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Abstract: This review emphasizes the role and performance of versatile DC-DC converters in AC/DC
and Hybrid microgrid applications, especially when solar (photo voltaic) PV is the major source. Here,
the various converter topologies are compared with regard to voltage gain, component count, voltage
stress, and soft switching. This study suggests the suitability of the converter based on the source type.
The merits of a coupled inductor and interleaved converters in micro gird applications are elucidated.
The efficiency and operating frequencies of converts for different operating modes are presented to
determine the suitable converters for inductive and resistive loads. The drawbacks of converters are
discussed. Finally, the mode of operation of different converts with different grid power sources and
its stability and reliability issues are highlighted. In addition, the significance of the converter’s size
and cost-effectiveness when choosing various PV source applications are discussed.

Keywords: coupled inductor converter; full bridge converter; half bridge converter; interleaved
converter; micro grid; photo voltaic (PV); resonant converter; zero voltage switching (ZVS); zero
current switching (ZCS)

1. Introduction

The DC microgrid contains renewable energy sources and a hybrid energy storage
unit. Hence, we are using Energy Management Methods to reduce power fluctuation
on power quality [1]. We utilise many switching devices in renewable energy sources
because high penetration occurs and switching losses or harmonics impact the utility grid’s
system reliability [2]. This paper presents an overview of microgrids’ energy management
strategies and grid integration technologies. To produce a clean energy future and minimize
costs, renewable energy-based distributed generation is moving fast to meet the world’s
vital needs of utilizing clean energy sources [3]. By converting solar energy into electrical
energy without environmental contamination photovoltaic system provides a direct method.
PV systems convert solar power to electric power integrated with the grid if it meets the
grid code [4]. The DC microgrid consists of a battery energy storage system, wind turbine,
grid-connected converter system, and dc loads. Solar PV is one of the renewable energy
technologies best suited for islands, hills, and forest areas such as,

ã Minimal communication and transportation facilities.
ã Illiterate and Poor technical knowledge places.

Here power electronics blocks are required for grid integration to maximize the benefits
of solar energy [5].

Solar PV and load require a suitable DC-DC converter to increase the system’s ef-
ficiency. Multiple converters are typically designed for high voltage gain of solar PV
applications [6]. In addition, better dynamic response and less ripple are obtained by mul-
tiphase interleaved DC-DC converters, preserving their efficiency. This study presents a
SEPIC, CUK combination converter-based interleaved converter for connecting distributed
generation to bipolar DC micro grids and power architecture [7]. Finally, switched inductors
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and switched capacitors are used to provide a high gain. All semiconductor devices have
the same voltage stress. Therefore, it is possible to utilize devices with uniform ratings and
minimal internal resistance [8]. Finally, a multi-port isolated DC-DC converter replaced the
traditional Buck/Boost circuit to ensure electrical isolation of the energy storage system’s
micro sources [9]. The boost DC-DC converter topology has the following demerits: large
capacitors are needed, there is a <4:1 voltage gain, parallel devices are required at high
power levels, and there is a high ripple rate [10,11]. Due to their high conversion efficiency,
minimal size, and low production costs, the described DC-DC converter topology a signifi-
cant role in the power-generating industry, including microgrids. The DC-DC converters in
are separated into isolated and non-isolated topologies [12,13]. The general classification of
DC-DC converters are depicted in Figure 1.
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Figure 1. Types of DC-DC converters.

When the traditional boost converter is preferred in PV systems, it has to be operated
at a duty cycle of 0.88, making it difficult in practical application due to the limitation
of semiconductor devices. Moreover, the boost converters suffer the drawback of high
switching voltage stress and reverse recovery issues [14]. The applications of smart grid
system are summarized in Figure 2.

The grid functions today are the same as when there were minor improvements, and
the energy cost was relatively low. There is currently no heavy electricity storage technology
available. Therefore, if we use this power during off-peak hours, we will build an effective
system. However, we may adjust load consumption to increase grid efficiency, which is
how the Smart grid differs from a traditional grid.

These converters require a higher power transformer, as higher power converters
cannot use a single switch topology. For example, Half-bridge, push-pull and Full-bridge
converters comes under another DC-DC isolated converters which use a minimum of
multi-switch. Figure 3 represents a simplified hybrid microgrid charging station for battery-
powered electric vehicles.
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The PV technologies can be employed in various applications, including electric
vehicles, domestic, and microgrid applications [15]. The different operating voltages of the
DC-DC converters linked to the PV system are described. In addition, in grid-connected
mode converters, suitable load types are identified along with their corresponding voltage
gain and conversion efficiency. This review elucidates the operation of 14 types of DC-
DC converters for grid-connected PV applications. This is followed by comparing the
converters performance for different grid-connected PV systems operating modes along
with discussed distributed energy sources. At last, each converters parametric analysis and
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components sizing comparison are critically examined to further identify the drawbacks in
each converter for a particular source application for a specific mode of operation.

2. Requirements for the Selection of DC-DC Converter Topology

The DC-DC converter topologies that are to be used in a PV-based power supply
should meet the conditions given in the subsequent paragraphs. A typical layout of DC
microgid is depicted in Figure 4. Without increasing the stack size, we can obtain the
desired DC voltage value with the help of the DC-DC converter. For example, the DC
output from the polymer electrolyte membrane (PEM) FC stack is mostly around several
tens of volts. Therefore, the ripple current value observed across the PV due to the DC-DC
converter switching should be low. Most importantly, a sharp rise or a fall in the current
and high-frequency current ripple of a large magnitude should be avoided [16].
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An overview of the present-day technology in isolated DC-DC converters for PV-based
power generation is presented in Table 1. The study includes an analysis of literature to
understand current achievements and viewpoints. While many papers on the subject have
been published, many of them do not include details on the achieved efficiency or the
complexity of the converter when operating a greater number of devices, and issues with
power density maximization are mentioned. Within the limited information available, a
comparison of published literature for high voltage gain DC-DC converters is attempted,
and an overview of each solution is provided.

3. Survey of DC-DC Converter Topologies
3.1. Coupled Inductor Converter Topology

This section enumerates the published solutions of coupled inductor topology DC-
DC converters possess high gain, as shown in Figures 5–8. Each published technique
explains the topology used, the converter Vin and Vout range, and the power range of the
experimental setup are given to validate the interfacing with FC for power generation.
In [17] the authors proposed a DC-DC converter with soft switching exhibits continuous
input current and a high voltage gain. Experimentally, a 200 W prototype having Vin = 24 V,
and Vout = 360 V gives 96.4% efficiency at full load. The advantages of derived interleaved
boost converter having Winding-Cross-Coupled Inductors (WCCIs) and passive-lossless
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clamp circuits are increased voltage gain, reduced switching voltage stress, and reduced
reverse recovery problem due to the leakage inductance when compared with conventional
interleaved boost converters [18]. An interleaved boost converter rated 1 kW, 40 V to 380
V experimental findings show an efficiency of 90.7% at full load, which is 5% better than
a typical interleaved boost converter. [19]. A three-winding coupled inductor produced
a high voltage gain. The energy in the leakage inductor is released to the output directly,
reducing the switch stress. The output diode’s reverse recovery current is evaluated using
a coupled inductor. A closed loop control method is used, which overcomes the power
source voltage drift problem. The converter is used with a FC which gives a Po = 300 W
Vout = 400 V, Vin = 27 V–36.5 V and Fs = 100 kHz. It gives a maximum efficiency of 95.2% at
220 W. A 200 W boost converter having coupled inductors, and buck-boost active clamps
for low Vin applications is proposed in [20]. The Vin range is 25–40 V, Vout is 200 V and
output current of 1A with a switching frequency of 66 kHz. ZVS turns on the main and
auxiliary switches, and the boost diode is turned on DC-DC ZCS. Thus, the switching
losses are chopped. The converter efficiency is 92%, and the output power is 200 W. A high
voltage gains 250 W non-isolated DC-DC converter having a three-stage switching cell and
voltage multiplier is proposed and demonstrates the Vin range is 30–45 V, and Vout is 400
V. The three-stage switching cells reduce the converter’s size and conduction losses while
efficiency is 97% [20].
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A high step-up DC-DC converter is required to boost the voltage value generated
through the 400 V DC bus voltage PV. Passive loss clamped technology is used to improve
efficiency and limit voltage stress. Recycling of leakage energy is possible with the help of
passive losses clamped technology. The basic boost converters’ main disadvantages include
problems with the electromagnetic interface, high voltage stress and hard switching on the
semiconductor elements [21]. Coupled inductor DC-DC buck-boost converter is used for
a step up and down by non-inverting voltage, this also offers high efficiency, control and
regulation of input and output currents smoothly and immediately [22].

Table 1. Hybrid converters with observations.

Ref Type of ASD Converter Type Supply Direction Observations

[22] Supercapacitor Buck-boost Buck-boost The construction and design are simple, using the same
modules for all the positions in the system.

[23] Supercapacitor
and Batteries Buck-boost Bidirectional

buck-boost

The buck and boost modes of operation in the buck-boost
converter connected with an FC, the operational dead-zone
description, is not present in the system. It also consists of a

design with complex control

[24] Supercapacitor Boost Bidirectional
buck-boost

The experimental result of the boost converter is not present in
the system, and the converter also has some start-up problems.

[25] Supercapacitor Boost Bidirectional
buck-boost

The experimental load transient results of the boost converter
are not present, and the converter has start-up problems.
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Table 1. Cont.

Ref Type of ASD Converter Type Supply Direction Observations

[26] Supercapacitor Boost Bidirectional
buck-boost

The converter consists of a design with complex control, and
the converter has start-up problems.

[27] Supercapacitor Boost Bidirectional
buck-boost

The boost converter consists of a design with complex control,
and the converter has start-up problems.

The structure of the DC-DC boost converter consists of two hybrid, multiple voltage
cells, and three winding coupled inductors. Using two multiple voltage cells, parallelly
charged and discharged series, can provide very high voltage gain under the appropriate
turns of ratio and duty cycle [28].

3.2. Interleaved Non-Isolated Topology

This section listed the published solutions of high gain interleaved non-isolated DC-
DC converter topology. The voltage multiplier technique is used to the non-isolated DC-DC
converters to possess a high step-up static gain, is presented in [29]. The Vin is 24 V, and the
output Vout is 400 V. The output power is 400 W. The converter operated with a switching
frequency of 40 kHz. The converter efficiency was 95%. Low electromagnetic interference
production and commutation losses are attained. Without a power transformer, high static
gain operation is possible. The Vin is 48 V and Vout is 380 V with an operating frequency of
100 kHz. The measured efficiency at 1 kW is 94.1%. The voltage doubler circuits increase the
operating range of the converter by reducing the transformer’s parasitic capacitor’s effects.
The interleaved Inductor-Inductor-Capacitor (LLC) converter for high gain is shown in
Figure 9. This converter operates in two modes: independently and simultaneously. At the
same frequency, both the interleaving converters are operated in the simultaneous mode.
The single converter only operates in the independent mode.
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Figure 9. Interleaved non-isolated topology.

The wider Vout range is possible only with frequency control and combined mode
changing [30]. The phase-shedding technique is used to improve the efficiency of the
interleaved switched capacitor DC-DC converter. The high voltage gain is achieved in the
converter with modular characteristics and an interleaved configuration [31]. Using the
lower voltage rating, the MOSFETs in the converter reduce the conduction losses [32]. The
typical schematic layout is shown in Figure 10.
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Figure 10. Non-isolated high voltage gain ratio interleaved coupled-inductor type DC-DC converter.

All diodes and switches operate on ZVS and ZCS techniques in the interleaved
full soft-switching DC-DC converter. To reduce the power loss and to increase the ef-
ficiency of the DC-DC converters, the ZVS and ZCS are used. Finally, the auxiliary circuit
is placed out of the main power path to avoid the switches’ high current and voltage
stress [33]. The schematic circuit diagram of interleaved high step-up converter is depicted
in Figure 11. A highly efficient power system always insists a reliable DC-DC converter.
An interleaved boost converter is required to convert the high-current low-voltage to
low-current high-voltage.
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Classical boost converter deemed to be less advance then interleaved boost converter
which offers high efficiency, low input ripple current, fast transient response, high reliability
and less electromagnetic emission. Interleaved boost converters are suitable for the design
of a highly efficient FC power system. To improve the system efficiency three-phase directly
coupled interleaved boost converter using CoolMOS transistor and silicon carbide diode is
used. Analysis based on the performances of interleaved converters are summarized in
Table 2.

Table 2. Performance analysis of the interleaved converters.

Parameter [34] [35] [36] [37]

Input ripple current Low Low Low Moderate
Number of diodes 4 8 4 6

The voltage stress on the
switches (n = 1)

(
V0
6

) (
V0
4

) (
V0
4

) (
V0
3

)
Number of windings 4 6 4 6

Voltage gain
(

2 (n+2)
1−D

) (
3n+1
1−D

) (
2(n+1)

1−D

)
n2+

(
(2n3D+2−D)

1−D

)
3.3. Isolated Push-Pull Boost Converter

This section lists the published solutions of isolated push-pull boost converter topology
for high-gain DC-DC converters [38]. The proposed converter is a push-pull type hard
switched isolated boost converter. The proposed converter is implemented along with a
voltage clamp circuit on the isolation transformer’s primary and secondary sides. After
the front end, the push-pull converter H-bridge DC-AC converter follows. The range
of converter input Vin is taken as 25–45 V and Vout as 350–400 V. For the 900 W power
level, the maximum calculated efficiency is 91%. Utilizing the resonant converter gives an
advantage of a 1.5 kW front-end converter for FC applications, which is presented in [39].
On the secondary side of isolation transformer, a voltage doubler concept was introduced to
tune the current resonance to minimize the diode losses (recovery). Switching active clamp
circuits’ blocking voltage is used on both sides to clamp the peak. The proposed converter
follows with an H-bridge DC-AC converter. Overall, a calculated system efficiency of 92.5%
is achieved with an Vin range of 30 V and an Vout of 350 V for 700 W power level.

3.4. Fly Back Converter Topology

This section lists the published solutions of Fly-back converter topology for high-gain
DC-DC converters as shown in Figures 12 and 13. A 300 W isolated high step-up ratio
DC-DC converter that uses a voltage multiplier on the secondary side and active clamp on
the transformer main side is proposed in [40]. The Vin range is 25–35 V, and Vout is 400 V.
The circulating current through the active clamp is reduced due to the resonant phases
between transformer leakage inductances and diode parasitic capacitances, which also
lowers the conduction losses.
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Figure 13. Active clamp boost fly-back converter.

The converter’s efficiency of 92% to 94% for the entire Vin range and 300 W output power.
A 300 W high step-up ratio converter for low-voltage and high-current energy sources is
proposed [41]. The clamping diode integrated with boost-flyback (IBF) topology that naturally
clamps parasitic oscillations. Resonance caused by the parasitic components helps to increase
the voltage gain. The Vin range is 25–35 V, and Vout is 400 V. Various parameter has been
evaluated and summarized in Table 3 for various converters. A simple design of asymmetrical
forward cells of stacked multiple output topology is depicted in Figure 14.

Table 3. Parameter analysis of various DC-DC converters.

Parameter [42] [21] [43] [44]

MOSFET voltage stress V0
1+2N−ND

V0
2(1+N)

V0
1+N

V0
2

MOSFET Soft switching ZVS ZVS Hard switching ZVS
No. of MOSFETs 2 2 1 2

The voltage stress on output diode NV0
1+2N−ND

V0
2

NV0
1+N

V0
2

Soft switching of diodes ZCS Hard switching Hard switching ZCS
Diodes 3 4 3 2

Number of magnetic components 1 1 1 2
Voltage gain 1+2N−ND

1−D
2(1+N)

1−D
1+N
1−D

2
1−D

The converter efficiency is about 94% for a 100 kHz frequency of operation, and the
output power is 300 W. The conventional isolated converter with N-outputs requires 2 N
primary switches. The above circuit requires N + 1 primary switches to independently
regulate the secondary side N output voltages [45].

3.5. Half Bridge Converter Topology

The concept of two inductor boost converters was introduced by [46]. The boost
converter topology is the boost version of the abovementioned current double topology,
also called the HY-Bridge rectifier. Many papers have already been published on the
high-power low-Vin application of the two inductor boosts [46–51], representing some
important works on this topic. Two inductor isolated boost converters are often referred to
as half-bridge converters, as shown in Figure 15. A 1 kW isolated current fed half-bridge
LLC resonant DC-DC converter of 24–28 V input and 400 V output was presented in [52].
An un-regulated LLC converter is implemented, which acts as isolated voltage amplifier
having constant voltage gain. Experimental efficiency of 90.2 % was achieved with 24 volts
input under full load conditions. The LLC converter has inherent bi-directional power
flow capability. A 1.2 kW isolated current fed active clamped half-bridge circuit with
a Vin range of 28–43 V and an output of 380 Volts is presented in [53]. The proposed
converter in this paper is compared with the existing converter topologies. The converter
also tested for high power rating, and overall efficiency of 94% was achieved with better
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component utilization. Here a 200 W active clamped L-L current fed half-bridge isolated
DC-DC converter with a 22 V input and 350 V output. [54]. The topology shown in this
study achieves a wide-ranged ZVS of primary side switches from full load to light load
conditions. Moreover, the auxiliary active clamp circuit absorbs the turn-off voltage spikes
and also assists in achieving soft switching of primary devices [55]. Represents a 1 kW
modified isolated two-inductor boost by active clamping and reset. The two transformers
integrated by the individual rectifiers are connected in parallel on the input and output
sides. Triangular switch currents can be observed due to active clamping. The Vin range
is 26–50 V. The obtained Vout is 400 V. At 600 W output power, the maximum efficiency
value is 95.6%. For the measured efficiency, the Vin condition is not published. [56] have
used a 1 kW two-inductor boost converter with an active clamping. The Vin is 48 V. The
observed Vout is 350 V. At a power rating of 500 W, an approximate peak efficiency of
87% is observed. The efficiency value drops to 77% at 1 kW output. A full-bridge boost
converter reports 6–10% less efficiency on a comparative basis. As a part of the two-stage
DC-DC converter for FC applications, a 1 kW two-inductor boost stage is designed in [57]
as depicted in Figure 16.
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Ref. [50] represent a 1.5 kW bi-directional two-inductor boost for a bi-directional
interface between a 28 V and a 270 V aircraft power bus. On the low voltage side, active
clamping and the rest is used to clamp the switching overvoltage. The range is 22–32 V. At
Vin = 32 V and 750 W output, a peak efficiency value of 96% is achieved in the boost mode.
Efficiency drops below 89% at 22 Vin and 1.5 kW output. A typical layout of DC-DC dual
active bridge converter is shown in Figure 17.
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Figure 17. DC-DC converter with Dual active bridge.

A current fed hybrid dual active bridge DC-DC converter reduces the input high-
frequency ripple current. While Power MOSFETs are switched with the ZVS technique.
Low-voltage FC power conditioning systems employ two active bridge converters. Four
power MOSFETs (T1, T1a, T2, and T2a) and two inductors L 1 and L2 make up the input side.
Sw1, Sw2, Sw3, and Sw4 are the four MOSFETs that make up the output side. The auxiliary
half-bridge consists of Sw5 and Sw6. The power MOSFETs and (Cd and Cu) capacitors make
up the auxiliary half-bridge. The transformer T is used to link the input and output sides.
Here, the ratio of the transformer turns to the leakage inductance L k is 1: n [58]

3.6. Full Bridge Converter Topology

This section listed the published solutions of full-bridge converter topology for high
gain DC-DC converters, as shown in Figure 18. A 500 W current fed full bridge isolated ZVS
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active clamp full-bridge converter with 22 V input and 350 V output for FC applications
is presented in [59]. This converter uses active clamp switch to clamp the voltage spikes
across the full bridge switches in the turn-off mode. Moreover, this active clamp switch
helps to achieve soft switching of primary side devices. For example, a 100 W full-bridge
isolated ZVS DC-DC converter with an input range of 48 V and an output range of 380 V is
presented in [60]. The proposed converter uses an integrated magnetic concept to utilize
the transformer better. Though the converter is unsuitable for high power grid applications,
soft switching is claimed for 100 kHz switching operation. A 1.2 kW current-fed full-bridge
topology with an input of 30 V and an output of 600 V was observed. The presented
converter topology uses the current fed full bridge topology for FC applications. Based on
the theoretical limitations of transferrable power, the optimized converter is designed for
the given specifications.
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A 5 kW isolated full bridge topology is proposed to apply FC vehicles [60]. The voltage
clamping concept was introduced using a passive circuit to clamp the primary side switch
blocking voltage. The proposed converter was analysed with a 24 V input and an output of
300 V. The calculated efficiency at peak power was 94%. Limited design data are provided to
validate the converter. A soft switched 1 kW full-bridge isolated converter is demonstrated
in [61]. During the switching, an overlap period of slow resonant commutation is achieved
with the proposed converter. For the primary side switches, ZCS turn-off and ZCS turn-on
is achieved. With the Vin = 22–27 V, Vout = 1 kV, a peak efficiency of 88% was achieved
with 22 V input. An isolated full bridge converter for a 1.4 kW power level is proposed
with a resonant LC circuit [62]. The resonant circuit is formed by connecting resonant
capacitors parallel to the primary side switches and the LC tank circuit, forming a complete
resonant circuit. With a Vin of 100 V and an output of 374 V with a narrow band frequency
regulation, the maximum efficiency achieved is 90%.

3.7. Resonant Converters

Below, Figure 19 shows the Series Resonant Converter topology (SRC). This paper [63]
uses a parallel tank circuit formed by an (L-C)||L combination to achieve soft switching of
high-frequency switches. The important feature of these converters including (1) Achieving
an improved efficiency even at varying load and line conditions. (2) A wide range of soft
switching ZVS can be achieved. (3) The Peak current capability of the switch varies with
the input current variation and not with the load current changes.
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Figure 19. Series resonant converter having inductive output filter.

Here Figure 20 shows is a full bridge phase shifted converter having an inductive
output filter configuration. The Soft switched converter configuration for high-power
applications vividly uses it. The proposed converter configuration uses a constant frequency
capable of realizing ZVS of the main switches on the primary side with a minimal circulating
circuit configuration. The ZVS is realized with a filter inductance, a leakage inductance
of the transformer, a parasitic capacitance of the switches, and a snubber capacitance.
The phase-shifted technique achieves control over the Vout with constant frequency. The
important characteristics of the proposed converter include:

1. The duty cycle loss at the secondary side is a major limitation of this configuration.
2. A huge stress on the secondary side is rectifying diodes.
3. The parasitic ringing problem on the secondary side transformer.
4. For a wide range of ZVS, a large inductor is needed, but the transformer needs to

decrease the Np/Ns ratio, which will increase the primary side current. Therefore,
the conduction losses of the devices occur. A compromise between the Np/Ns
ratio and inductor should be carried out to minimize the conduction losses of the
active switches.
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3.8. Interleaved Isolated Topology (ITLD Isolated Boost Converter)

A 200 W interleaved current fed ZVS active clamp full-bridge, and a Vout of 200 V is
presented in [64]. The input current stress will be reduced due to interleaving and Vout
extracted up to 700 V for three-phase grid-connected applications. A 1 kW interleaved
current fed half-bridge topology with a Vin of 22–41 V and an output of 350 V is presented
in [65]. The overall efficiency at full load achieved 92.8% with maximum converter uti-
lization. The switching frequency is very low for the designed converter. Two current-fed
full-bridge isolated converters are connected parallel to make an interleaved topology [66]
and depicted in Figure 21. The voltage doubler circuit is connected in series to form a par-
allel input and a serial output configuration on the secondary side. The voltage clamping is
carried out for the primary side switches using an active clamp circuit. With the Vin = 33 V,
Vout = 400 V and the efficiency is 90.5% at 1.2 kW power levels.
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The bidirectional isolated DC-DC converter technique reduces the input ripple current.
The converter increases the conversion ratio and also the efficiency. Generally, a passive
resistor capacitor-diode (RCD) snubber is required to store the energy in leakage inductance
and clamp down the voltage spikes. Due to the use of the dual-inductor-capacitor-diode
(LCD) snubber instead of the RCD snubber, the recycling of the leakage inductance, which
is presented in the energy storing devices, is possible. Hence, the efficiency of the system
increases [67].

Figure 22 shows the full bridge converter topology for high-gain DC-DC converters.
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4. Summary of the Analysis

The comparison includes an analysis of high-gain converters meant for PV applications.
The published performance details are provided in Table 4. It should be noted that the
critical test conditions, such as Vin and Vout levels and the measurement tolerances, are
usually not provided, making it difficult to compare the efficiency achieved wherever
provided. The optimum comparison was achieved by considering 1. Worst-case efficiency,
2. The number of active devices, 3. Switching frequency, and 4. Size of the converter data.
Beyond the performance data, the papers reveal an analysis of different types of converters.
The boost converters do not deliver high step-up ratios efficiently in continuous conduction
mode due to the switch’s high current and voltage stress and the diode reverse recovery
loss. The non-isolated converter topologies are the suboptimal solution because it is directly
connected to output high voltage side and the high boost ratios make it difficult to develop
in non-isolated single-stage converter. The greater the differences in the voltage between
the output of the FC (low voltage) and the DC link (high voltage), the greater there is
need for electrical isolation between the two circuits [17,18,68]. Push-pull converters are
typically unsuitable for FC power generation, especially at high power, due to the difficulty
in overcoming transformer saturation [38,39]. The modified fly-back converters [69,70]
suffer from voltage stress across the rectifier diode. The single winding carries a current,
operates in a discontinuous mode (to avoid core saturation), and has high off-state voltage
and poor core utilization. Current-fed full bridge converter operates at 10 kHz [66] (as
it is a hard-switched converter), resulting in a larger converter due to the greater size of
magnets and filters. The voltage clamping requirements [59] show that these circuits are
necessary to reduce the switch stress. An active clamp (or reset) circuit requires greater
switches and results in greater conduction losses due to the formation of the triangular
current waveforms.

The comparison of measured efficiency in converter [18] and conventional boost
converter is given in Figure 23. The conversion of 40 V to 380 V DC-DC gives the maximum
efficiency of 92.6%.
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Table 4. High voltage gain DC-DC converter topology comparison.

Topology Power
Rating in W

Input Voltage
(Vin)

Output
Voltage(V)

No. of Active
Devices

Switching
Frequency

(kHz)

Trans-Former
Turns Ratio Switching References

Flyback 300 25–35 400 2 100 5.375 Soft [70]

300 25–35 400 1 100 4.5 Hard [69]

Coupled
Inductor

200 24 360 V 2 100 5 ZVS [17]

1000 40 380 V 2 50 40/22 ZCS [71]

300 27–36.5 400 V 1 100 N2 = 6.33, N3 = 5 - [72]

200 25–40 200 2 66 20 Soft [20]

250 30–45 400 2 20 1 Hard [73]

Non-
Isolated

Interleaved

400 24 400 2 40 - Soft [29]

1000 40 380 2 50 1.818 Soft [74]

1000 48 380 2 100 1 Soft [18]

Push Pull
1000 25–45 350–400 - - - - [38]

1500 30 350 - - - - [39]

Half bridge

1000 24–28 400 3 300 1:11 Hard [54]

1200 28–43 380 4 50 1:3.5 Soft [75]

200 22–41 350 4 100 1:4 Soft [76]

1000 26–50 400 4 50 4:14 ZVS [77]

1000 24 200 4 100 Hard [47]

1500 22–32 270 6 100 10/21 ZVS [78]
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Table 4. Cont.

Topology Power
Rating in W

Input Voltage
(Vin)

Output
Voltage(V)

No. of Active
Devices

Switching
Frequency

(kHz)

Trans-Former
Turns Ratio Switching References

Full bridge

500 22–41 350 5 100 kHz 1:8 Soft [59]

1200 30 600 4 60 kHz 1:10 Hard [79]

1000 22–27 1000 4 100 KHz 1:30 Soft [80]

1400 100 374 4 250 - ZVS [81]

Interleaved
isolated

200 22–41 200 10 100 kHz - Soft [63]

1200 33 400 8 10 kHz 1:2 Hard [82]

200 11 200 8 100 kHz 1:4 Soft [83]

5. Conclusions

This paper evaluates the 14 DC-DC boost converters’ efficiency, number of compo-
nents, and stability. The significance of choosing a converter based on load and source
requirements is evaluated. The importance of voltage gains and voltage stress factors
when connecting solar PV to the grid is discussed. In addition to the non-isolated step up,
interleaved and coupled inductors’ reliability with respect to solar PV system applications
are outlined. The stress on the switches is reduced by coupled inductor with the ZVS
operation system to reduce grid instability and synchronization drawbacks. Each converter
importance is fully discussed in this review. Microgrids with solar PV will significantly
increase the flexibility of the power system, but to make it reliable, it is necessary to choose
the proper converters based on corresponding ratings. Selecting a suitable Converter link-
ing PV source and Dc link bus enhances system performance. In addition, the bidirectional
interleaved switched capacitor DC-DC converter implemented in grid connection helps
reduction of capacitor voltage stress is discussed in this review. This further extends to by
interleaved converter use in diminishing the current ripples at low voltage. Even though
the converters pose the following merits, many constraints still need to be resolved, such as
exceeding duty values to 50% and linear increases of switch voltage stress with increasing
duty cycle.

Author Contributions: Implementation, Investigation, I.J.; Analysis, Supervision, Proofreading, V.I.
All authors have read and agreed to the published version of the manuscript.
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