rapidly dissipates, and the load distribution of the lower blade changes due to the induced
flow of the vortex. When the rotational speed increases, the spanwise thrust coefficient of each rotor
changes slightly. The vortex–vortex interaction becomes stronger, which leads to vortex pairing.
When the distance between the rotors decreases, the BVI phenomenon occurs at an earlier azimuth
and the location of the BVI moves towards the tip of the lower blade. The vortex–vortex interaction is
also enhanced, which leads to vortex pairing and vortex merging.

Keywords: eVTOL; coaxial rigid rotors; hover; unsteady flow field; BVI; load distribution

1. Introduction

Electric vertical takeoff and landing vehicles, which are mainly used for urban short-
distance passenger or cargo transportation and can effectively reduce traffic time and carbon
emissions, have been rapidly developing in recent years. Due to their advantages over
conventional rotorcraft, such as the simplicity of the drivetrain system, low acoustic noise,
and safe operation in modern urban environments, multi-rotor electric vertical takeoff
and landing (eVTOL) vehicles are generally more suitable than eVTOL with tiltwings
and tiltrotors [1,2]. Currently, designers choose coaxial rotors over conventional rotors
for eVTOL vehicles because the coaxial rotors not only have a high hover aerodynamic
efficiency but also produce less noise during flight [3,4]. As fixed-wing aircraft, their flow
field is relatively simple and its wake structure is stable [5,6]. However, the flow field of a
coaxial rotor is often complex. The lower rotor is impacted directly under the effect of the
upper rotor’s wake. Therefore, the wakes of the upper and lower rotors interact actively,
which has a negative impact on the performance of coaxial rotors [7,8]. Due to the relative
position of the two rotors, the blade–vortex interaction (BVI) phenomena may arise when
the blade-tip vortex generated by the upper rotor interacts with the blade of the lower rotor,
which may relate to the noise problem of coaxial rotors [3,9,10].

Researchers have carried out extensive studies on coaxial rotors. Harrington [11]
presented several experiments and obtained the thrust performance of multiple full-scale
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coaxial rotors in hover. Landgrebe [12] investigated the performance and wake structure of
a coaxial rotor. Ramasam [13] investigated the hover performance of a small-sized coaxial
rotor, comparing single, tandem, and tilt-rotor designs. Leishman [14] developed the blade
element momentum theory (BEMT), which is used to calculate the aerodynamic properties
of coaxial rotor systems. Brown and Kim [15] created a vorticity transport model (VTM)
and compared the hover and forward flight characteristics of a coaxial rotor with those
of an equivalent single rotor. Tan and Sun [16] used the vortex particle method (VPM)
combined with an unsteady panel technique to simulate the complex wake structure of a
coaxial rotor in forward flight condition.

In recent years, computational fluid dynamics (CFD) technology has been widely used
to investigate the flow field’s specifics in coaxial systems. Lakshminaryan and Baeder [17]
investigated the aerodynamic performance and wake structure of the Harington coaxial
rotor using the RANS solver in conjunction with the sliding mesh approach. Jeongwoo
Ko [18] studied the wake dynamics of a coaxial rotor using a high-wake-resolution method
combined with a truncated vortex tube model and a wave-number-extend finite-volume
interpolation scheme to accurately capture flow field features such as the wake trajectory,
blade–vortex interaction phenomenon, and wake instability phenomenon. Qi and Xu [19]
created a numerical method based on the RANS equation and the moving overset mesh
technique to simulate the aerodynamics of a Harrington coaxial rotor and found that the
fluctuation feature of thrust can be explained by the “induction effect” and “overlap effect”
caused by the interaction of wakes and bound vortexes of the coaxial rotor.

However, most of the work has focused on the study of unsteady aerodynamic charac-
teristics of coaxial rotors. Although collision of circular vortex rings has been the subject of
many systematic experimental and numerical investigations [20–22], the study of BVI on
coaxial rotors is quite inadequate at present. The BVI phenomenon occurs as the vortex
approaches the blade, influencing the distribution of aerodynamic load on the blade and
causing partial load pulsation. The load pulsation will lead to serious vibration and noise
from rotors, which is not favorable to the safety and comfort of flight. So, it is necessary to
study the effects of some common parameters used in design on the BVI phenomena.

In this paper, the rotational motion of a coaxial rotor is simulated in different cases
using a computational fluid dynamics (CFD) solver based on the unsteady Reynolds
Average Navier–Stokes (uRANS) equation, which is verified by experiments. By analyzing
the thrust coefficient distribution, position of the tip-vortex core and axial velocity of
induced flow, the influence of azimuth gap, rotational speed and rotor spacing between
two rotors on the BVI is analyzed and discussed.

2. Materials and Methods
2.1. Numerical Calculate Setup

Considering the unsteady characteristics of the coaxial rotor flow field, a conserved
integral form of Navier–Stokes equations is established in the inertial coordinate system,
which can be written as:

∂

∂t

y

V

WdV +
x

S

(Fc − FV) · ndS = 0

n =
[

nx ny nz
]T

where S and V represent the surface area and volume of the contiguous volume, the vector
W is a conserved variable. The vector Fc is for convective transport quantities and the
vector FV is for viscous fluxes, while n is the surface normal vector of the control element.
All the variables can be written as follows:
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W =


ρ

ρu
ρv
ρw
ρE

.F =


ρVr

ρuVr + nx p
ρvVr + ny p
ρwVr + nz p
ρHVr + Vt p



Fv =


0

nxτxx + nyτxy + nzτxz
nxτyx + nyτyy + nzτyz
nxτzx + nyτzy + nzτzz
nxΦx + nyΦy + nzΦz


where ρ and p are the density and pressure of airflow, and E and H are the total energy and
total enthalpy per unit mass, respectively, u, v, and w are the Cartesian velocity components,
Vr is the relative velocity between blade and flow field, and Vt is the the relative velocity of
mesh unit. τij is related to viscous fluxes, while Φi is related to heat conduction.

The governing equations are spatially discretized using the finite volume method. [23]
The spatial difference of the solver is calculated using high-resolution normalized variable
diagram (NVD) approaches. To obtain the unsteady flow field of the coaxial system,
temporal integration utilizes the dual time step approach and the multiple iteration display
format in the pseudo time step. To regain high time accuracy in an unstable flow field,
the subiteration of the pseudo time step is set to 10. Each time interval corresponds to
1 degree azimuth since the physical time step is set to 360 in one resolution of the rotor.
Eddy viscosity is calculated using the two-equation k-ω SST turbulence model [24].

The sliding mesh technique is employed to represent the complicated rotational motion
of two rotors. The grid is separated into stational and rotational regions. To increase mesh
quality, each region’s mesh is created independently using a multiblock structured mesh
generation technique. There are 45 million volume grid cells in all. The boundary layer
consists of 25 grid layers, and the height of the first layer is 5 × 10−5 times the chord length
c at 0.75 R of the blade. The mesh containing the rotor’s tip vortex is adjusted to capture
the structure of vorticity with greater precision. The detail of the sliding mesh boundary
condition is displayed in Figure 1.
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Figure 1. Boundary condition for a two-blade coaxial rotor and its computational mesh.

2.2. Experimental Setup

To determine the aerodynamic performance of coaxial rotors, a modular, reconfig-
urable test bed comprised of two identical rotors in a coaxial rotor configuration was used.
Figure 2 display a schematic representation of the entire test bed with rotors. The test bed
was equipped with slide rails for continuous adjustment of the axial distance between the
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two rotors, allowing us to investigate the influence of rotor spacing on a coaxial rotor sys-
tem. Each rotor was driven by the C14055 DC current through motor, whose rated power
was 10 kW and maximum power was 20 kW. The rotational speed of the rotor on each side
was controlled by the electronic speed control (ESC). In this experiment, a controller was
programmed so that both motors rotate at the same rotational speed. The controller was
designed so that the rotational speed discrepancy between a selected value and a measured
value was input into an initial PID controller. The true rotational speed was acquired by an
LSCI infrared temperature sensor, which measured the temperature on the blade’s surface
and recorded the fluctuation of temperature when a blade passed though the detect region
of the LSCI. Finally, the measured data were converted into current rotational speeds in
the data acquisition system, whose average sampling rate was 10 Hz. The thrust of the
rotor was measured by a TFC flame-typed force sensor, which had an accuracy of 0.1 N.
The torque was measured by a TSD torque sensor with accuracy of 0.03 N·m. The rotor
model and its parameters are shown in Figure 3. Each rotor consisted of two blades and
had a radius of R of 0.8 m, a hub diameter of 0.06 m, and a root cutout of 0.088 R. In the
experiment, the performance of each rotor in different cases was measured by adjusting the
rotating speed when the rotor spacing h/R was maintained as constant where h is the axial
distance between two rotors.
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2.3. Methodology Validation

We conducted a series of experiments in single and coaxial rotor configurations,
and the coaxial experiment consisted of two two-blade rotors arranged to form a coaxial
system. The radius of each rotor was 0.8 m at a spacing of h/R = 0.438 between the two
rotors. Figure 4 shows the thrust and torque of each rotor at different rotational speeds.
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Comparing the data from the experiment, the thrust of each rotor was accurately predicted
by numerical calculation with a maximum error of less than 4%. Compared with the results
of the experiment, the maximum error of torque of the upper rotor by numerical calculation
was less than 3%. However, the torque of the lower rotor obtained by calculation was
generally higher than that of the experiment, and its maximum error almost reached 8%.
The reason for the error may be the interpolation of the message exchanged through the
interactional surface. The CFD solver used in this paper is able to accurately analyze the
aerodynamic coefficients of a coaxial rotor system.
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3. Results and Discussion

When viewed from above, in this research, each rotor in the coaxial rotor system had
the same collective pitch, blade profile, and rotational speed but the upper rotor rotated
anticlockwise and the lower rotor rotated clockwise. The origin of the global coordinate
system was set at the hub center of the upper rotor. The z-axis coincided with the rotor
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shaft and headed up. The azimuth angles of the upper and lower rotors were measured in
their respective directions of rotation. The pitch axes of upper blades were parallel to the
x-axis at 0 degrees azimuth, and the pitch axes of lower blades were parallel to the y-axis.
Figure 5 is a sketch map of the coaxial system’s blade locations.
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3.1. Effect of Azimuth Gap

Blade–vortex interaction (BVI) appears when the tip vortex of the upper rotor is close
to the blade of the lower rotor. In this section, several examples are discussed to describe
the entire process in which the blades of the lower rotor pass through the wake of the upper
rotor to research the effect of azimuth gap on the BVI. In this section, the rotor spacing
between two rotors is maintained as h/R = 0.438 and the tip-Mach number is 0.517.

Figure 6 displays the variation in the spanwise distribution of thrust coefficient for
each rotor at different azimuths. The local thrust coefficient can be calculated as follows:

CT =
dT

ρn2D4 · R
dr

(1)

where ρ is the density of flow, n is the rotational speed, D is the diameter of rotor, R is the
radius of rotor, dT is the thrust of local blade element, dr is the span of local blade element.
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Figure 6 shows that, under the upper rotor’s induced flow, the thrust coefficient of the
lower rotor was often smaller than that of the upper rotor, because the actual attack angle
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of the lower blade was affected by induced flow. Similarly, when the BVI phenomenon
occurred at a 90-degree azimuth gap, the flow induced by the tip vortex of the upper rotors
influenced the flow field near the lower blade by increasing the axial velocity on one side
of the vortex and decreasing it on the other, thus altering the partial attack angle of the
blade and causing a partial lift offset. Therefore, within the region of 0.6 R to 0.9 R, the CT
spanwise distribution curve shows an S-shaped fluctuation. Away from the interference of
the BVI, the CT distribution of the upper rotor was similar at different azimuth gaps. At an
azimuth gap of 90 degrees to 130 degrees, the CT distribution of the lower blade changed
a little, which indicates that the BVI was still strong. At an azimuth gap of 70 degrees,
the S-shaped fluctuation of the curve went down, which indicates that the BVI gradually
diminishes because the tip vortex of the upper rotor moves away from the lower blade.

Figure 7 displays the vorticity magnitude contours at the vertical slice where the
lower blades were located. When the azimuth gap was 130 degrees, the wake of the upper
rotor passed over the lower blade. The wake structure of the upper rotor remained stable
without being disturbed directly by the lower blade. When the azimuth gap was between
90 degrees and 110 degrees, the wake of the upper rotor directly passed across the lower
blade. Disturbed by the surface and bound vortex of the lower rotor, the tip vortex of the
upper rotor broke down and dissipated quickly. When the azimuth gap was 70 degrees,
the tip vortex passed underneath the lower blade and the upper rotor’s wake recovered
stability because of the decrease of BVI. Moreover, when the tip vortex passed through
the lower blade, on the left hand of the vortex, the local Kutta condition [25] of the lower
blade was disturbed by the induced flow of the vortex so that the wake of the lower blade
moved downward.
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Figure 8 displays the axial induced velocity distribution of the horizontal slice where
the lower rotor is located. When the BVI phenomenon occurred at an azimuth of 90 degrees
to 130 degrees, the area where the tip vortex passed across the horizontal section was close
to the lower blade, and the partial axial induced velocity increased, which verifies the
reason for the partial lift offset on the lower blade. As the azimuth gaps between two rotors
decreased, the upper blade and its tip vortex moved to the latter azimuth. However, for
lower blade, due to the opposite rotational direction, the tip vortex actually went through
the horizontal section at an earlier azimuth. With addition of the movement of the lower
rotor, the region affected by the tip vortex was far away from the lower blade. This means
that the vortex of the upper rotor had little interference with the lower blade, so that the
BVI phenomenon decreased.
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3.2. Effect of Rotational Speed

In this section, how rotational speed influences the BVI phenomenon is investigated
while rotor spacing h/R is maintained at 0.438. Figure 9 displays the spanwise distribution
of the thrust coefficient of the coaxial rotor at various rotational speeds when the azimuth
gap between the two rotors is 90 degrees. The thrust coefficients of the upper rotor
increased slightly as the rotational speed increased, and the curves of the spanwise thrust
coefficients of the lower rotor at different rotational speeds were similar, indicating that the
BVI phenomenon was almost not strengthened as the rotational speed increased.
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Figure 9. Spanwise distribution of thrust coefficient for coaxial rotor at different rotational speeds.

Figure 10 displays a comparison of two-dimensional wake plots at different rotational
speeds when the azimuth gap is 90 degrees. The tip vortex of the upper rotor was strength-
ened as the rotational speed increased, and the vortex core moved downwards due to the
acceleration of axial induced flow from the upper rotor. As rotational speed increased, the
bound vortex of the lower rotor became stronger, resulting in a significant disruption to the
tip vortex of the top rotor. As a result, the vortex structure of the top rotor became unstable
after passing through the lower blade. Due to the strengthening of the tip vortex, the vortex
of the top rotor and lower rotor were attracted to each other, resulting in vortex pairing.
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Figure 10. Comparison of two-dimensional wake plots at different rotational speeds for coaxial rotor
at 45 degree section (the azimuth gap between the two rotors is 90 degrees).

Figure 11 shows the axial induced velocity distribution of a coaxial rotor’s horizontal
section where the lower rotor is located at different rotational speeds. As the rotational
speed increased, the area in the horizontal section where the tip vortex of the higher rotor
was moved slightly away from the blade of the lower rotor so that tip vortex was less likely
to affect the axial velocity of flow near the lower blade. However, the vorticity of the tip
vortex increased as well, implying that the axial velocity of flow at a farther area can be
accelerated by the vortex. Moreover, because of the increase in the lower rotor’s rotational
speed, it needed a higher velocity of induced flow by vortex to change the local attack angle
of the lower blade. Under the superposition of these influences, the effects caused by the
BVI phenomenon on the spanwise load distribution of the lower rotor were similar when
the rotating speed of the coaxial rotor increased.
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3.3. Effect of Rotor Spacing

In this section, the influence of BVI to the thrust distribution and wake structure of
coaxial rotors at different rotor spacing is analyzed, while the rotational speed, expressed
as the tip-Mach number, remains at 0.517.

Figure 12 displays the spanwise distribution of thrust coefficient for coaxial rotors
with different rotor spacings when the azimuth gap between the upper and lower rotors is
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90 degrees. As the rotor spacing decreased, the thrust coefficient distribution of the upper
rotor stayed constant, but the thrust distribution of the lower rotor fluctuated significantly
around the range near 0.75 r/R, where the tip vortex of the upper rotor passed across the
lower blade. When the spacing was 0.438, there was an S-shape fluctuation in the curve of
thrust coefficient distribution which was caused by the BVI. As rotor spacing decreased to
0.275, the location of S-shaped fluctuations on the curve moved closer to the tip of the blade.
However, when the rotor spacing reached 0.35, the thrust coefficient gradient reduced and
the curve returned to a smooth shape, indicating that the BVI phenomena did not exist at
this azimuth.
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Figure 12. Spanwise distribution of thrust coefficient for coaxial rotor in different rotor spacings when
phase difference between upper and lower rotor is 90 degrees (the blade-tip Mach number is 0.517).

Figure 13 shows the vorticity magnitude contours in the vertical slice where the lower
blades are located at different rotor spacings. Note the miss distance between the vortex and
blade can be divided into axial miss distance and spanwise miss distance. The axial miss
distance is defined as the vertical distance from vortex core to the horizontal section where
the upper rotor is located. The spanwise miss distance is defined as the horizontal distance
from the vortex to the tip of blade. With a decrease in rotor spacing, the suction from the
lower rotor is strengthened, the blade-tip vortex of the upper rotor moves downwards
significantly, and its axial miss distance of vortex increases. The vortex of the upper blade
meets the lower blade sooner, which means the vortex takes less time to develop after being
generated from the tip of the upper blade and before meeting the lower blade. As a result,
the upper rotor’s spiral wake is shorter, and the viscous dissipation of the vortex decreases,
resulting in a greater vortex strength as the vortex meets the lower blade, and in a stronger
BVI phenomenon. Then, due to the decrease in rotor spacing, the vortex from the upper
rotor does not have sufficient time to shrink before interacting with the blade of the lower
rotor, and its miss distance is small. Thus, the position of BVI changes and moves closer to
the tip of the blade. Because of the vortex’s high vorticity and the close distance between
two vortexes, there is a stronger attraction between two vortexes, resulting in the vortex
pairing and vortex merging phenomena.

Figure 14 displays the axial induced velocity distribution of a coaxial rotor at the
horizontal section where the lower rotors are located at different rotor spacings. It is shown
that the region influenced by the tip vortex of the higher rotor changes as rotor spacing
decreases. As a result of the 0.438 and 0.275 rotor spacing, the region the tip vortex of the
upper rotor passes through is close to the blade as the BVI phenomena occurs. When the
rotor spacing is 0.35, the region the tip vortex of the upper rotor passes through is far away
from the blade so the BVI phenomenon does not appear at this azimuth.
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4. Conclusions

This paper used CFD techniques based on uRANS solver, which has been verified
by experiments, to investigate how azimuth gap, rotating speed, and rotor spacing affect
the BVI phenomenon of a coaxial rigid rotor, which may be useful in eVTOL design. The
conclusions can be derived as follows:

1. The validation of the CFD method employing the used uRANS solver combined with
sliding mesh technology to simulate the motion of a coaxial system has been verified
by a one-to-one experiment. The thrust and torque of each rotor in a coaxial system
can be predicted accurately using this method.

2. The BVI phenomenon always occurs in a particular range of azimuth gap when the
tip vortex of the upper rotor is close to the blade of the lower rotor. As the BVI
phenomenon occurs, the tip vortex of the upper rotor will influence the axial induced
flow near the lower blade and alter the spanwise thrust coefficient distribution of
the lower rotor, resulting in an S-shaped fluctuation on the thrust coefficient curve.
When the BVI phenomenon occurs, the surface and bound vortex will also impact the
stability of the vortex structure of the upper rotor and accelerate its dissipation.

3. As the rotational speed increases, the vortex cores of the upper rotor descend and
move away from the lower blade, whereas the vorticity strength of the vortex increases.
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The two effects counteract each other, resulting in a small change in BVI. At different
rotational speeds, the spanwise distribution of thrust coefficient on the lower blade
is similar.

4. As the rotor spacing decreases, the position of the upper rotor’s vortex core changes
significantly: the axial miss distance increases, and the spanwise miss distance reduces.
The BVI phenomenon gains strength and its position moves close to the tip of the
lower blade. Because of the decrease in spanwise miss distance, the tip vortices from
the two rotors approach each other, resulting in vortex pairing and vortex merging.

As a concluding remark, the present work simulated the motion of a coaxial rotor at
different azimuth gaps, rotational speeds, and rotor spacing, and discussed the effect of
these variables on the BVI phenomenon. It is hoped that the results of this research will
offer guidance to select a reasonable configuration while using the coaxial rotor system in
eVTOL design.
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