
Citation: Ma, Y.; Xu, C.; Wang, H.;

Wang, R.; Liu, S.; Gu, X. Model NOx,

SO2 Emissions Concentration and

Thermal Efficiency of CFBB Based on

a Hyper-Parameter Self-Optimized

Broad Learning System. Energies

2022, 15, 7700. https://doi.org/

10.3390/en15207700

Academic Editors: Jaroslaw

Krzywanski, Yunfei Gao, Marcin

Sosnowski, Karolina Grabowska,

Dorian Skrobek, Ghulam Moeen

Uddin, Anna Kulakowska, Anna

Zylka and Bachil El Fil

Received: 14 September 2022

Accepted: 14 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Model NOx, SO2 Emissions Concentration and Thermal
Efficiency of CFBB Based on a Hyper-Parameter Self-Optimized
Broad Learning System
Yunpeng Ma 1 , Chenheng Xu 2,* , Hua Wang 3, Ran Wang 1, Shilin Liu 1 and Xiaoying Gu 1

1 School of Information Engineering, Tianjin University of Commerce, Beichen, Tianjin 300134, China
2 School of Economics, Tianjin University of Commerce, Beichen, Tianjin 300134, China
3 School of Artificial Intelligence, Hebei University of Technology, Hongqiao, Tianjin 300132, China
* Correspondence: xuchenheng@stu.tjcu.edu.cn

Abstract: At present, establishing a multidimensional characteristic model of a boiler combustion
system plays an important role in realizing its dynamic optimization and real-time control, so as
to achieve the purpose of reducing environmental pollution and saving coal resources. However,
the complexity of the boiler combustion process makes it difficult to model it using traditional
mathematical methods. In this paper, a kind of hyper-parameter self-optimized broad learning
system by a sparrow search algorithm is proposed to model the NOx, SO2 emissions concentration
and thermal efficiency of a circulation fluidized bed boiler (CFBB). A broad learning system (BLS)
is a novel neural network algorithm, which shows good performance in multidimensional feature
learning. However, the BLS has several hyper-parameters to be set in a wide range, so that the
optimal combination between hyper-parameters is difficult to determine. This paper uses a sparrow
search algorithm (SSA) to select the optimal hyper-parameters combination of the broad learning
system, namely as SSA-BLS. To verify the effectiveness of SSA-BLS, ten benchmark regression datasets
are applied. Experimental results show that SSA-BLS obtains good regression accuracy and model
stability. Additionally, the proposed SSA-BLS is applied to model the combustion process parameters
of a 330 MW circulating fluidized bed boiler. Experimental results reveal that SSA-BLS can establish
the accurate prediction models for thermal efficiency, NOx emission concentration and SO2 emission
concentration, separately. Altogether, SSA-BLS is an effective modelling method.

Keywords: broad learning system; sparrow search algorithm; hyper-parameter optimization;
circulating fluidized bed boiler; complex system modeling

1. Introduction

Nowadays, the heat and electricity we use are mainly generated through power
plants. During the combustion process of a station boiler, large amounts of polluting
gases are produced, such as NOx, SO2 and CO2, that cause great harm to the human
living environment. Simultaneously, a large amount of coal is consumed. Coal resources
are becoming increasingly scarce; the goals of saving energy and emission reduction are
imminent. The realization of dynamic multi-objective optimal control of boiler combustion
process under variable loads is an effective method to reduce environmental pollution and
save coal resources, and is called the boiler combustion optimization problem [1,2]. In
order to solve the problem, the first priority is to establish the multi-dimensional feature
model of the boiler combustion system. However, the boiler combustion system has
complex characteristics with nonlinearity, strong coupling and large hysteresis, making it
difficult to be modeled by traditional mathematical mechanistic methods. Zhou et al. have
successively applied artificial neural networks or support vector machines (SVM) [3,4]
combined with swarm intelligence optimization algorithms to model boiler combustion
systems [5–10]. For example, ref. [5] combined ANN with genetic algorithms (GA), ref. [7]
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combined SVM and a meta-genetic algorithm (MGA), and ref. [9] combined SVM and ant
colony optimization (ACO) [11]. These research results showed that good prediction results
could be obtained via applying artificial neural networks and support vector machines. Li
and Ma et al. applied various improved extreme learning machine (ELM) models [12–14]
to establish prediction models for boiler thermal efficiency, NOx emission concentration
or SO2 emission concentration [15–21]. For example, Li et al. proposed the fast-learning
networks (FNN) by connecting the input and output layers of ELM and implemented
the fast modeling of boiler combustion systems; Ma et al. proposed an improved online
sequential ELM and implemented the real-time modeling of boiler combustion systems.
However, it was proven that in traditional ANN and ELM there exists an over-fitting
problem when solving small sample data regression problems. In addition, the model
computation speed of SVM is slow when solving the large sample data regression problem.
This paper firstly uses a newly neural network, called broad learning system [22], to solve
the modeling problem of boiler combustion systems.

Broad learning system (BLS), as a new neural network algorithm proposed in 2018, has
greater advantages in multi-dimensional feature learning and computing time compared
to other deep learning algorithms, such as deep belief network (DBN) [23], deep boltz-
mann machine (DBM) [24] and convolutional neural network (CNN) [25]. Chen et al. [26]
proposed several variants of BLS to solve regression problems, and experimental results
showed that BLS variants had better performance than other state-of-the-art methods, such
as conventional BLS, ELM and SVM. BLS has been researched and applied in many fields in
recent years [27–34]. For example, Shuang and Chen [33] combined fuzzy system with BLS,
proposed a new neuro-fuzzy algorithm, and applied it to solve regression and classification
problems. Zhao et al. [34] extended BLS using a stream regularization framework and
proposed a new algorithm for semi-supervised learning to solve complex data classifica-
tion problems. However, the hyper-parameters of BLS could seriously affect its model
performance. If the hyper-parameters are set too large, BLS encounters an over-fitting
problem and spends more computation time. If the hyper-parameters are set too small,
the generalization ability of BLS is weakened. BLS has more hyper-parameters, and every
hyper-parameter needs to be set in a wide range, so the optimal combination of several
hyper-parameters is difficult to determine by using traditional methods. It is of great re-
search value to design a method to optimize the hyper-parameters of BLS to ensure its good
model performance. Nacef et al. [35] leverages deep learning and network optimization
techniques to solve various network configuration and scheduling problems, enabling fast
self-optimization and the lifecycle management of networks, and demonstrating the great
role of optimization techniques in saving runtime and reducing computational costs. In
addition, swarm intelligence optimization algorithms can provide substantial benefits in
reducing computational effort and improving system performance without a priori knowl-
edge of the system parameters [36]. To address the above-mentioned problem, this paper
proposes a kind of hyper-parameter self-optimized broad learning system, namely SSA-BLS.
The proposed method mainly introduces the optimization mechanism of sparrow search
algorithm [37] to determine the optimal hyper-parameter combination of BLS through three
different behaviors of the sparrow population during foraging, i.e., sparrows as explorers
provide search directions and regions for the optimal hyper-parameter combinations, spar-
rows as followers search through the guidance of explorers, and sparrows as vigilantes rely
on anti-predation strategy to avoid hyper-parameter combinations from falling into local
optima. The sparrow search algorithm (SSA) is a new swarm intelligence optimization
algorithm proposed in 2020. Compared with particle swarm optimization (PSO) [38,39],
gravitational search algorithm (GSA) [40] and grey wolf optimization (GWO) [41], the SSA
had better computation efficiency. This paper combines SSA with BLS to automatically
adjust the hyper-parameters and obtain the optimal hyper-parameter combination. In
SSA-BLS, a mechanism to achieve automatic optimization of hyperparameters with the
objective of minimizing the average root-mean-square-error (RMSE) of the testing set after
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ten-fold cross-validation [42] is proposed in order to obtain better model accuracy and
model stability.

In order to verify the effectiveness of SSA-BLS, it was applied to ten benchmark regres-
sion datasets. Compared with BLS, RELM [43] and KELM [44,45], SSA-BLS can achieve the
best model accuracy and model stability whose hyper-parameters are determined by using
the nested cross-validation method [46].

Simultaneously, the proposed SSA-BLS was applied to establish the prediction com-
prehensive model of thermal efficiency, NOx emission concentration and SO2 emission
concentration. Compared with conventional BLS, the proposed SSA-BLS has better model
accuracy and stronger stability. The experimental results reveal that the model accuracy
can reach 10−2-10−3 by SSA-BLS.

The contributions of this paper are summarized as follows:

(1) A novel optimized BLS is proposed. SSA is firstly used to optimize the hyper-
parameters of BLS, which can determine the optimal hyper-parameter combination.

(2) The proposed SSA-BLS is used to solve the regression problem of ten benchmark datasets.
(3) The proposed SSA-BLS and traditional BLS are firstly applied to establish the predic-

tion conventional model of one circulation fluidized bed boiler combustion system.

The structure of this paper is as follows: basic knowledge and related works are given
in Section 2; the proposed SSA-BLS is given in Section 3; Section 4 shows the performance
evaluation of the SSA-BLS; Section 5 addresses the real-world modelling problem; the
conclusion of this paper is in Section 6.

2. Basic Knowledge and Related Works
2.1. Broad Learning System

Broad learning system (BLS), as a novel artificial neural network algorithm, is ca-
pable of replacing deep architecture. It adds a dynamic stepwise update mechanism
and a sparse self-coding algorithm to the random vector functional-link neural network
(RVFLNN) [47–49], which greatly improves the model computing efficiency.

As opposed to RVFLN, BLS replaces the input layer with the mapping layer. The
mapping layer of BLS is obtained by sparse representation and linear transformation
of the input layer data. The augmentation layer is obtained by applying a nonlinear
transformation to the activation function mapping layer. BLS connects the mapping layer
and the enhancement layer together with the output layer to solve the connection weight
of the neural networks. The structure diagram of BLS is shown in Figure 1.
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Where X ∈ RN×M is the input data with sample size N and dimension M, and
Y ∈ RN×1 is the output data with sample size N and dimension 1.

Assuming that the network structure has n feature mappings and each feature mapping
has k feature nodes, the expression of the ith feature mapping Zi is shown in Equation (1).

Zi =

φi(x1Wi1 + βi1) · · · φi(xNWi1 + βi1)
...

. . .
...

φi(x1Wik + βik) · · · φi(xNWik + βik)

 = φi(XWei + βci), i = 1, 2, · · · , n (1)

where φi denotes the feature mapping function, Wik ∈ RM×K is the connection weight of
the ith group of feature mappings to all input data and βci ∈ R1×K is the bias of the ith
group of feature mappings, then the expression of all feature mappings Zn in the feature
node layer is shown in Equation (2).

Zn =


φ1(XWe1 + βe1)
φ2(XWe2 + βe2)

...
φn(XWen + βen)


T

=
[

Z1Z2 · · · Zn] , j = 1, 2, . . . , m (2)

Similarly, the expression for the jth group of enhanced nodes Hj is shown in Equation (3).

Hj =


ζ j
(
Z1Wj1 + β j1

)
· · · ζ j

(
ZnWj1 + β j1

)
...

. . .
...

ζ j

(
Z1Wjl + β jl

)
· · · ζ j

(
ZnWjl + β jl

)
 = ζ j

(
ZnWhj + βhj

)
, j = 1, 2, · · · , m (3)

where ζ j denotes the activation function, l is the number of the jth group of augmented
nodes and Whj ∈ Rkn×l and βhj ∈ R1×l are the connection weights and biases randomly
generated by the system, then the expression of all the feature augmentation Hm in the
augmented node layer is shown in Equation (4).

Hm =


ζ1(ZnWh1 + βh1)
ζ2(ZnWh2 + βh2)

...
ζm(ZnWhm + βhm)


T

= [H1H2 · · ·Hm] (4)

Then the expression of the final network output Ŷ is shown in Equation (5).

Ŷ = [Z1, . . . , Zn | ζ(ZnWh1 + βh1), . . . . . . , ζ(ZnWhm + βhm)]Wm

= [Z1, . . . , Zn | H1, . . . . . . , Hm)]Wm

= [Zn | Hm]Wm
(5)

Then the expression for the final connection weight Wm is shown in Equation (6).

Wm = [Zn | Hm]+Y (6)

2.2. Sparrow Search Algorithm

Sparrow search algorithm (SSA) [34] is a novel swarm intelligence optimization algo-
rithm based on the foraging and anti-predatory behaviors of sparrows. Its bionic principle
is as follows: sparrows as explorers provide the search direction and region for the popu-
lation, sparrows as followers search through the guidance of explorers, and sparrows as
vigilantes rely on anti-predation strategies to avoid the population from falling into a local
optimal solution.

The location update rules for the three types of sparrows are as follows:
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(1) For sparrows as explorers, when the warning value is less than the safety value, it
indicates that the sparrow has not found a predator and can perform a wide range of
jumping searches, and when its warning value is greater than or equal to the safety
value, it indicates that the sparrow has found a predator and immediately moves to
other places for searching.

(2) For the sparrow as a follower, when its fitness value is less than or equal to half of
the sparrows, it indicates that the sparrow did not obtain food and needs to move to
other places to search, and when its fitness value is greater than half of the sparrows,
it indicates that the sparrow can obtain food and will conduct a random search at the
current location.

(3) For the sparrow as vigilant, when its fitness value is not equal to the current best
fitness value, it indicates that the sparrow is at the edge of the population and is highly
vulnerable to predators, and when its fitness value is equal to the current best fitness
value, it indicates that the sparrow is in the middle of the population and needs to
move closer to other sparrows to reduce the risk of being predated.

Suppose there are S sparrows in a D-dimensional search space, then the position of the
ith sparrow in the D-dimensional search space is Xi = [xia, · · · , xid, · · · , xiD], i = 1, 2, · · · , S,
where xid is the position of the ith sparrow in the d-dimension.

Sparrows as explorers generally account for 10–20% of the population, and their
position is updated by the expression shown in Equation (7).

xi+1
id =

{
xt

id · exp
(
−i
αT

)
R2 < ST

xt
id + QL R2 > ST

(7)

where t is the current number of iterations; T is the maximum number of iterations; α is
a uniform random number between (0, 1]; Q is a random number obeying the standard
normal distribution; L is a matrix of size 1× d and all elements are 1; R2 ∈ [0, 1] is the
warning value; ST ∈ [0.5, 1] is the safety value.

The other sparrows in the population act as followers, and the expression for their
position update is shown in Equation (8).

xt+1
id =

 Q · exp
(

xwt
d−xt

id
i2

)
i > n

2

xbt+1
d +

∣∣∣xt
id − xbt+1

d

∣∣∣A+ · L i 6 n
2

(8)

where A is a 1× D-dimensional matrix; xwt
d is the worst position of the sparrow in the dth

dimension when the population undergoes the tth iteration; xbt+1
d is the optimal position

of the sparrow in the dth dimension when the population undergoes the t + 1th iteration.
The sparrows as vigilantes are some sparrows randomly selected from explorers and

followers, generally accounting for 10–20% of the population size, and their position update
expressions are shown in Equation (9).

xt+1
id =

 xbt
d + β

(
xt

id − xbt
d
)

fi 6= fg

xt
id + K

(
xt

id−xwt
d

| fi− fw |+e

)
fi = fg

(9)

where β and K are step control parameters, β is a random number obeying standard normal
distribution, and K is a random number between [−1, 1]; e is a very small constant to
avoid the case that the denominator is 0; fi is the fitness value of the ith sparrow; fg and fw
are the best fitness value and the worst fitness value in the current sparrow population.

3. The Proposed SSA-BLS

In the BLS model, the randomly generated weights and biases as well as its five hyper-
parameters (convergence coefficient s, regularization coefficient c, the number of feature
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nodes N f , the number of feature mapping groups Nm and the number of enhancement
nodes Ne) all have an impact on its performance. Among them, the most influential on its
model accuracy and model stability are the hyper-parameters N f , Nm and Ne. However,
these three hyper-parameters have a wide range of values, so it is difficult to determine the
best combination of hyper-parameters by traditional methods. An optimized broad learning
system by sparrow search algorithm with self-adjusting hyper-parameters, i.e., SSA-BLS, is
proposed in this paper to enhance the model performance and generalization capability.

The pseudo-code of the proposed SSA-BLS algorithm is shown in Algorithm 1.

Algorithm 1. The pseudo-code of SSA-BLS

Input:
MaxIter: the maximum iterations
dim: the number of hyper-parameters to be optimized
pop: the number of hyper-parameter combination populations
lb&ub: hyper-parameter combination search range
X: the initial population of hyper-parameter combinations
Output:
the optimal hyper-parameter combination Xbest
best fitness value fbest
Iterative Curve IC

1 Establish an objective function f (x), i.e., the AVG of RMSE
obtained by 10-fold cross-validation;

2 Generate pop hyper-parameter combinations as initial population;
3 Calculate the fitness values by BLS;
4 while t < MaxIter do
5 Randomly select hyper-parameter combinations as explorers,

followers and vigilantes;
6 for each i = explorer do
7 Using Equation (7) to update locations;
8 end
9 for each i = f ollower do
10 Using Equation (8) to update locations;
11 end
12 for each i = vigilante do
13 Using Equation (9) to update locations;
14 end
15 Calculate the fitness values by BLS;
16 Compare with previous fbest;
17 if the current values better than fbest then
18 Update the fbest and Xbest;
19 end
20 Save current fbest to IC;
21 t = t + 1
22 end

The determination steps of three hyper-parameters are summarized as follows:

(1) Generate a certain number of hyper-parameter combinations randomly as the initial
population for optimization.

(2) Calculate the fitness value of the hyper-parameter combinations in the initial popula-
tion, which is the average of the root mean square error (RMSE) obtained by 10-fold
cross-validation of the testing set.

The expression for calculating the root mean square error (RMSE) is shown in Equation (10).

RMSE =

√√√√ 1
N

T

∑
i=1

(ŷi − yi)
2 (10)
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where T is the number of samples, yi denotes the actual value and ŷi denotes the pre-
dicted value.

The schematic diagram of the fitness value calculating process is shown in Figure 2.
Energies 2022, 15, 7700 8 of 20 
 

 

 

Figure 2. The schematic diagram of the fitness value calculating process. 

(3) A certain number of hyper-parameter combinations are randomly selected from the 

initial population as optimized explorers, and the positions are updated according to 

Equation (7). 

(4) The other hyper-parameter combinations in the initial population act as optimized 

followers, and the positions are updated according to Equation (8). 

(5) A certain number of hyper-parameter combinations are randomly selected from the 

optimized explorers and followers as the optimized vigilantes, and the positions are 

updated according to Equation (9). 

(6) Repeat steps (3)–(5) until the maximum number of iterations is reached, and output 

the individual with the highest fitness value, i.e., the hyper-parameter combination 

that makes the smallest average of RMSE obtained from a 10-fold cross-validation of 

the testing set. 

According to the above explanations, the flowchart of the SSA-BLS is shown in Figure 

3. 

Figure 2. The schematic diagram of the fitness value calculating process, k is the number of cross-
validations.

(3) A certain number of hyper-parameter combinations are randomly selected from the
initial population as optimized explorers, and the positions are updated according to
Equation (7).

(4) The other hyper-parameter combinations in the initial population act as optimized
followers, and the positions are updated according to Equation (8).

(5) A certain number of hyper-parameter combinations are randomly selected from the
optimized explorers and followers as the optimized vigilantes, and the positions are
updated according to Equation (9).

(6) Repeat steps (3)–(5) until the maximum number of iterations is reached, and output
the individual with the highest fitness value, i.e., the hyper-parameter combination
that makes the smallest average of RMSE obtained from a 10-fold cross-validation of
the testing set.

According to the above explanations, the flowchart of the SSA-BLS is shown in Figure 3.
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4. Simulation

In order to evaluate the performance of the proposed SSA-BLS, it was applied to the
ten benchmark regression datasets listed in Table 1, where the dataset Gasoline octane
is from the web: https://www.heywhale.com/home (accessed on 5 January 2022), Fuel
consumption is from the web: https://www.datafountain.cn (accessed on 10 January 2022)
and the other datasets are from the web: http://www.liaad.up.pt/~ltorgo/Regression/
DtaSets.html (accessed on 9 December 2021). All evaluations for RELM, KELM, BLS and
SA-ELM were carried out in MacOS Mojave 10.14.6 and Python 3.9.9, running on a laptop
with AMD Intel Iris Plus Graphics 645 1536MB, Processor 1.4GHz Intel Core i5 and RAM
8GB 2133MHz.

https://www.heywhale.com/home
https://www.datafountain.cn
http://www.liaad.up.pt/~ltorgo/Regression/DtaSets.html
http://www.liaad.up.pt/~ltorgo/Regression/DtaSets.html
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Table 1. Description of regression data sets.

Datasets Attributes Instances Training Samples Testing Samples

Gasoline octane 14 324 227 97
Fuel consumption 13 1067 747 320

Auto MPG 7 392 274 118
Abalone 8 4177 2923 1254

Bank domains 8 8192 3149 1350
Boston housing 13 506 354 152
Delta elevators 6 9517 6661 2856

Forest fires 12 517 361 156
Machine CPU 6 209 146 63

Servo 4 167 116 51

The parameters in SSA-BLS were set as follows: the initial population size and the
maximum number of iterations for hyper-parameter optimization were set to 20 and
100. The compression factor in the mapping layer was set to 0.8 and the regularization
factor in the enhancement layer was set to 2. The optimization range of hyper-parameter
combination is shown in Table 2.

Table 2. The optimization range of hyper-parameter combination.

Hyper-Parameters Meaning Optimal Scope

N f Number of feature nodes [1, 20]
Nm Number of feature mapping groups [1, 40]
Ne Number of enhanced nodes [1, 500]

Model accuracy and model stability were assessed by the average (AVG) and standard
deviation (Sd) of the RMSE obtained from the ten-fold cross-validation. The averages (AVG)
of the MAPE obtained from the ten-fold cross-validation were also used to evaluate the
model accuracy. A smaller average value indicates higher model accuracy, and a smaller
standard deviation indicates better model stability, and vice versa.

SSA-BLS was applied to the ten benchmark regression datasets in Table 1 and com-
pared with BLS, RELM and KELM; the simulation results are shown in Tables 3–5. The
hyper-parameters of the compared algorithm are determined by using the nested cross-
validation method [42]. And the bolds in the table indicate the best experimental results of
the four algorithms on each dataset.

Table 3. The RMSE of the four algorithms on the training set.

Datasets

RELM KELM BLS SSA-BLS

RMSE RMSE RMSE RMSE

AVG SD AVG SD AVG SD AVG SD

Gasoline octane 4.47 × 10−2 9.02 × 10−3 3.83 × 10−2 7.99 × 10−3 3.86 × 10−2 8.16 × 10−3 3.78 × 10−2 8.16 × 10−3

Fuel consumption 2.47 × 10−2 8.38 × 10−4 1.79 × 10−2 1.49 × 10−4 4.09 × 10−2 1.76 × 10−3 9.93 × 10−3 2.37 × 10−3

Auto MPG 1.42 × 10−4 5.04 × 10−5 1.00 × 10−5 1.34 × 10−7 5.75 × 10−5 3.49 × 10−5 1.04 × 10−5 3.50 × 10−5

Abalone 1.38 × 10−5 8.43 × 10−6 2.70 × 10−6 4.41 × 10−8 4.06 × 10−3 5.37 × 10−3 4.82 × 10−8 7.11 × 10−8

Bank domains 3.01 × 10−4 3.47 × 10−5 4.13 × 10−6 2.57 × 10−8 5.57 × 10−5 3.32 × 10−5 7.59 × 10−9 7.82 × 10−9

Boston housing 7.23 × 10−4 1.72 × 10−4 6.83 × 10−6 6.83 × 10−8 1.86 × 10−5 1.07 × 10−5 9.89 × 10−8 6.25 × 10−8

Delta elevators 5.28 × 10−7 1.02 × 10−7 2.32 × 10−8 3.41 × 10−10 2.08 × 10−7 1.61 × 10−7 3.85 × 10−9 3.42 × 10−9

Forest fires 3.32 × 10−4 6.63 × 10−5 5.97 × 10−5 6.15 × 10−7 2.24 × 10−4 1.61 × 10−4 2.93 × 10−7 1.44 × 10−7

Machine CPU 1.33 × 10−4 1.52 × 10−4 3.42 × 10−5 3.56 × 10−6 8.86 × 10−7 5.15 × 10−7 2.57 × 10−8 1.28 × 10−8

Servo 1.44 × 10−4 5.06 × 10−5 3.70 × 10−5 3.96 × 10−7 6.42 × 10−4 5.02 × 10−4 3.83 × 10−7 2.87 × 10−7
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Table 4. The RMSE of the four algorithms on the testing set.

Datasets

RELM KELM BLS SSA-BLS

RMSE RMSE RMSE RMSE

AVG SD AVG SD AVG SD AVG SD

Gasoline octane 7.16 × 10−2 9.68 × 10−3 2.70 × 10−2 3.09 × 10−2 3.04 × 10−2 3.20 × 10−2 2.65 × 10−2 3.07 × 10−2

Fuel consumption 2.64 × 10−2 1.26 × 10−3 2.09 × 10−2 3.43 × 10−3 4.85 × 10−2 2.79 × 10−3 1.39 × 10−2 2.84 × 10−3

Auto MPG 2.06 × 10−4 5.65 × 10−5 1.09 × 10−5 2.18 × 10−6 5.82 × 10−5 3.58 × 10−5 1.19 × 10−5 3.06 × 10−5

Abalone 1.71 × 10−5 7.95 × 10−6 2.86 × 10−6 5.16 × 10−6 4.18 × 10−3 5.76 × 10−3 8.34 × 10−8 1.80 × 10−7

Bank domains 3.34 × 10−4 3.02 × 10−5 4.27 × 10−6 2.69 × 10−7 1.94 × 10−4 4.13 × 10−4 7.79 × 10−9 8.32 × 10−9

Boston housing 2.11 × 10−3 7.65 × 10−4 7.40 × 10−6 1.83 × 10−6 1.85 × 10−5 1.08 × 10−5 9.69 × 10−8 6.07 × 10−8

Delta elevators 6.18 × 10−7 1.26 × 10−7 3.04 × 10−8 6.40 × 10−9 2.08 × 10−7 1.61 × 10−7 3.85 × 10−9 3.41 × 10−9

Forest fires 1.99 × 10−3 1.21 × 10−3 7.24 × 10−5 1.45 × 10−5 2.2 × 10−4 1.58 × 10−4 2.94 × 10−7 1.43 × 10−7

Machine CPU 5.43 × 10−4 2.41 × 10−4 7.36 × 10−5 9.17 × 10−5 8.13 × 10−7 5.16 × 10−7 2.28 × 10−8 1.61 × 10−8

Servo 1.89 × 10−4 6.42 × 10−5 3.22 × 10−5 1.25 × 10−5 8.13 × 10−4 8.62 × 10−4 3.81 × 10−7 2.39 × 10−7

Table 5. The MAPE of the four algorithms on the training set and testing set.

Datasets
RELM KELM BLS SSA-BLS

Train Test Train Test Train Test Train Test

Gasoline octane 8.16 × 10−1 1.33 2.57 3.68 9.29 × 10−1 1.00 9.24 × 10−1 9.76 × 10−1

Fuel consumption 2.56 2.59 2.41 × 10−1 4.16 × 10−1 2.63 2.71 1.09 2.59
Auto MPG 3.30 × 10−2 3.51 × 10−2 1.11 × 10−1 1.17 × 10−1 6.60 × 10−4 6.23 × 10−4 6.26 × 10−4 8.14 × 10−4

Abalone 2.56 × 10−2 2.01 × 10−2 2.00 × 10−2 2.13 × 10−2 2.51 × 10−1 2.56 × 10−1 2.18 × 10−6 2.30 × 10−6

Bank domains 3.62 × 10−1 3.67 × 10−1 3.68 × 10−2 3.71 × 10−2 7.99 × 10−2 8.04 × 10−2 9.60 × 10−7 9.68 × 10−7

Boston housing 9.81 × 10−1 1.23 3.86 × 10−2 4.31 × 10−2 4.51 × 10−4 4.57 × 10−4 8.54 × 10−6 8.32 × 10−6

Delta elevators 2.51 × 10−2 2.56 × 10−2 1.31 × 10−2 1.31 × 10−2 3.21 × 10−2 3.21 × 10−2 5.04 × 10−4 5.05 × 10−4

Forest fires 4.78 × 10−1 6.21 × 10−1 5.31 × 10−2 5.61 × 10−2 1.57 × 10−2 1.59 × 10−2 2.13 × 10−5 2.14 × 10−5

Machine CPU 2.05 × 10−2 1.27 × 10−1 1.41 × 10−1 1.76 × 10−1 5.73 × 10−5 5.69 × 10−5 1.46 × 10−6 1.47 × 10−6

Servo 2.62 × 10−3 3.29 × 10−3 5.95 × 10−2 6.44 × 10−2 6.06 × 10−3 7.91 × 10−3 1.12 × 10−5 1.39 × 10−5

As shown in Table 4, for the testing samples of the datasets, compared with RELM,
KELM and BLS, the proposed SSA-BLS obtains better model accuracy on nine benchmark
regression problems (gasoline octane, fuel consumption, abalone, bank domains, Boston
housing, delta elevators, forest fires, machine CPU, servo) and better model stability on
seven benchmark regression problems (bank domains, Boston housing, forest fires, machine
CPU, servo).

As shown in Table 5, for the training samples of the datasets, compared with RELM,
KELM and BLS, the proposed SSA-BLS obtains better model performance on all ten bench-
mark regression problems and for the testing samples of the datasets, the proposed SSA-
BLS obtains better model performance on nine benchmark regression problems (except
auto MPG).

The effectiveness of SSA-BLS is proved by the above simulation experiments. However,
SSA-BLS requires more computing time to establish the model compared with other related
algorithms, so it is not suitable for online learning. In this paper, model training and testing
belong to offline learning, so this algorithm mainly pursues the accuracy and stability of
the model.

5. Real-World Design Problem

As a new neural network algorithm, BLS can effectively solve the modeling problems
of complex systems. In this paper, the proposed SSA-BLS was applied to establish the pre-
diction models for thermal efficiency (TE), NOx emission concentration and SO2 emission
concentration of a 330 MW circulating fluidized bed boiler (CFBB).

There are 27 variables affecting the thermal efficiency and harmful gas emission
concentration of a CFBB, mainly including load, coal feeder feeding rate, the primary air
velocity, the secondary air velocity, oxygen concentration in the flue gas and the carbon
content of fly ash. The symbols and descriptions of each variable are shown in Table 6. A
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total of 10,000 data samples are collected from a 330MW CFBB under different operating
loads, some of which are shown in Table 7.

Table 6. Description of variable symbols.

Symbol Name Description

17ANO037 Boiler load
AFCOALQ The first coal feeder coal volume
BFCOALQ The second coal feeder coal volume
CFCOALQ The third coal feeder coal volume
DFCOALQ The fourth coal feeder coal volume
18ANO074 Average bed temperature in the upper part of the dense phase zone of the furnace
05F051 Primary air flow at the left duct burner inlet
05F061 Right duct burner inlet primary air flow
05T457 Primary air temperature at the left duct burner inlet
05T467 Right duct burner inlet primary air temperature
06F061 Total right side secondary air flow
06F052 Left side internal secondary air distribution flow
06F062 Right side internal secondary air distribution flow
06T453 The second secondary fan motor drive end bearing temperature
06T463 The first secondary fan motor drive end bearing temperature
17I021 The first limestone powder conveying motor current
17I011 The second limestone powder conveying motor current
CEMSO2 CEMS flue gas O2 concentration
CEMSTEMP CEMS flue gas temperature
08A051 Carbon content of fly ash at the inlet of the left EDC
08A061 Carbon content of fly ash at the inlet of the right EDC
05T402 The first Primary fan inlet temperature
05T403 The second Primary fan inlet temperature
12T612 The first old slagger outlet temperature
12T622 The second cold slagger outlet temperature
12T632 The third cold slagger outlet temperature
12T642 The fourth cold slagger outlet temperature
CEMSNOX CEMS flue gas NOx concentration
CEMSSO2 CEMS flue gas SO2 concentration
TE Boiler thermal efficiency

The boiler data is normalized and divided into training sets and testing sets in the
ratio of 7:3.

The proposed SSA-BLS and BLS are applied to this boiler data and the experimental
results are shown in Tables 8–11. The hyper-parameters of BLS are determined by using
the nested cross-validation method [42]. And the bolds in the table indicate the best
experimental results of the four algorithms on each objective.
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Table 7. The partial data of a 330MW CFBB operational conditions.

NO. 17ANO037 AFCOALQ BFCOALQ CFCOALQ DFCOALQ 18ANO074 05F051 05F061 05T457 05T467 06F061 06F052 06F062 06T453 06T463

1 73.401 38.065 39.174 39.122 38 864.328 202.548 220.4 269.342 267.375 385.664 182.617 163.927 278.823 267.433
2 73.401 38.065 39.174 39.122 38 864.328 266.631 232.072 269.342 267.375 385.31 195.301 152.674 278.823 267.433
3 73.52 38.065 39.174 39.122 38 864.207 249.237 263.656 269.342 267.375 435.575 178.803 171.079 278.823 267.433
4 73.52 38.065 39.174 39.122 38 864.03 263.656 242.371 269.342 267.375 405.929 209.128 186.146 278.823 267.433
5 73.52 37.962 39.174 39.122 37.862 863.881 298.673 248.093 269.342 267.375 402.92 183.762 177.659 278.823 267.433

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9996 96.318 56.966 52.712 52.953 56.528 866.957 419.973 368.935 273.729 270.847 976.991 569.881 669.725 284.775 268.966
9997 96.427 56.966 52.556 52.953 56.528 867.103 338.267 273.955 273.729 270.847 973.451 626.621 598.299 284.775 268.966
9998 96.427 56.966 52.403 52.953 56.528 867.278 386.329 349.71 273.729 270.847 1017.08 631.294 601.922 284.775 268.966
9999 96.427 56.966 52.273 52.801 56.528 867.39 405.325 343.073 273.729 270.847 1020.796 569.118 612.603 284.775 268.966
10000 96.427 56.966 52.273 52.689 56.528 867.557 313.549 324.306 273.729 270.847 1036.903 543.752 645.026 284.775 268.966

NO. 17I021 17I011 6CEMSO2 6CEMSTEMP 08A051 08A061 05T402 05T403 12T612 12T622 12T632 12T642 CEMSNOX CEMSNOX TE

1 102.876 116.074 5.554 152.655 0.847 0.316 25.65 24.901 42.858 45.355 51.829 36.858 128.395 225.285 90.55405
2 103.944 114.815 5.554 152.655 0.847 0.316 25.65 24.901 42.858 45.355 51.829 36.858 128.395 224.141 90.55405
3 103.296 113.175 5.554 152.655 0.847 0.316 25.65 24.901 42.858 45.355 51.829 36.858 128.929 223.378 90.55405
4 103.334 114.701 5.554 152.655 0.847 0.316 25.65 24.901 42.858 45.355 51.829 36.858 129.463 220.517 90.55405
5 104.059 113.328 5.554 152.655 0.847 0.316 25.65 24.901 42.858 45.355 51.829 36.858 129.463 218.61 90.55405

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9996 102.914 116.684 4.921 156.637 1.405 0.167 30.235 28.193 39.127 37.046 36.846 47.32 160.436 144.991 90.30709
9997 102.914 116.99 4.921 156.637 1.405 0.167 30.235 28.193 39.127 37.046 36.846 47.32 160.436 147.089 90.30709
9998 103.792 117.714 4.921 156.637 1.405 0.167 30.235 28.193 39.127 37.046 36.846 47.32 160.436 148.615 90.30709
9999 102.418 115.998 4.921 156.637 1.405 0.167 30.235 28.193 39.127 37.046 36.192 47.32 160.436 150.14 90.30709
10000 101.541 115.731 4.921 156.637 1.405 0.167 30.235 28.193 39.127 37.046 36.192 47.32 159.826 151.666 90.30709
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Table 8. The hyper-parameters of SSA-BLS and BLS for boiler data modeling.

Objectives
SSA-BLS

N1 N2 N3

NOx 2 37 478
SO2 1 13 459
TE 2 27 296

Table 9. The RMSE of the four algorithms on the training set of boiler data.

Objectives

RELM KELM BLS SSA-BLS

RMSE RMSE RMSE RMSE

AVG SD AVG SD AVG SD AVG SD

NOX 9.05 × 10−2 6.51 × 10−3 3.48 × 10−2 4.26 × 10−5 4.22 × 10−2 9.50 × 10−4 2.17 × 10−2 4.23 × 10−4

SO2 8.31 × 10−2 2.37 × 10−3 1.99 × 10−2 1.49 × 10−4 5.56 × 10−2 7.12 × 10−4 3.37 × 10−2 1.13 × 10−3

TE 4.52 × 10−2 1.01 × 10−2 2.04 × 10−2 3.36 × 10−5 5.96 × 10−2 1.20 × 10−3 4.41 × 10−3 1.72 × 10−4

Table 10. The RMSE of the four algorithms on the testing set of boiler data.

Objectives

RELM KELM BLS SSA-BLS

RMSE RMSE RMSE RMSE

AVG SD AVG SD AVG SD AVG SD

NOX 8.91 × 10−2 5.94 × 10−3 7.49 × 10−2 2.36 × 10−3 6.53 × 10−2 6.55 × 10−2 2.75 × 10−2 1.83 × 10−3

SO2 7.91 × 10−2 2.09 × 10−2 4.12 × 10−2 5.53 × 10−3 5.82 × 10−2 4.98 × 10−3 3.59 × 10−2 1.94 × 10−3

TE 4.48 × 10−2 9.68 × 10−3 5.37 × 10−2 2.85 × 10−3 6.26 × 10−3 1.18 × 10−3 4.58 × 10−3 1.60 × 10−4

Table 11. The MAPE of the four algorithms on the training set and testing set of boiler data.

Objectives
RELM KELM BLS SSA-BLS

Training Testing Training Testing Training Testing Training Testing

NOX 4.22 4.13 1.74 2.46 2.20 2.22 1.57 1.83
SO2 4.14 4.10 1.07 1.20 3.14 3.32 1.92 2.06
TE 2.28 2.26 9.26 × 10−2 1.98 3.03 × 10−1 3.09 × 10−1 2.10 × 10−1 2.18 × 10−1

As shown in Tables 9–11, compared with RELM, KELM and BLS, the proposed SSA-
BLS obtained better model accuracy and model stability in the prediction models estab-
lished for the NOx emissions concentration and thermal efficiency of CFBB both on the
training set and testing set. However, its model prediction accuracy for the SO2 emission
concentration of CFBB was not as good as that of KELM.

The fitting diagrams and error diagrams of SSA-BLS for modeling the three objectives
of CFBB on the testing set are shown in Figures 4–9, where the red line and the blue line in
the fitting diagram indicate the true values and predicted values of the partial testing set,
and the curve in the error diagram represent the error of the predicted values compared to
the true values for the testing set.
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As shown in Figures 4–9, the proposed SSA-BLS effectively establishes the prediction
models for the three objectives of CFBB. The three prediction models all have great fitting
effect and small fitting error on the testing set.

6. Conclusions

This paper proposed a novel optimized broad learning system by combining with
a sparrow search algorithm. That is to say, the sparrow search algorithm was used to
optimize the hyper-parameters of broad learning systems. Compared with other state-
of-the-art methods, the proposed SSA-BLS reveals better regression accuracy and model
stability on testing ten benchmark datasets. Additionally, the SSA-BLS was used to build
the collective model of thermal efficiency, NOx and SO2 emissions concentration of one
330MW circulation fluidized bed boiler. Experiment results show that the model accuracy
can be achieved 10−2–10−3. The proposed SSA-BLS is an effective modelling method.

However, the proposed SSA-BLS takes more time to determine the optimal hyper-
parameters. This method improves the accuracy of the model but reduces the speed of
model computation. Moreover, this method is also not applicable to online modeling
due to the long modeling time. In addition, SSA-BLS only tunes and optimizes the hy-
perparameters in terms of model accuracy, while ignoring the model stability aspects. In
the future, the performance of SSA-BLS will be further improved, including computation
speed, model complexity and generalization ability. Additionally, based on the established
comprehensive model, we will use one heuristic optimization algorithm to adjust the
boiler’s operational parameters for enhancing thermal efficiency and reducing NOx/SO2
emissions concentration.

Author Contributions: Conceptualization, Y.M. and C.X.; methodology, C.X.; software, H.W.; valida-
tion, H.W., C.X. and Y.M.; formal analysis, C.X.; investigation, X.G.; resources, Y.M.; data curation,
H.W. and C.X.; writing—original draft preparation, C.X.; writing—review and editing, X.G.; visu-
alization, H.W. and C.X.; supervision, R.W.; project administration, S.L.; funding acquisition, Y.M.,
X.G., R.W. and S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (Grant
No. 62203332) and the Natural Science Foundation of Tianjin (Grant No. 20JCQNJC00430) and
the Special fund Project of Tianjin Technology Innovation Guidance (grand No. 21YDTPJC00370)
and College Students’ Innovative Entrepreneurial Training Plan Program (Grant No. 202110069034,
202110069003).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy restriction.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yip, I. Cost analysis of power generation in coal-fired thermal power plants under market economy. Guangdong Electr. Power 2002,

15, 5.
2. Zhou, H. Study of Some Key Issues in NOx Control and Combustion Optimization of Large Power Plant Boilers. Ph.D. Thesis,

Zhejiang University, Hangzhou, China, 2004.
3. Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge

University Press: Cambridge, UK, 2000.
4. Steinwart, I.; Christmann, A. Support Vector Machines; Information Science and Statistics; Springer: New York, NY, USA, 2008.
5. Zhou, H.; Zhu, H.; Cen, K. A real-time combustion optimization system for thermal power plant boilers based on artificial neural

network and genetic algorithm. Power Eng. 2003, 23, 5.
6. Zheng, L.; Zhou, H.; Cen, K.; Wang, C. A comparative study of optimization algorithms for low NOx combustion modification at

a coal-fired utility boiler. Expert Syst. Appl. 2009, 36, 2780–2793. [CrossRef]
7. Wu, F.; Zhou, H.; Ren, T.; Zheng, L.; Cen, K. Combining support vector regression and cellular genetic algorithm for multi-objective

optimization of coal-fired utility boilers. Fuel 2009, 88, 1864–1870. [CrossRef]

http://doi.org/10.1016/j.eswa.2008.01.088
http://doi.org/10.1016/j.fuel.2009.04.023


Energies 2022, 15, 7700 18 of 19

8. Zhou, H.; Zheng, L.; Cen, K. Computational intelligence approach for NOx emissions minimization in a coal-fired utility boiler.
Energy Convers. Manag. 2010, 51, 580–586. [CrossRef]

9. Zhou, H.; Zhao, J.; Zheng, L.; Wang, C.; Cen, K. Modeling NOx emissions from coal-fired utility boilers using support vector
regression with ant colony optimization. Eng. Appl. Artif. Intell. 2012, 25, 147–158. [CrossRef]

10. Zhou, H.; Cen, K. Combining Neural Network or Support Vector Machine with Optimization Algorithms to Optimize the
Combustion. In Combustion Optimization Based on Computational Intelligence; Springer: Singapore, 2018.

11. López-Ibáñez, M. Ant Colony Optimization. In Proceedings of the 12th Annual Conference Companion on Genetic and
Evolutionary Computation, GECCO ‘10, Portland, OR, USA, 7–11 July 2010.

12. Huang, G.; Zhu, Q.; Siew, C.K. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. In
Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary,
25–29 July 2004; Volume 2, pp. 985–990.

13. Huang, G.; Zhu, Q.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [CrossRef]
14. Huang, G.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans.

Syst. Man Cybern. Part B Cybern. 2012, 42, 513–529. [CrossRef]
15. Li, G.; Niu, P.; Ma, Y.; Wang, H.; Zhang, W. Tuning extreme learning machine by an improved artificial bee colony to model and

optimize the boiler efficiency. Knowl. Based Syst. 2014, 67, 278–289. [CrossRef]
16. Li, G.; Niu, P. Combustion optimization of a coal-fired boiler with double linear fast learning network. Soft Comput. 2016, 20,

149–156. [CrossRef]
17. Li, G.; Niu, P.; Duan, X.; Zhang, X. Fast learning network: A novel artificial neural network with a fast learning speed. Neural

Comput. Appl. 2013, 24, 1683–1695. [CrossRef]
18. Li, G.; Niu, P.; Wang, H.; Liu, Y. Least Square Fast Learning Network for modeling the combustion efficiency of a 300WM

coal-fired boiler. Neural Netw. Off. J. Int. Neural Netw. Soc. 2014, 51, 57–66. [CrossRef]
19. Niu, P.; Ma, Y.; Li, G. Model NOx emission and thermal efficiency of CFBB based on an ameliorated extreme learning machine.

Soft Comput. 2018, 22, 4685–4701. [CrossRef]
20. Ma, Y.; Niu, P.; Zhang, X.; Li, G. Research and application of quantum-inspired double parallel feed-forward neural network.

Knowl. Based Syst. 2017, 136, 140–149. [CrossRef]
21. Ma, Y.; Niu, P.; Yan, S.; Li, G. A modified online sequential extreme learning machine for building circulation fluidized bed

boiler’s NOx emission model. Appl. Math. Comput. 2018, 334, 214–226. [CrossRef]
22. Chen, C.L.; Liu, Z. Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep

Architecture. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 10–24. [CrossRef]
23. Hinton, G.E.; Osindero, S.; Teh, Y.W. A Fast-Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527–1554.

[CrossRef]
24. Salakhutdinov, R.; Hinton, G.E. Deep Boltzmann Machines. In Proceedings of the 12th International Conference on Artificial

Intelligence and Statistics (AISTATS), Clearwater Beach, FL, USA, 16–18 April 2009.
25. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
26. Chen, C.L.; Liu, Z.; Feng, S. Universal Approximation Capability of Broad Learning System and Its Structural Variations. IEEE

Trans. Neural Netw. Learn. Syst. 2019, 30, 1191–1204. [CrossRef]
27. Jin, J.; Chen, C.L. Robust Broad Learning System for Uncertain Data Modeling. In Proceedings of the 2018 IEEE International

Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 3524–3529.
28. Xu, M.; Han, M.; Chen, C.L.; Qiu, T. Recurrent Broad Learning Systems for Time Series Prediction. IEEE Trans. Cybern. 2020, 50,

1405–1417. [CrossRef]
29. Huang, H.; Zhang, T.; Yang, C.; Chen, C.L. Motor Learning and Generalization Using Broad Learning Adaptive Neural Control.

IEEE Trans. Ind. Electron. 2020, 67, 8608–8617. [CrossRef]
30. Pu, X.; Li, C. Online Semisupervised Broad Learning System for Industrial Fault Diagnosis. IEEE Trans. Ind. Inform. 2021, 17,

6644–6654. [CrossRef]
31. Liu, Z.; Huang, S.; Jin, W.; Mu, Y. Broad Learning System for semi-supervised learning. Neurocomputing 2021, 444, 38–47.

[CrossRef]
32. Zheng, Y.; Chen, B.; Wang, S.; Wang, W. Broad Learning System Based on Maximum Correntropy Criterion. IEEE Trans. Neural

Netw. Learn. Syst. 2021, 32, 3083–3097. [CrossRef]
33. Feng, S.; Chen, C.L. Fuzzy Broad Learning System: A Novel Neuro-Fuzzy Model for Regression and Classification. IEEE Trans.

Cybern. 2020, 50, 414–424. [CrossRef]
34. Zhao, H.; Zheng, J.; Deng, W.; Song, Y. Semi-Supervised Broad Learning System Based on Manifold Regularization and Broad

Network. In IEEE Transactions on Circuits and Systems I: Regular Papers; IEEE: Manhattan, NY, USA, 2020; Volume 67, pp. 983–994.
35. Nacef, A.; Kaci, A.; Aklouf, Y.; Dutra, D.L. Machine learning based fast self optimized and life cycle management network.

Comput. Netw. 2022, 209, 108895. [CrossRef]
36. Ali, A.; Irshad, K.; Khan, M.F.; Hossain, M.M.; Al-Duais, I.N.; Malik, M.Z. Artificial Intelligence and Bio-Inspired Soft Computing-

Based Maximum Power Plant Tracking for a Solar Photovoltaic System under Non-Uniform Solar Irradiance Shading Conditions—
A Review. Sustainability 2021, 13, 10575. [CrossRef]

http://doi.org/10.1016/j.enconman.2009.11.002
http://doi.org/10.1016/j.engappai.2011.08.005
http://doi.org/10.1016/j.neucom.2005.12.126
http://doi.org/10.1109/TSMCB.2011.2168604
http://doi.org/10.1016/j.knosys.2014.04.042
http://doi.org/10.1007/s00500-014-1486-3
http://doi.org/10.1007/s00521-013-1398-7
http://doi.org/10.1016/j.neunet.2013.12.006
http://doi.org/10.1007/s00500-017-2653-0
http://doi.org/10.1016/j.knosys.2017.09.013
http://doi.org/10.1016/j.amc.2018.03.010
http://doi.org/10.1109/TNNLS.2017.2716952
http://doi.org/10.1162/neco.2006.18.7.1527
http://doi.org/10.1109/TNNLS.2018.2866622
http://doi.org/10.1109/TCYB.2018.2863020
http://doi.org/10.1109/TIE.2019.2950853
http://doi.org/10.1109/TII.2020.3048990
http://doi.org/10.1016/j.neucom.2021.02.059
http://doi.org/10.1109/TNNLS.2020.3009417
http://doi.org/10.1109/TCYB.2018.2857815
http://doi.org/10.1016/j.comnet.2022.108895
http://doi.org/10.3390/su131910575


Energies 2022, 15, 7700 19 of 19

37. Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow Search Algorithm. Syst. Sci. Control. Eng. 2020, 8,
22–34. [CrossRef]

38. Poli, R.; Kennedy, J.; Blackwell, T.M. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [CrossRef]
39. Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Inf. Process. Lett. 2003, 85,

317–325. [CrossRef]
40. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
41. Mirjalili, S.M.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
42. Saud, S.J.; Jamil, B.; Upadhyay, Y.; Irshad, K. Performance improvement of empirical models for estimation of global solar

radiation in India: A k-fold cross-validation approach. Sustain. Energy Technol. Assess. 2020, 40, 100768. [CrossRef]
43. Zheng, W.; Qian, Y.; Lu, H. Text categorization based on regularization extreme learning machine. Neural Comput. Appl. 2011, 22,

447–456. [CrossRef]
44. Wang, M.; Chen, H.; Yang, B.; Zhao, X.; Hu, L.; Cai, Z.; Huang, H.; Tong, C. Toward an optimal kernel extreme learning machine

using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 2017, 267, 69–84.
[CrossRef]

45. Chen, H.; Zhang, Q.; Luo, J.; Xu, Y.; Zhang, X. An enhanced Bacterial Foraging Optimization and its application for training
kernel extreme learning machine. Appl. Soft Comput. 2020, 86, 105884. [CrossRef]

46. Parvandeh, S.; Yeh, H.; Paulus, M.P.; McKinney, B.A. Consensus features nested cross-validation. Bioinformatics 2020, 36,
3093–3098. [CrossRef]

47. Pao, Y.; Takefuji, Y. Functional-link net computing: Theory, system architecture, and functionalities. Computer 1992, 25, 76–79.
[CrossRef]

48. Pao, Y.; Park, G.H.; Sobajic, D.J. Learning and generalization characteristics of the random vector Functional-link net. Neurocom-
puting 1994, 6, 163–180. [CrossRef]

49. Igelnik, B.; Pao, Y. Stochastic choice of basic functions in adaptive function approximation and the functional-link net. IEEE Trans.
Neural Netw. 1995, 6, 1320–1329. [CrossRef]

http://doi.org/10.1080/21642583.2019.1708830
http://doi.org/10.1007/s11721-007-0002-0
http://doi.org/10.1016/S0020-0190(02)00447-7
http://doi.org/10.1016/j.ins.2009.03.004
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.seta.2020.100768
http://doi.org/10.1007/s00521-011-0808-y
http://doi.org/10.1016/j.neucom.2017.04.060
http://doi.org/10.1016/j.asoc.2019.105884
http://doi.org/10.1093/bioinformatics/btaa046
http://doi.org/10.1109/2.144401
http://doi.org/10.1016/0925-2312(94)90053-1
http://doi.org/10.1109/72.471375

	Introduction 
	Basic Knowledge and Related Works 
	Broad Learning System 
	Sparrow Search Algorithm 

	The Proposed SSA-BLS 
	Simulation 
	Real-World Design Problem 
	Conclusions 
	References

