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Abstract: Electricity price forecasts have become a fundamental factor affecting the decision-making
of all market participants. Extreme price volatility has forced market participants to hedge against
volume risks and price movements. Hence, getting an accurate price forecast from a few hours to a
few days ahead is very important and very challenging due to various factors. This paper proposes
an integrated long-term recurrent convolutional network (ILRCN) model to predict electricity prices
considering the majority of contributing attributes to the market price as input. The proposed ILRCN
model combines the functionalities of a convolutional neural network and long short-term memory
(LSTM) algorithm along with the proposed novel conditional error correction term. The combined
ILRCN model can identify the linear and nonlinear behavior within the input data. ERCOT wholesale
market price data along with load profile, temperature, and other factors for the Houston region
have been used to illustrate the proposed model. The performance of the proposed ILRCN electricity
price forecasting model is verified using performance/evaluation metrics like mean absolute error
and accuracy. Case studies reveal that the proposed ILRCN model shows the highest accuracy and
efficiency in electricity price forecasting as compared to the support vector machine (SVM) model,
fully connected neural network model, LSTM model, and the traditional LRCN model without the
conditional error correction stage.

Keywords: convolutional neural network; deep learning; energy price forecasting; locational marginal
price; long short-term memory; long-term recurrent convolutional network; real-time market price;
wholesale power energy market

1. Introduction

Wholesale energy market price, also known as settlement point prices or dynamic
tariff, was discussed in the early 1980s [1]. When the electricity market is compared with
other commodities, the power trade exhibits multiple attributes: constant balance between
production and consumption [2]; dependence of the load with respect to time, exhibiting
seasonality at the daily, weekly, and annual levels; and load and generation that are influ-
enced by external weather conditions [3], neighboring markets [4], and other factors like
fuel price [3]. In a deregulated power market such as the locational marginal pricing (LMP)
based market, the prices are significantly influenced by the above-mentioned attributes.

Electricity price forecasting has become a fundamental input to market participants’
decision-making mechanisms. Generally, wholesale electricity prices are likely to be high
during peak demand periods and low during off-peak demand periods [5,6]. The dynamic
tariff or price is an inherent load management method for properly allocating resources,
thus ensuring overall economic reliability [7]. Additionally, an electric tariff is widely
utilized as a fundamental control signal to support demand response management for
improving energy efficiency [8] and relieving the load burden on the power grid.

Electricity prices have a direct influence on the behavior of individual customers, dis-
tributed energy resource aggregators, and local microgrid operators that aim for maximum
profit or minimum cost. Electricity prices affect their energy consumption profile and the
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amount of power to sell or purchase from the power grid. These characteristics lead to an
abrupt change in electricity price, generally with sharp price spikes. Accurate price predic-
tions are essential for them to make informed decisions like demand scheduling and power
dispatching, which may also enhance the reliability of bulk power systems. However, it is
very challenging to predict electricity prices since they are highly volatile due to unexpected
peaks and troughs, continuously altering supply and demand fluctuations, various system
constraints, and other factors over the course of the day. Machine learning models are
able to handle such nonlinear variation with varying degrees of success. Recently, deep
learning (DL) algorithms have become the state-of-art method for spatio-temporal pattern
recognition in energy market prices and demand.

This paper proposes an integrated long-term recurrent convolutional network (inte-
grated LRCN, or ILRCN) model to forecast the wholesale market electricity price. The
proposed ILRCN model consists of hybrid neural network architecture, i.e., LRCN, with
an additional conditional error correction layer [9]. In the case study section, the Electric
Reliability Council of Texas (ERCOT) wholesale market price and its contributing factors
such as load and weather conditions for the Houston region of Texas are considered to
demonstrate the proposed ILRCN model. In summary, the main contributions of this
paper are:

• A hybrid neural network architecture, i.e., LRCN, with an additional conditional error
correction layer, is used.

• An electricity price forecasting performance analysis with both hour and day ahead
comparison is made.

• The practicality and feasibility of the proposed electricity price forecasting algorithm
are compared to existing algorithms.

The rest of the paper is organized as follows: Background analysis, challenges en-
countered in price forecasting, and current industry trends and models are covered in
Section 2. Section 3 introduces the fundamentals of wholesale power energy market price
and various neural networks, as well as a naive time-delayed price prediction method.
Section 4 describes the proposed ILRCN model and the overall methodology. Section 5
provides the simulation results and analyzes the performance of the proposed method.
Section 6 concludes the paper.

2. Literature Review

Accurate models for predicting wholesale electricity prices are necessitated due to
the fact that electricity price is a fundamental input to energy companies’ decision-making
mechanisms at the corporate level. A power utility company or large industrial consumer
who is able to forecast the volatile wholesale prices with a reasonable level of accuracy can
adjust its bidding strategy and its own production or consumption schedule in order to
reduce the risk or maximize the profits in power trading. The market price depicts the
substantial value of electric power.

The fluctuations in supply and demand determine the rate of change of electricity
prices. Reference [10] shows how the power price variation in accordance with these fluctua-
tions can reflect the actual value of electricity in the transaction process. Bidding procedures
and settlement point price determine the profit level for participating power companies.
Higher accuracy of power price prediction could enable participants to make better deci-
sions that lead to higher profits or lower risks. There are various factors contributing to
electricity price prediction: (a) quantifiable factors such as historical and recent electric-
ity prices and loads and (b) non-quantifiable factors such as market design and network
topology. All these factors greatly increase the difficulty of electricity price prediction [11].

Presently, there are various studies related to electricity price forecasting [12]. Electric-
ity prices are utilized as a basic control signal to support demand response management,
which is a feasible solution for improving energy efficiency. Price forecasting benefits the
power grid as it offers specific price instructions for participants to manage their flexible
power usage at different times, which alleviates the load burden of the power grid, espe-
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cially in peak demand time. Additionally, price forecasting also encourages consumption
by end users during periods of valley demand along with reduced prices and allows cus-
tomers to have multiple choices to determine the period of peak consumption. Amjady [13]
explained the need for short-term electricity price forecasting and proposed models for
such predictions.

A drawback of various statistical models proposed previously in the literature like
auto-regressive, dynamic regression, and transfer function is the fact that they use linear
forecasters; as such, they do not perform well where the periodicity of input data is
high, e.g., hourly data with rapid variations. In other words, the nonlinear behavior
of hourly prices might become too complicated to predict [14]. However, these models
perform adequately if the data frequency is low, e.g., weekly/monthly patterns with
small variations. To address the issues in statistical models and predict the nonlinear
characteristics of electricity prices, different machine learning methods have been proposed.
Among them, multilayer perceptrons (MLPs), support vector regressors, and radial basis
function networks are the most widely used.

Over the last decade, the field of neural networks has undergone several shifts that
have led to what is today known as deep learning. The major issue of neural networks has
always been the heavy computational complexity and computational cost of training large
models. However, this issue can be addressed; for instance, in [15], a deep neural network
was trained efficiently using an algorithm called greedy layer-wise pre-training or batch
training process. As related developments followed, researchers were able to efficiently
train complex neural networks whose depth was not just limited to a single hidden layer
(as in the traditional multilayer perceptron).

In [16], a hybrid model with the combined kernel function was used for price forecast-
ing of the Australian electricity market. Reference [17] used generalized mutual information
for the normalization of input data and a least square support vector machine for day-
ahead price forecasting. Reference [18] also employed a hybrid algorithm for load and price
forecasting along with a simultaneous prediction of peak hour load and day-ahead price,
applied on different datasets of NYISO and PJM accordingly. This was further being used
to optimize demand side management in [19]. Deep neural network [20], gated recurrent
unit [21], shallow neural network, and long short-term memory (LSTM) [22] models are
efficient forecasting methods that aid in increasing their prediction accuracy compared
to traditional statistical models. However, the benefits of these models are not exhibited
completely due to continuous fluctuation in the market price.

Other energy related applications and use cases showed excellent results obtained in
time series prediction [23,24], where electricity price prediction is possible by using DL
architectures. In reviewing the above details, we focused our research on modelling the
wholesale electricity price forecasting using the proposed ILRCN model which can identify
the nonlinear behavior of market prices due to various uncertainty factors contributing to
energy prices.

3. Preliminaries

In this section, theoretical concepts of deep learning and fundamentals of electricity
price are introduced.

3.1. Electricity Market Price

There are two main types of electricity market prices: day-ahead market (DAM) price
and real-time market (RTM) price [25]. In the day-ahead market, bids are submitted for
interval hours of the operating day one day in advance, while real-time market bids are
submitted only a couple of hours in advance. These bids are highly dependent on several
factors, including the demand for the particular interval, demand response operating for
the area, weather conditions, and bidding strategies for the participating players. These
bids are defined per interval, i.e., every market player can submit bids or use default bids.
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Market operators use the collected bids to compute the market settlement point price for
each interval, as well as the generation schedule.

Locational marginal pricing is used to price energy on the market in response to
changes in supply and demand and the system’s physical constraints. LMP accounts for
the cost to produce the energy, the cost to transmit this energy within regions of the market,
and the cost due to power losses as the energy is transported across the system.

3.2. Naive Method

The naive method implemented in this paper serves as a benchmark to gauge the
proposed ILRCN model as well as other price prediction models. It is a time-delayed
price determination method that (i) simply takes the electricity prices of day d − 1 as
the forecasted electricity prices of day d when conducting real-time price prediction
one day ahead, or (ii) simply takes the electricity prices of hour t − 1 as the fore-
casted electricity prices of hour t when conducting real-time price prediction one hour
ahead. This naive method works best for short-term price forecasting (predictions
over a short look-ahead period such as 15 min), where the electricity price has rela-
tively less volatility and is unlikely to change substantially during consecutive short
time intervals.

3.3. Support Vector Machine

Support vector machine (SVM) is a supervised type of machine learning algorithm
which is based on Statistical Learning Theory. Due to its greater ability to generalize the
problem, SVM has been successfully applied in classification tasks and regression tasks,
especially in time series prediction and financial-related application.

When using SVM in regression tasks, the Support Vector Regressor (SVR) uses a cost function
to measure the empirical risk [26]. For given training data {(x1, y1), . . . , (xn, yn)} ⊂ χ×R,
where χ denotes the space of the input data. Basically, the goal of regression is to find the
function f (x) that best models the training data, and at the same time as flat as possible.
The case of linear function f can be described as,

f (x) = 〈w, x〉+ b, w ∈ χ, b ∈ R (1)

where 〈·, ·〉 denotes the dot production in χ. To construct the optimal hyperplane, which can
be used for regression, the problem can be reformulated as a convex optimization problem:

minimize
1
2
||w2|| (2)

subject to
{

yi − 〈w, xi〉 − b ≤ ε

〈w, xi〉+ b− yi ≤ ε
(3)

Constraint (3) ensures the convex optimization problem is feasible. In this study,
the SVR model is built based on the historic data to subsequently predict the electricity
market [27]. The goal of SVR training is to minimize the sum of squares error on the
training set.

3.4. Deep Neural Network

Deep learning brings about an explosion of data in all forms across the globe. The
multilayer perceptron is a fully connected neural network (FCNN) architecture with
one input layer, one or multiple hidden layers, and one output layer. In FCNN, all the
neurons of the previous layer are fully connected to the neurons of the next layer as
shown in Figure 1.
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Figure 1. A sample portion of the FCNN model.

The basic DL model, an FCNN model, is an extension of the traditional MLP that
uses multiple hidden layers. Each layer consists of a defined number of neurons. In
Figure 1, x1, x2, and x3 are the input neurons of the previous layer and y is the neuron of
the next layer, which is the output in this scenario. The y can be calculated by the following
computation equation:

y = ∑
i

ωi ∗ xi + b (4)

where ωi denotes the weights of the neurons and b is the bias value; xi is the input neuron.
A basic DL model would require an activation function to be trained efficiently where each
neuron xi is activated in each layer after the computation of y in the preceding layer.

3.5. Convolutional Neural Network

The convolutional neural network (CNN) [28–30] utilizes the concept of weight shar-
ing, which provides better accuracy in highly nonlinear problems such as power price
forecasting. It’s an expansion from a basic deep learning model. An example of a convolu-
tional neural network is shown in Figure 2 [31].

Figure 2. Convolutional neural network architecture [31].

CNN consists of different types of hidden layers:

(1) Convolutional Layer: The convolutional layer operates on two signals—(a) input and
(b) filter (kernel) on the input. The underlying process here is the matrix multiplication
of the input set and kernel to get the modified input, which extracts the information
from the entire input using the kernel to obtain the essential data.

(2) Pooling Layer: It is a sample-based discretization process. It aims at reducing the
dimensionality of an input feature (e.g., input data, feature extraction) and extracting
the information about the relation between input and output contained in the subset.

(3) Output Layer: It is also known as the fully connected layer that connects every neuron
in one layer to every neuron in the subsequent layer.

3.6. Long Short-Term Memory Neural Network

Recurrent neural network (RNN) is another framework of DL, which uses the internal
state to process a sequence of inputs [32]. Long short-term memory is an extended frame-
work of RNN which can exhibit the temporal behavior of time series input data. LSTM is
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capable of learning long-term dependencies from time sequential data such as electricity
prices. The fundamental equations of an LSTM network can be represented as follows:

ht = (1− zt) ∗ ht−1 + zt ∗ ht (5)

zt = σ
(

W f [ht−1, xt] + b f

)
(6)

where, xt is the network input; ht is the output state of the neuron from the LSTM network;
ht−1 is the previous state of the neuron; zt computes the necessary information and removes
the irrelevant data; σ is the sigmoid function; Wf is the weight function; and bf is the
bias value.

3.7. Nonlinearities in Electricity Prices

LMP is the basis of wholesale power market mechanisms for many nations, including
the United States. LMP is affected by a number of influencing factors including demand,
available supply, network topology and losses, system constraints, and climatic conditions.
The congestion component of LMP accounts for the network constraints that bind the
optimal generating strategy. Overall, LMP could vary substantially for different locations
and time intervals and it is highly nonlinear.

Figures 3–5 show the variation of ERCOT prices with respect to different time horizons.
Figure 3 displays the RTM settlement price variation over the course of a day, showing the
non-linear and continuous fluctuation of electricity prices. According to Figures 4 and 5,
it is evident that the price dynamics have various seasonal patterns, corresponding to a
daily and weekly periodicity, and are also influenced by a calendar effect, i.e., weekdays
versus weekends and holidays. These properties also apply to the demand. The essential
component for accurate price prediction is understanding the variation of price, i.e., identi-
fying peaks and troughs and their relation to the governing factors contributing to changes
in price.

Figure 3. Variation of settlement point price with respect to time in hours.
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Figure 4. Variation of settlement point price over a month.

Figure 5. Variation of settlement point price over three months.

4. System Model

The price forecasting is classified into short-term, medium-term, and long-term fore-
casting [33]. A short term ranges from one hour ahead to several hours ahead; a few hours
to 1 week ahead forecasting is medium-term forecasting; and beyond that it is long-term
forecasting. We focus on hour-ahead and day-ahead forecasting in this work. The proposed
forecasting model can be formulated as:

MPt = Ft + E∗t−1 (7)

where t is the current time interval; MPt is the forecasted market price by the proposed
ILRCN model; Ft is the price forecasted by the hybrid neural network model, LRCN, that
is explained in Section 4.2; and E∗t−1 is the electricity price forecasting error correction
component from the previous time interval and is also referred to as the calibrated value
that is defined in Section 4.3.
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The E∗t−1 aims to reduce forecasting errors that are partially due to insufficient de-
tails/features contributing to energy price in the dataset under consideration. It can
consider the prediction errors of a few previous time intervals.

Figure 6 illustrates the flowchart of short-term electricity price forecasting using the
proposed ILRCN model based on several prior hours of input data. The historical data
is the input forming the initial stage for the establishment of the proposed ILRCN model.
The linear and nonlinear behavior and characteristics of the input data are analyzed using
the proposed ILRCN model. Input feature pre-processing is used to normalize, scale, and
define the features from the input data to improve the accuracy of price forecasting. In order
to tune the parameters of the model, optimization and hyper-parameter tuning method
with cross-validation are utilized along with the LRCN model. Finally, the forecasted price
coming from the proposed LRCN model is adjusted to incorporate the conditional error
correction component; the desired output is then obtained in this study.

Figure 6. Flowchart of short-term electricity price forecasting with ILRCN.

The detailed explanation of the various components of the proposed ILRCN model is
introduced in detail in the following subsections.

4.1. Feature Definition and Preprocessing

Electricity prices are mainly affected by electrical demand, which varies over time
depending on the season, weather, and generation cost [34]. In order to forecast the market
electricity price, the date of delivery, temperature, and load data are selected as input
features. The input data are normalized using various scaling functions to avoid excess
stress on a specific dimension during the training process. For the date of delivery data
which has no ordinal relationship, one-hot encoding is applied, and a min-max scalar
technique is used to bound the temperature values within [0, 1]. After the normalization
process, all major features contributing evidently to the electricity price are selected and
defined to avoid over-fitting during the training process. After the feature selection process,
the processed data are converted into a moving windowed dataset, where preceding
interval data and features are the inputs to forecast the current output, which is the
electricity price of the current interval.

4.2. Long-term Recurrent Convolutional Network

The artificial neural network is a nonlinear model capable of making accurate pre-
dictions for forecasting problems mentioned in [3]. The main parameters of the neural
network model are the number of input vectors, the number of layers, and the number of
neurons in each layer [15,16,19]. However, the large and sudden spikes in the input data
evident from Figures 3–5 will lead to less accuracy in the output. To mitigate the impact
of the price outliers, an error correction stage is considered in this study; the proposed
conditional error correction term can partially account for the unavailability of information
in the input dataset under consideration contributing to any sudden variation in price.
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Based on (4) to (6), the neural network model is employed to capture the relationship
and the linear and nonlinear behavior within the input data. After the input process-
ing stage, the processed data and the best subset of parameters containing the informa-
tion obtained from input features are used in the proposed ILRCN model to forecast
electricity prices.

Figure 7 shows the structure of the proposed LRCN model, a hybrid neural network,
which corresponds to the third block in Figure 6. The proposed LRCN model includes
two 1D convolution layers in the CNN segment, which aim to process spatial features and
improve training efficiency. Two LSTM layers are added after the second convolution layer
in the model to capture the dependencies in the sequential data. LSTM shows improved
performance in time-series data when compared to traditional models such as a statistical
forecasting model and regression model. In general, rectified linear unit (ReLU) is a widely
used activation function as described in (8).

ReLU = max(0, x) (8)

where x is the input features mapped as neuron.

Figure 7. The architecture of the proposed LRCN model.

This hybrid neural network can be used to build a function to express variation
amongst historical data. Assuming the first input data H of the total input data set consist
of n preceding hours’ wholesale electricity price data, H can then be formulated as:

H = {D1, D2, . . . , Di, . . . Dn} (9)

where Di represents the input data that are the ith interval prior to the currently being
predicted interval, and i ranges from 1 to n.

Henceforth, D can be expressed as:

D =
{

y1, y2, . . . yj, . . . .ym
}

(10)

where yj represents the features of the input set such as temperature, load, and date.
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4.3. Conditional Error Correction Term

It is unlikely that the LRCN model can predict the outlier prices with high accuracy.
The forecasting error can be substantial when there are great differences among the input
data sets due to nonlinearities and spikes in the input data and when there is not sufficient
information available for accurate prediction. To address this issue, we propose a novel
conditional error correction term that is added to the price forecasted by the LRCN model
to establish the price prediction.

The predicted value of the electricity price from the model is compared with the
actual value of the settlement point price obtained from ERCOT. Then, the calibrated value
E∗t−1 from (7) accounting for insufficient input features contributing to electricity price is
formulated as follows:

E∗t−1 = Pt−1 − Ft−1 (11)

where Pt−1 denotes the actual price of time interval t − 1; Ft−1 is the forecasted price of the
same time interval t − 1 by the proposed ILRCN model.

Since the LRCN model can handle regular electricity prices well, the proposed condi-
tional error correction term will only be applied in scenarios wherein the electricity price
is very high and the error of price forecasting in the previous time period is beyond the
pre-specified threshold.

4.4. Metrics

The accuracy percentage of price forecasting models is defined in (12). It is very
unlikely to predict the exact price; as a result, the number of correctly predicted prices
in (12) is counted with an error threshold that is the maximum acceptable deviation of
the predicted price from its actual value. The error threshold ranges from 1 $/MWh to
3 $/MWh in this paper.

Accuracy Percentage =
Number o f correctly predicted data points

Total number o f test data points
(12)

The mean absolute error (MAE) represents the average of the absolute difference
between the actual and predicted values in the dataset. The mean absolute error for the
training process is calculated as follows:

MAE =
1
N

N

∑
i=1
|yi − ŷi| (13)

where N represents the number of data points; yi is the actual value of electricity price of
the training data point indexed by i; and ŷi is the predicted value of electricity price of the
same training data. Note that this metric MAE can also be used on the validation dataset.

The mean squared error (MSE) measures the average squared difference between
actual and predicted outputs. The goal of training is to minimize MSE via back propagation
that provides the best estimator. The MSE is defined as:

MSE =
1
N

N

∑
i=1

(yi − ỹi)
2 (14)

5. Simulation Results

The proposed forecast model is tested against the Texas electricity market, ERCOT, to
validate its effectiveness and efficiency. This paper employs the hourly settlement point
hub price series of the Houston region of ERCOT as a test example of our model [25].

The ERCOT electricity market covers most of the state of Texas, with four regional
market zones comprised of the coast (Houston), west, north, and south of Texas as sub-
regions. Bids are submitted by participating companies on an interval basis. ERCOT then
optimally schedules the generating units based on economics and reliability to meet the
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system demand while observing resource and transmission constraints; it determines the
locational marginal price, which is the wholesale electricity price.

The electricity price data originally collected from ERCOT are its real-time market data
that are settled down with 15-min time intervals. In this study, hourly resolution is used.
The electricity price per hour is calculated by averaging the prices over four consecutive
15-min dispatches in the same hour. The COAST (Houston) region in ERCOT electricity
market is employed in the study. The electric energy price, demand data, and temperature
data covering the period from January 2015 to December 2018 are collected for testing.

In this study, a total of 34,542 samples were collected, and the entire dataset is first
divided into two subsets: 31,087 samples (90%) for training and 3455 samples (10%) for
validation. The initial learning rate was set as 0.01, and a learning rate schedule was applied
in the training process by reducing the learning rate accordingly. The factor by which the
learning rate was reduced was set as 0.1, and the patience value was set 50 epochs. To
leverage the fast-computing abilities of Keras, the machine learning model was trained on
NVIDIA RTX 2070 GPU (NVIDIA, Santa Clara, CA, USA).

Figure 8 shows the MSE of the training and validation data sets. It can be observed
that the MSE decreased with the increase in the number of epochs. It should be noticed
that the MSE stopped decreasing at around epoch 200, and hence the training was stopped
to obtain the best model.

Figure 8. MSE loss of the proposed ILRCN model with the number of epochs.

The prediction accuracies for the proposed ILRCN model and other benchmarking
models are constructed for different error thresholds. Table 1 shows the accuracy per-
centages for hour-ahead and day-ahead forecasting using the naive method explained in
Section 3 for the test dataset. With a tolerance of 3 $/MWh, the hour-ahead forecasting
had a validation accuracy of 71.55% while the day-ahead forecasting achieved a much
lower accuracy of 46.61%, which implies that the hour-ahead forecasting outperforms the
day-ahead forecasting by a large margin. This is as expected since the naive method simply
uses the current price as the future price and works fine only for predictions over very
short look-ahead periods.

Table 1. Accuracy percentages using naive method for hour-ahead forecasting and day-ahead forecasting.

Forecasting Error Threshold
($/MWh)

Accuracy Percentage for
Hour-Ahead Forecasting

Accuracy Percentage for
Day-Ahead Forecasting

3 71.55% 46.61%

2 60.96% 34.23%

1 39.78% 18.22%
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Table 2 compares the results of an SVR model, an FCNN model, an LSTM-only model,
the proposed LRCN model without the proposed conditional error correction term, and the
proposed ILRCN model with conditional error correction for the same selected test data for
hour-ahead forecasting. It is worth noting that the proposed ILRCN model had the highest
validation accuracy of 85.55% with a tolerance of 3$/MWh after training of 200 epochs.

Table 2. Accuracy percentage comparison between FCNN model, LSTM model, LRCN model, and
the proposed ILRCN model for hour-ahead forecasting.

Forecasting
Threshold
($/MWh)

Hour-Ahead Forecasting Accuracy Percentage

SVR FCNN LSTM LRCN ILRCN

3 41.82% 47.50% 84.32% 84.40% 85.55%

2 30.66% 33.77% 79.77% 79.67% 81.26%

1 16.31% 18.13% 64.98% 65.92% 71.70%

Table 3 compares the results of an SVR model, an FCNN model, an LSTM-only model,
and the proposed LRCN and ILRCN models for the same selected test data for day-ahead
forecasting. The LRCN model had very similar validation accuracy to the LSTM model,
while the proposed ILRCN model had an accuracy of 74.41%, which outperformed all
other models.

Table 3. Accuracy percentage comparison between FCNN model, LSTM model, LRCN model, and
the proposed ILRCN model for day-ahead forecasting.

Forecasting
Threshold
($/MWh)

Day-Ahead Forecasting Accuracy Percentage

SVR FCNN LSTM LRCN ILRCN

3 41.82% 42.23% 71.60% 71.36% 74.41%

2 30.66% 30.09% 56.11% 54.56% 56.26%

1 16.31% 18.55% 30.47% 28.89% 35.05%

Comparing Tables 2 and 3, it is observed that the SVR model provided the same results
when it predicted a day ahead or an hour ahead; this is because the SVR model does not
capture the time series information and considers all samples independently. This is similar
for FCNN, because FCNN can improve its prediction accuracy slightly by retraining it with
additional information of the operating day.

From Tables 1 and 3, we can observe that for both hour-ahead and day-ahead fore-
casting of wholesale electricity price, the proposed ILRCN model outperformed the SVR
model, FCNN model, LSTM model, and LRCN model by a large margin, as well as the
naive method explained in Section 3. This demonstrates the efficacy of the proposed ILRCN
model for hour-ahead and day-ahead electricity price prediction. It is interesting to observe
that the SVR and FCNN models could not match the naive method while all other neural
network based models performed much better than the naive method in both hour-ahead
prediction and day-ahead prediction.

The effectiveness of the proposed conditional error correction term can be demon-
strated by comparing the performances of the proposed LRCN model and the proposed
ILRCN model. When using a threshold of $3/MWh, the proposed ILRCN model slightly
outperformed the LRCN model by 1.15% for hour-ahead prediction or by 3.05% for day-
ahead prediction. However, when applying a threshold of $1/MWh, the proposed ILRCN
model could achieve much better accuracy by a large margin of 5.78% for day-ahead
prediction or 6.16% for hour-ahead prediction.

The performance metrics, like absolute error of the forecasting results, mean absolute
error for the training process, and total training time, are also computed for various
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forecasting models and the results are presented in Tables 4 and 5. It can be observed that
the MAE and MSE of the proposed ILRCN model were 0.0254 and 0.0015 respectively
for hour-ahead forecasting, which was the lowest among all models. Though it has been
demonstrated that the training time for the proposed ILRCN model is comparatively more
for the hour-ahead case, the prediction accuracy percentage was higher and absolute error
was considerably lower, which indicates the effectiveness of the proposed ILRCN model. It
is interesting to note that for day-ahead forecasting with the LRCN and ILRCN models,
with the CNN layer included, the computation time for training was reduced considerably
while the accuracy increased slightly when compared to the LTSM model, which proves
the efficiency of the proposed LRCN architecture. The training time for the LRCN model
and ILRCN model was the same because the conditional error correction term included in
the proposed ILRCN model is only used in prediction (not used in training) to mitigate the
imperfectness of the trained LRCN model.

Table 4. Performance metrics of different models for hour-ahead forecasting.

Performance Metrics
Hour-Ahead Forecasting

SVR FCNN LSTM LRCN ILRCN

MAE 0.3055 0.1362 0.0326 0.0265 0.0254

MSE 0.3110 0.0562 0.0020 0.0017 0.0015

Computation Time
(seconds) for Training 231 1286 14,890 2246

Table 5. Performance metrics of different models for day-ahead forecasting.

Performance Metrics
Day-Ahead Forecasting

SVR FCNN LSTM LRCN ILRCN

MAE 0.3055 0.3081 0.2022 0.2059 0.1981

MSE 0.3110 0.2933 0.1478 0.1521 0.1355

Computation Time
(seconds) for Training 231 1417 15,168 2279

Figure 9 shows the comparison between the predicted settlement point price by the
LRCN model and the actual price for a subset of the test data under consideration. It is
evident from Figure 9 that the LRCN model does not completely track the variation in
settlement point price especially for price spikes. The hour-ahead forecasted settlement
point prices by the proposed ILRCN model and the actual prices are shown in Figure 10; it
can be observed that the proposed ILRCN model can very well track the price variation
and even the price spikes.

To summarize, the proposed ILRCN model can achieve the highest accuracy and
lowest error in real-time wholesale power energy market electricity price prediction than
all other models studied in this paper, including a naive method, an SVR model, an FCNN
model, an LSTM model, and an LRCN model. Although the LSTM model can also obtain a
decent accuracy, its training time is about 7 times longer than the LRCN and ILRCN models,
which demonstrates the efficiency of the architecture of the proposed LRCN model. Note
that the above results are achieved only with the use of demand, date, and temperature
information as input features. Moreover, the electricity price we predict is the real-time
market price, which is much more volatile than the day-ahead market price; persistent
volatility consequently results in reduced accuracy for electricity price forecasting. This
implies that the proposed ILRCN model may achieve even better results when predicting
the electricity price of the day-ahead market.
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Figure 9. Hour-ahead forecasted settlement point price by the LRCN model vs. the actual price.

Figure 10. Hour-ahead forecasted settlement point price by the proposed ILRCN model vs. the
actual price.

6. Conclusions

This paper proposes an ILRCN model to predict wholesale market electricity prices.
Various dominant factors like demand profile and temperature are considered as input
features for electricity price forecasting. The proposed ILRCN model for wholesale market
electricity price forecasting outperforms the SVR model, FCNN model, LSTM model, and
the LRCN model, as well as the naive method in terms of various metrics including training
efficiency, accuracy, MSE, and MAE, as demonstrated in the case studies section.

The proposed ILRCN model predicts the electricity price with high accuracy and low
error both hour-ahead and day-ahead as compared to the naive method, SVR, FCNN, LSTM,
and LRCN models. The proposed conditional error correction term can further improve
the prediction performance of the ILRCN model. In summary, the proposed ILRCN model
outperforms both the traditional models and other neural network models, and it is proven
to be an accurate and efficient model in settlement point price forecasting. The practicality
and feasibility of the proposed ILRCN model are confirmed by the performance metrics.
Accurate price prediction also benefits utility companies when formulating their long-
term strategies. With minor adjustments and tuning, the ILRCN model proposed in this
paper may also be applied in other fields such as load forecasting and variable renewable
generation forecasting.
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Due to limited data access, the input dataset does not contain any details on generation
capacity, electrical network, bidding information, and availability of distributed energy
resources in the network that also contribute to settlement point price. For future research,
more information from the generator and utility side can be incorporated into the algorithm
and further improve the performance of the model with better electricity price movement
tracking capability.
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