
Citation: Kravets, A.G.; Egunov, V.

The Software Cache

Optimization-Based Method for

Decreasing Energy Consumption of

Computational Clusters. Energies

2022, 15, 7509. https://doi.org/

10.3390/en15207509

Academic Editor: Abu-Siada Ahmed

Received: 15 September 2022

Accepted: 9 October 2022

Published: 12 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

The Software Cache Optimization-Based Method for
Decreasing Energy Consumption of Computational Clusters
Alla G. Kravets 1,2,* and Vitaly Egunov 3

1 CAD&RD Department, Volgograd State Technical University, 400005 Volgograd, Russia
2 Institute of System Analysis and Management, Dubna State University, Moscow Region,

141982 Dubna, Russia
3 Computers and Systems Department, Volgograd State Technical University, 400005 Volgograd, Russia
* Correspondence: agk@gde.ru

Abstract: Reducing the consumption of electricity by computing devices is currently an urgent task.
Moreover, if earlier this problem belonged to the competence of hardware developers and the design
of more cost-effective equipment, then more recently there has been an increased interest in this
issue on the part of software developers. The issues of these studies are extensive. From energy
efficiency issues of various programming languages to the development of energy-saving software
for smartphones and other gadgets. However, to the best of our knowledge, no study has reported
an analysis of the impact of cache optimizations on computing devices’ power consumption. Hence,
this paper aims to provide an analysis of such impact on the software energy efficiency using the
original software design procedure and computational experiments. The proposed Software Cache
Optimization (SCO)-based Methodology was applied to one of the key linear algebra transformations.
Experiments were carried out to determine software energy efficiency. RAPL (Running Average
Power Limit) was used—an interface developed by Intel, which provides built-in counters of Central
Processing Unit (CPU) energy consumption. Measurements have shown that optimized software
versions reduce power consumption up to 4 times in relation to the basic transformation scheme.
Experimental results confirm the effectiveness of the SCO-based Methodology used to reduce energy
consumption and the applicability of this technique for software optimization.

Keywords: energy efficiency of software; RAPL; cache memory; software cache optimization;
reflection transformation; householder transformation; cache miss; analytical efficiency evaluation

1. Introduction

In the modern world, the issue of energy efficiency of various classes and architectures
of computing systems is extremely important. This applies equally to mobile phones [1],
which are quite powerful computing systems, and various embedded devices [2], as well as
laptops, computers, and entire computing clusters [3]. In fact, it is extremely important for
the customer to use a mobile phone, laptop, or other smart gadgets for a long time without
recharging [4]. The issue of computers and computing clusters’ energy efficiency is mainly
related to the electricity consumed and bills for it. Additionally, if the individual computers’
energy efficiency is not so relevant, then the high energy consumption of computing clusters
can lead to huge electricity bills [5,6], an increase in the cost of renting computing resources,
etc. It is also worth mentioning that, with an increase in electricity consumption, the device
heating increases, and more effort must be spent on cooling it. In some cases, high power
consumption makes the use of a particular device or software ineffective, and sometimes
completely useless. As an example, we can give the mining of cryptocurrencies at a high
electricity cost [7].

Accordingly, reducing the electricity consumption by computing devices is an urgent
task. Traditionally, the solution to this problem has been attributed to the design of more

Energies 2022, 15, 7509. https://doi.org/10.3390/en15207509 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15207509
https://doi.org/10.3390/en15207509
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-1675-8652
https://doi.org/10.3390/en15207509
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15207509?type=check_update&version=2

Energies 2022, 15, 7509 2 of 15

cost-effective equipment, i.e., chip manufacturing technology improvement. However,
recently there has been an increased interest in this issue on the part of software develop-
ers [8]. The issue of developing energy-efficient software can be considered from at least
two points of view:

- energy-efficient software development for mobile phones [9,10] and other smart gad-
gets [11,12]; the goal here is to extend the operation of the device without recharging
the battery [13];

- energy-efficient software development for the implementation of computationally
complex algorithms for solving scientific problems, and performing engineering
calculations; the goal here is to reduce energy consumption in general during solving
a specific task or group of tasks [14,15].

Currently, a wide range of researchers are studying the link between the developed
software and the electricity consumed by the computing system. As an example, we
can cite the works already mentioned in this article, in addition, it is necessary to note
the works [16,17], and some others. In these works, the issues of energy efficiency of
data structures used, programming methods for various computing architectures [18],
and issues related to the prediction of various software systems’ energy efficiency are
investigated [19,20].

In [8,21], the issue of various programming languages’ energy efficiency is investigated.
The authors try to answer the question of whether the fastest program is the most energy
efficient [22,23]. Several research papers give different answers to this question [24,25].

There are at least two groups of research papers analyzing the energy consumption of
computing systems and ways to reduce it:

- related to the energy consumption measurement, the evaluation of software energy
efficiency [26];

- aimed at improving software energy efficiency [22,23].

However, to the best of our knowledge, no study reported an analysis of the impact of
cache optimizations on computing devices’ power consumption. Hence, this paper aims
to provide an analysis of such impact on the software energy efficiency using the original
software design procedure and computational experiments.

This work is organized as follows: Section 2 contains an overview of the basic trans-
formation for optimization, Section 3—proposed Software Cache Optimization-based
methodology (SCO-based methodology), and Section 4—results and discussions.

2. Basic Transformation

We have chosen one of the typical matrix transformations as the basic transformation.
On the one hand, many linear algebra problems are widely used in solving many applied
and research problems. Such tasks include solving systems of linear algebraic equations,
searching for eigenvalues and eigenvectors systems, performing singular value decom-
position, and many others. They often arise during solving, as higher-level task stages.
Moreover, typical matrix transformations used in solving basic linear algebra problems
have a fairly high computational complexity, especially when it comes to large-dimensional
matrices, which is typical for modern high-precision and large-scale mathematical models.

Separately, we want to note some two-sided transformations that are widely used in
linear algebra. Expression (1) shows similarity transformation.

B = F−1 AF (1)

Similar matrices have some characteristics that coincide, in particular, rank, determinant,
eigenvalues, and some others. Expression (2) shows the unitary two-sided transformation.

B = UAT (2)

Energies 2022, 15, 7509 3 of 15

Here U and T are unitary matrices. This conversion also preserves some original
matrix characteristics, in particular the singular values. Due to the fact that transformations
(1) and (2) preserve eigenvalues and singular values, respectively, they are often used in
algorithms for their calculation. The tasks themselves are well known [27,28].

The general form matrix is often reduced to an “almost triangular” form in solving the
eigenvalue problem. This form differs from the triangular one by the presence of a nonzero
diagonal under or above the main one. Matrices of this type are called, respectively,
the upper or lower Hessenberg matrix. There is a finite transformation sequence that
leads the general form matrix to a Hessenberg form [29] while preserving its eigenvalues.
Such matrices, along with tridiagonal ones, are widely used in algorithms for calculating
eigenvalues that strengthen the main diagonal. For example, in the QR algorithm or the
Jacobi method, reducing the time for matrices transformations to such forms also reduces
the time for solving the eigenvalue problem as a whole. Various mathematical methods
can be implemented to convert the general form matrix to a Hessenberg form. In this
paper, the Householder reflection transformation will be used [30]. Despite the fact that
eigenvalues and singular value decompositions and their numerical implementation have
been known for a long time and have been well studied, the researchers’ attention is still
attracted by the special type matrices transformation [31], as well as the use of singular
values decomposition in solving new technical problems, for example [32]. When studying
the ways of performing these decompositions, the authors, in particular, pay attention to
Hessenberg matrices [33]. Additionally, modern research is related to the Householder
reflection application and implementation [34]. For the most part, publications address
various applications of this algorithm in solving various scientific and applied problems,
often in relation to specific computing architectures [35,36]. Among the works devoted to
linear operators’ optimization for modern architectures, it is possible to note works devoted
to cache optimization [37,38].

Separately, it is worth noting the block Householder transformation (BH), which also
receives a lot of attention from researchers.

Let Q(3) be the product of the Householder n × n matrices.

Q = Q1.....QR (3)

Matrices Q can be represented as (4), where W and Y are of dimension n * r [39].

Q = I + WYT (4)

The pseudo-code of matrix Q block representation can be represented as follows.

1: Y = v(1)

2: W = −2 v(1)/[v(1)]T v(1)

3: for j = 2 to r
4: z = −2(I + WYT) v(j)/[v(j)]T v(j)

5: W = [W z]
6: Y = [Y v(j)]
7: end

Here v(j)—j-th reflection vector, and Y—matrix of reflection vectors.
The BH is based on the reflection vectors’ accumulation and mainly uses Basic Linear

Algebra Subprograms (BLAS) Level 3 operations (matrix–matrix operations, including
matrix multiplication gemm). At the same time, the traditional Householder reflection is
based on BLAS Level 2 operations (matrix–vector operations). At the same time, BLAS 2
operations are implemented less efficiently on modern parallel computing architectures
than BLAS 3 operations. This is due to the fact that BLAS 3 operations are potentially better
optimized in terms of using the cache memory.

This BH is the basis of a large number of efficient matrix transformation algorithms,
including the general form matrices’ reduction to Hessenberg form. In particular, the

Energies 2022, 15, 7509 4 of 15

work [40] considers the issues of Householder transformation effective implementation
using the WY representation, including an application for solving eigenvalues and the
eigenvectors system problems; the issues of efficient memory use when performing these
transformations are analyzed.

In addition to the actual research in the field of effective BH implementation, some
researchers are engaged in improving the efficiency of LAPACK (Linear Algebra PACKage)
algorithms [41] on various parallel computing architectures.

In modern computing systems, parallelism can be implemented at different levels,
and different types of parallelism can be used, often several within the same computing
architecture [42,43]. Accordingly, research is being conducted on the adaptation of well-
known numerical methods for effective implementation on modern parallel architectures,
or to create completely alternative algorithms, the effectiveness of implementing algorithms
on various parallel architectures is evaluated, for example, in [44,45].

The target computing architectures in this paper are parallel computing systems with
shared memory, so, the following can be identified as the main directions for improving
software efficiency (Figure 1).

Figure 1. The main directions of increasing the software efficiency for target computing architectures.

This work is based on previous research. In particular, the paper [46] describes a
vectorization method for algorithms of general form matrices eigenvalues and singular
values decompositions; the Householder reflection was used as the basic transformation.
Computational experiments have confirmed the effectiveness of the proposed vectorization
methods. In [47], methods were proposed to improve the parallelization algorithm of
the basic transformation, in particular, the method of reducing the sequential calculations
proportion. This made it possible to reduce the software execution time, which proves the
effectiveness of such techniques. In [48], the matrices decomposition using Householder
reflections on parallel computing systems with shared memory is considered. It is shown
that, in the case of performing a Householder linear transformation, it is possible to choose
an optimal calculation scheme that significantly reduces the probability of cache misses.
In the case of performing a two-sided conversion, the situation is not so unambiguous,
since it is necessary to perform multiplication on both sides to preserve eigenvalues or
singular values.

3. Software Cache Optimization-Based Methodology

This paper will show the use of SCO-based methodology, designed to improve data
caching algorithms in software development for computing systems with a hierarchical
memory structure (Figure 2).

Energies 2022, 15, 7509 5 of 15

Figure 2. SCO stages.

At the first SCO stage, the current required algorithm is analyzed. This algorithm is
characterized by sets of arithmetic–logical operations Hop and memory access operations
U. During analysis:

- the set of memory access operations is divided into disjoint subsets according to
the method of accessing memory that affects the cache miss probability; subsets of
operations with equal cache miss probability values Pcm are obtained;

- the number of element {Nα}αεA s and the cache miss probability {Pα}αεA are determined
for each of the obtained subsets;

- the number of arithmetic and logical operations in general for the entire algorithm
Nop is determined;

- the expression is formed that evaluates the software running time T.

At the second SCO stage, the results are analyzed and an attempt is made to correct
the original algorithm to improve the caching algorithms:

- analyzing the obtained subsets of memory access operations and the corresponding
values of the cache miss probability {Pα}αεA, the number of operations {Nα}αεA and
the execution time {Tα}αεA of all subset operations, the search for algorithm sections
that negatively affect the data caching process efficiency is carried out;

- an attempt is made to correct the original algorithm, the result is a new division of
the memory access operations set into subsets with other characteristics {U’β}βεB;
permutation optimization and other approaches can be used to correct the algorithm;

- software running time T’ with the modified algorithm is estimated;
- resulting speedup value S is calculated.

After completing the SCO, a decision is made to re-apply this procedure depending
on the value of a quality function. For example, when making a decision, the resulting
speedup value is used (Figure 2).

We applied SCO to the two-sided Householder transformation in reducing the general
form matrix to the Hessenberg form. As a result, we obtained two optimized schemes for
performing the calculations.

Energies 2022, 15, 7509 6 of 15

3.1. Row-Oriented Householder Reflection

Figure 3 shows the process of obtaining a row-oriented scheme for performing the basic
Householder reflection algorithm. The arrows here show the sequence of row operations
(solid arrows) and column operations (dotted arrows) of the original matrix within one
conversion step for the reduction to the upper Hessenberg form.

Figure 3. Obtaining a row-oriented scheme for performing a basic transformation: (a) traditional
algorithm based on the Householder reflection; (b) row-oriented transformation scheme.

Figure 3a shows the scheme of the traditional algorithm based on the Householder
reflection. It is extremely inefficient due to the need to process matrix columns, which
generates a large number of cache misses for matrices stored along the rows.

The order of processing matrix elements could be modified. Figure 3b shows a
row-oriented transformation scheme, where column processing is also carried out along
the rows.

3.2. Single-Pass Householder Reflection

This algorithm contains the potential for further performance improvements. Repeated
application of the same procedure shows the inefficiency of the need for two passes through
the matrix to process rows and columns. As a result, at a certain dimension, by the second
pass, matrix elements begin to be displaced from the cache. The matrix elements’ processing
order can be changed again. Now processing is carried out within one pass in the sequence
first column—first row—second column—second row, etc. This approach significantly
reduces the probability of cache misses. Figure 4 shows obtaining a single-pass scheme for
performing the basic transformation.

Figure 4. Obtaining a single-pass scheme for performing a basic transformation: (a) row-oriented
transformation scheme; (b) single-pass transformation scheme.

Energies 2022, 15, 7509 7 of 15

The pseudo-code of this algorithm is presented below. The Hessenberg procedure is
used to bring the general matrix to the upper Hessenberg form; we used the following
notation: A—the original matrix, N—dimension of the original matrix, Householder—the
procedure for calculating the reflection vector, uS—reflection vector, g—normalization
coefficient. SPH—procedure for performing one step of a single-pass Householder trans-
formation (Single-Pass Householder). Matrices and vectors are highlighted in bold, and
the ranges of index changes are indicated in parentheses.

1: Hessenberg (A, N)
2: for s = 1 to N − 2 do
3: (g, uS) = Householder(As, s);
4: SPH(A, N, s, g, uS)
5: end for
6: end Hessenberg

1: SPH(A, N, s, g, uS)
2: for r = 1 to (s−1) do
3: vrs = g A[r, s + 1:N] uS[s + 1:N]
4: A[r, s + 1:N] -= vrs uS

T[s + 1:N]
5: vs

T[s:N] = g uS
T[s + 1:N] A[s + 1:N, s:N]

6: for r = s to N do
7: A[r, s:N] -= uS[r] vs

T[s:N]
8: vrs = g A[r, s + 1:N] uS[s + 1:N]
9: A[r, s + 1:N] -= vrs uS

T[s + 1:N]
10: end SPH

4. Results and Discussions

The experiments were carried out on the Volgograd State Technical University (VSTU)
computing cluster. Currently, the cluster includes 24 nodes, including 16 nodes based on
Intel Xeon of different generations, 8 nodes (2 servers) based on Intel Xeon Phi of the 3rd
generation (KNL), 324 × 86 CPU cores, up to 32 Xeon Phi KNC accelerators, 4 NVidia
TESLA V100/P100/K20 accelerators, the total amount of RAM is 4 TB, the Infiniband
56 Gbit network is used, and peak performance is more than 80 GFlops. Linux CentOS 7 is
installed on most nodes.

We used RAPL in experiments aimed at determining software energy efficiency. RAPL
is an interface developed by Intel, which provides built-in counters of CPU energy con-
sumption. The measurement accuracy depends on the actual microarchitecture, but the
developers claim that, starting with the Haswell architecture, it is based on fairly accurate
measurements. It should be noted that RAPL is not an analog tool, an energy consump-
tion software model is used. This model estimates energy consumption using hardware
performance counters.

Only the CPU and Dynamic Random Access Memory (DRAM) are covered by mea-
surements in most systems, so it is difficult to answer the question of how much energy the
entire system consumes using RAPL. However, despite this, this interface is an excellent
tool designed for monitoring energy consumption and optimizing applications from the
energy efficiency point of view.

RAPL provides per-package energy estimates, meaning the totals are at the socket (not
per-core) level. Energy measurements available include: total package, Power Plane 0 (PP0)
which is the aggregate total of all cores, Power Plane 1 (PP1) which is an implementation-
defined part of the “uncore” (usually the Graphics Processing Unit, GPU), and the DRAM.
Measurement availability varies by chip model. DRAM measurements were originally
only available for server systems but, starting with Haswell, are available on all CPUs.
Similarly, GPU measurements are not available on server versions of the CPUs. A number
of publications present RAPL interface studies on various architectures, and fairly high
measurement accuracy is noted.

Energies 2022, 15, 7509 8 of 15

During the experiments, the software execution time and energy consumed by the
computing system were measured. The results are shown in Figures 5 and 6.

Figure 5. Dependence of the software execution time on the problem dimension.

Figure 6. Dependence of the energy consumed on the problem dimension.

As expected, the single-pass transformation scheme turned out to be the fastest, and
the implementation of the classic two-sided Householder transformation scheme was
the slowest.

The energy consumption graphs turned out to be similar to the software execution
time graphs; the fastest scheme turned out to be the most energy-efficient, and the least—
the slowest.

The experiments carried out confirmed the hypothesis expressed in some research
papers [22,23]. The fastest program turned out to be the most energy efficient. For example,
when processing matrices of dimension 8000, the single-pass scheme implementation led
to a consumption of 28.7 kJ, while the classical transformation scheme implementation
on the same dimension led to a consumption of 109 kJ, which is 3.8 times more. Thus, it
can be argued that any optimization aimed at reducing software execution time also leads

Energies 2022, 15, 7509 9 of 15

to an increase in software energy efficiency. Additionally, although optimized versions
can consume more power, energy consumption is reduced. At the same time, a direct
relationship between the execution time reduction and power consumption during various
optimizations is unlikely to be observed.

The answer to the question, "What is the quantitative relationship between the software
execution time reduction and the energy consumption decreasing?” is not so obvious.
Figures 7 and 8 show graphs of the power consumed in the software execution process.

Figure 7. The dependence of the power consumed in the software execution process on the problem
dimension (classical scheme).

Figure 8. The dependence of the power consumed in the software execution process on the problem
dimension (single-pass scheme).

Both graphs have the same structure and they present the following data:

PKG—the power consumed by the socket as a whole (Package);
DRAM—the power consumed by DRAM;
PKG Idle—the power consumed by the socket in «idle» mode;
DRAM Idle—the power consumed by DRAM in «idle» mode.

Energies 2022, 15, 7509 10 of 15

These figures confirm previously made assumptions that optimized software versions
consume more power. So, when implementing the classical scheme, 49 W is consumed ver-
sus 52 W in the single-pass scheme (domain PKG) and 37 W versus 41 W (domain DRAM).
However, due to a significant reduction in software execution time, energy consumption
is reduced.

The “idle” mode here refers to the system operating mode without running user
software. In this mode, some system processes are executed that do not actually consume
resources (according to the data of the “top” utility). Analyzing Figures 7 and 8, it is
obvious that in the “idle” mode, the CPU consumes power of 22 W and 12.5 W for the PKG
and DRAM domains, respectively. It should also be noted that the graphs in Figure 6 are
obtained by summing the values of PKG and DRAM.

Power consumed measurements in the “idle” mode were carried out as follows. As
mentioned above, we used one of the VSTU computing cluster nodes for computational
experiments. This node contains two Intel Xeon E5-2650 v3 2.3 GHz CPUs, and 128 Gb
RAM. The software measuring the power consumption was run on one CPU, and the
second remained in “idle” mode. The RAPL provides an opportunity to find out the
number of CPUs available to the interface. In terms of RAPL, several package power
domains can be controlled using RAPL. This is equal to the CPU package number in the
system. Then, a set of parameters can be obtained for each CPU.

MSR (Model-Specific Registers) are used to obtain data. MSR are any of the various
control registers in the ×86 instruction set used for debugging, program execution tracing,
computer performance monitoring, and toggling certain CPU features. Reading and writing
to these registers are handled by the rdmsr and wrmsr instructions, respectively. As these
are privileged instructions, they can be executed only by the operating system. Use of
the Linux MSR Kernel Module creates a pseudo file “/dev/cpu/x/msr” (with a unique x
for each CPU or CPU core). A user with permissions to read and/or write to this file can
use the file Input/Output Application Programming Interface (I/O API) to access these
registers. The purpose of registers may vary from model to model.

Only two of all RAPL domains are supported on Intel Xeon E5 v3 CPUs—PKG and
DRAM. These domains are presented on the graphs in the “idle” mode and the software
execution process. Since the experiments were carried out in the CentOS environment, we
used the file I/O API to read the contents of the registers. Figure 9 shows the pseudo-code
of MSR reading.

Figure 9. Pseudo-code of MSR reading.

Here, msr_addr is the required MSR. In particular, the RAPL PKG energy consumed
register and the RAPL DRAM energy consumed register. This MSR is updated approxi-
mately every 1 msec. So, short workloads will have significant errors due to the refresh
rate. In this regard, in the parameter measuring process, the calculations were repeated
many times with next averaging of the results. The number of repetitions was set large
enough for small dimensions to overcome the limitations associated with the frequency of
MSR updates.

We constructed several graphs to assess the quantitative relationship between the
software execution time reduction and energy consumption decreasing. So, Figure 10 shows
the speedup of the optimized software relative to the classical transformation scheme. To
construct this dependence, the data presented in Figure 5 were used.

Energies 2022, 15, 7509 11 of 15

Figure 10. The speedup of the optimized software relative to the classical transformation scheme.

Both implementations show good performance growth at dimensions 1000–1500,
which then decreases somewhat. These results are related to the CPU characteristics,
specifically with the size of the cache memory, which for the used CPU is 25 Mb (L3 Smart
Cache). The most speedup is achieved at dimensions of approximately 1750 with this
cache memory amount and the double type (the length is 8 bytes), which we used for
modeling. This is due to the fact that larger-dimensional matrices no longer fit into the
cache, optimized versions increase acceleration on smaller dimensions due to better use
of caches L1/L2. At dimensions greater than 1750, all three versions begin to generate
misses in L3, which somewhat reduces the acceleration value. Further, the performance
drops somewhat and, for a row-oriented scheme, the speedup stabilizes at around 1.35.
For a single-pass scheme, again there is an increase in performance up to a value of 4.1 at
dimension 8000. The performance gain, in this case, is provided by an efficient data caching
algorithm for L2, while the basic scheme generates an increasing number of cache misses.

Next, the ratio of energy consumption of the basic and single-pass transformation
scheme was calculated (Figure 11). Figure 6 data were used for the calculation (the ratio of
the total energy for the PKG and DRAM domains calculated for the basic and single-pass
transformation scheme). In general, the graph is like the speedup graph for a single-pass
scheme, slightly differing in specific values.

Figure 11. The ratio of the energy consumption of the basic and single-pass transformation scheme.

Energies 2022, 15, 7509 12 of 15

The dependency shown in Figure 12 illustrates this difference. The ratio of the speedup
value to the power consumption decreasing value for a single-pass scheme is shown here.
It can be seen that this ratio is slightly higher than one, and varies between 1.05–1.1 for
different dimensions.

Figure 12. The ratio of speedup to the decreasing of energy consumption for a single-pass scheme.

That is, the absolute speedup value for a particular dimension slightly exceeds the
reducing energy consumption value, although these values are close. In the course of the
experiments, an assessment was also made of the “extra energy consumption” reduction,
which we can define as the difference between current energy consumption and energy
consumption in the “idle” mode (5).

Edi f f = (PKG + DRAM)− (PKG Idle + DRAM Idle) (5)

However, the analysis showed that these parameter dynamics for the target computing
architecture almost completely coincide with the whole energy consumption dynamics.
In addition, the graphs of the ratio of “extra energy consumption” and whole energy
consumption practically coincide for the two studied software. In fact, let w1 and w2—
“extra” power consumed by two software, and K = (PKG Idle + DRAM Idle)—the power
consumed by the CPU in the “idle” mode. Then

w1

w2
− (K + w1)

(K + w2)
=

(w1/w2 − 1)
(1 + w2/K)

(6)

Earlier (see Figures 7 and 8) it was shown that the difference between the power
consumption for the basic and single-pass schemes is not so great (does not exceed 10%).
Accordingly, the value of the Expression (6) that shows the difference between the ratio of
“extra” and total power consumption for the target computing system is small.

5. Conclusions

Currently, improving the energy efficiency of any activity type, whether it is industrial
production or scientific research, engineering calculations, or the use of household appli-
ances is becoming more relevant than ever. All this applies equally to IT technologies and
energy-efficient software development. So, in this article, we conducted a study related to
the assessment of the relationship between the proposed software optimization method
(SCO) with an increase in software energy efficiency.

Energies 2022, 15, 7509 13 of 15

The obtained results show a high correlation degree between the decrease in software
execution time and power consumption. The paper demonstrated the use of the application
cache optimization technique SCO, which resulted in a significant reduction in software
execution time. At certain dimensions, the optimized software version gives a speedup
of more than 4 times in relation to the basic implementation of the transformation. At
the same time, we measured the energy consumed using the RAPL interface provided
by Intel for calculating the energy consumed during the software execution. We carried
out measurements for the obtained optimized versions of the basic algorithm. Separately,
we analyzed the values of the energy consumed by the CPU socket, and DRAM both
during the software execution and in the «idle» mode. Measurements have shown that
optimized algorithm versions reduce power consumption up to 4 times in relation to
the basic transformation scheme. These measurements showed the effectiveness of the
SCO-based methodology used to reduce energy consumption.

Unlike the heuristic approach to improving caching algorithms, SCO provides a formal
tool for optimization. This can reduce the time for software modification, and give a certain
economic effect by reducing energy consumption, computing resources and some other
factors. There are no limitations on the use of this methodology, it can be applied to any
software. However, its use can give a significant result in the case of tasks with regular
access and a large amount of processed data.

The result of further work in this direction will be attempts to determine the im-
pact of other software optimization methods on energy consumption, which would help
developers create better software in terms of energy efficiency.

Author Contributions: Conceptualization, A.G.K. and V.E.; Investigation, V.E.; Methodology, A.G.K.
and V.E.; Software, V.E.; Visualization, V.E.; Writing—original draft, V.E.; Writing—review & editing,
A.G.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fallis, E.; Spachos, P. Power Consumption and Throughput of Wireless Communication Technologies for Smartphones. In Pro-

ceedings of the 2018 Global Information Infrastructure and Networking Symposium (GIIS), Thessaloniki, Greece, 23–25 October
2018; pp. 1–4. [CrossRef]

2. Lutui, P.R.; Cusack, B.; Maeakafa, G. Energy efficiency for IoT devices in home environments. In Proceedings of the 2018 IEEE
International Conference on Environmental Engineering (EE), Milan, Italy, 12–14 March 2018; pp. 1–6. [CrossRef]

3. Schill, A.; Globa, L.; Stepurin, O.; Gvozdetska, N.; Prokopets, V. Power Consumption and Performance Balance (PCPB) scheduling
algorithm for computer cluster. In Proceedings of the 2017 International Conference on Information and Telecommunication
Technologies and Radio Electronics (UkrMiCo), Odessa, UKraine, 11–15 September 2017; pp. 1–8. [CrossRef]

4. Rahmati, A.; Qian, A.; Zhong, L. Understanding human-battery interaction on mobile phones. In Proceedings of the 9th
International Conference on Human Computer Interaction with Mobile Devices and Services, Singapore, 9–12 September 2007.

5. Zakarya, M.; Gillam, L. Energy efficient computing, clusters, grids and clouds: A taxonomy and survey. In Sustainable Computing:
Informatics & Systems; Elsevier: Amsterdam, The Netherlands, 2017.

6. Zakarya, M. Energy, performance and cost efficient datacenters: A survey. In Renewable and Sustainable Energy Reviews; Elsevier:
Amsterdam, The Netherlands, 2018.

7. Iyer, S.G.; Dipakumar Pawar, A. GPU and CPU Accelerated Mining of Cryptocurrencies and their Financial Analysis. In Proceed-
ings of the 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India,
30–31 August 2018; pp. 599–604. [CrossRef]

8. Pereira, R.; Couto, M.; Ribeiro, F.; Rua, R.; Cunha, J.; Fernandes, J.P.; Saraiva, J. Energy Efficiency across Programming Languages.
In Proceedings of the SLE’17, Vancouver, BC, Canada, 23–24 October 2017; 12p. [CrossRef]

9. Pandey, N.; Verma, O.P.; Kumar, A. A framework for usage pattern–based power optimization and battery lifetime prediction in
smartphones. Pers. Ubiquit. Comput. 2022, 26, 821–836. [CrossRef]

10. Yang, R.; Song, J.; Huang, B.; Li, W.; Qi, G. An Energy-Efficient Step-Counting Algorithm for Smartphones. Comput. J. 2020, 65,
689–700. [CrossRef]

http://doi.org/10.1109/giis.2018.8635665
http://doi.org/10.1109/ee1.2018.8385277
http://doi.org/10.1109/ukrmico.2017.8095365
http://doi.org/10.1109/I-SMAC.2018.8653733
http://doi.org/10.1145/3136014.3136031
http://doi.org/10.1007/s00779-019-01213-4
http://doi.org/10.1093/comjnl/bxaa096

Energies 2022, 15, 7509 14 of 15

11. Oliveira, W.; Oliveira, R.; Castor, F. A study on the energy consumption of Android app development approaches. In Proceedings
of the 14th International Conference on Mining Software Repositories, Buenos Aires, Argentina, 20–21 May 2017; pp. 42–52.

12. Li, D.; Halfond, W.G.J. An investigation into energy-saving programming practices for Android smartphone app development.
In Proceedings of the 3rd International Workshop on Green and Sustainable Software, Hyderabad, India, 1 June 2014.

13. Sahin, C.; Cayci, F.; Gutierrez, I.L.M.; Clause, J.; Kiamilev, F.; Pollock, L.; Winbladh, K. Initial explorations on design pattern
energy usage. In Proceedings of the 4th International Workshop on Green and Sustainable Software, Zurich, Switzerland, 3 June
2012; pp. 55–61.

14. Chen, Y.-J.; Hsu, C.-H.; Li, K.-C.; Chang, H.-Y.; Wang, S.-T. Power Consumption Optimization of MPI Programs on Multi-
core Clusters. In Scalable Information Systems; Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, INFOSCALE 2009; Mueller, P., Cao, J.N., Wang, C.L., Eds.; Springer: Berlin/Heidelberg,
Germany, 2009; Volume 18. [CrossRef]

15. Görtz, M.D.; Kühn, R.; Zietek, O.; Bernhard, R.; Bulinski, M.; Duman, D.; Freisen, B.; Jentsch, U.; Klöppner, T.; Popovic, D.; et al.
Energy Efficiency of a Low Power Hardware Cluster for High Performance Computing. In INFORMATIK 2017; Eibl, M., Gaedke,
M., Eds.; Gesellschaft für Informatik: Bonn, Germany, 2017; pp. S2537–S2548. [CrossRef]

16. Pereira, R.; Carção, T.; Couto, M.; Cunha, J.; Fernandes, J.P.; Saraiva, J. Helping programmers improve the energy efficiency of
source code. In Proceedings of the 39th International Conference on Software Engineering—Companion, ICSE-C, Buenos Aires,
Argentina, 20–28 May 2017.

17. Chowdhury, S.A.; Hindle, A. Greenoracle: Estimating software energy consumption with energy measurement corpora. In Pro-
ceedings of the 13th International Conference on Mining Software Repositories, MSR, Austin, TX, USA, 14–15 May 2016;
pp. 49–60.

18. Sahin, C.; Pollock, L.; Clause, J. How do code refactorings affect energy usage? In Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, Torino, Italy, 18–19 September 2014; p. 36.

19. Hao, S.; Li, D.; Halfond, W.G.J.; Govindan, R. Estimating mobile application energy consumption using program analysis.
In Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, 18–26 May 2013;
pp. 92–101.

20. Couto, M.; Borba, P.; Cunha, J.; Fernandes, J.P.; Pereira, R.; Saraiva, J. Products go green: Worst-case energy consumption in
software product lines. In Proceedings of the 21st International Systems and Software Product Line Conference, SPLC, Sevilla,
Spain, 25–29 September 2017; Volume A, pp. 84–93.

21. Pereira, R.; Couto, M.; Saraiva, J.; Cunha, J.; Fernandes, J.P. The influence of the Java collection framework on overall energy
consumption. In Proceedings of the 5th International Workshop on Green and Sustainable Software, Austin, TX, USA, 14–22 May
2016; pp. 15–21.

22. Yuki, T.; Rajopadhye, S. Folklore confirmed: Compiling for speed = compiling for energy. In Languages and Compilers for Parallel
Computing; Springer: Berlin/Heidelberg, Germany, 2014; pp. 169–184.

23. Pinto, G.; Castor, F.; Liu, Y.D. Understanding energy behaviors of thread management constructs. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems Languages & Applications, Portland, OR, USA, 20–24
October 2014; pp. 345–360.

24. Trefethen, A.E.; Thiyagalingam, J. Energy-aware software: Challenges, opportunities and strategies. J. Comput. Sci. 2013, 4,
444–449. [CrossRef]

25. Lima, L.G.; Melfe, G.; Soares-Neto, F.; Lieuthier, P.; Fernandes, J.P.; Castor, F. Haskell in green land: Analyzing the energy behavior
of a purely functional language. In Proceedings of the 23rd IEEE International Conference on Software Analysis, Evolution, and
Reengineering, SANER, Suita, Japan, 14–18 March 2016; pp. 517–528.

26. Abdulsalam, S.; Zong, Z.; Gu, Q.; Qiu, M. Using the greenup, powerup, and speedup metrics to evaluate software energy
efficiency. In Proceedings of the 6th International Green and Sustainable Computing Conference, IGCC, Las Vegas, NV, USA,
14–16 December 2015; pp. 1–8.

27. Ortega, J.M. Introduction to Parallel and Vector Solution of Linear Systems; Plenum Press: New York, NY, USA, 1988; p. 305.
ISBN 0-306-42862-8.

28. Demmel, J.W. Applied Numerical Linear Algebra; SIAM: Philadelphia, PA, USA, 1997; p. 430.
29. Salam, A.; Kahla, H.B. An upper J-Hessenberg reduction of a matrix through symplectic Householder transformations. Comput.

Math. Appl. 2019, 78, 178–190. [CrossRef]
30. Bujanovic, Z.; Karlsson, L.; Kressner, D. A householder-based algorithm for Hessenberg-triangular reduction. SIAM J. Matrix

Anal. Appl. 2018, 39, 1270–1294. [CrossRef]
31. Bogoya, J.M.; Grudsky, S.M.; Malysheva, I.S. Extreme individual eigenvalues for a class of large hessenberg toeplitz matrices.

Oper. Theory Adv. Appl. 2018, 271, 119–143.
32. Kabir, K.; Haidar, A.; Tomov, S.; Dongarra, J. Performance analysis and design of a hessenberg reduction using stabilized blocked

elementary transformations for new architectures. Simul. Ser. 2015, 47, 135–142.
33. Tomov, S.; Nath, R.; Dongarra, J. Accelerating the reduction to upper hessenberg, tridiagonal, and bidiagonal forms through

hybrid GPU-based computing. Parallel Comput. 2010, 36, 645–654. [CrossRef]
34. Buttari, A.; Langou, J.; Kurzak, J.; Dongarra, J. Parallel tiled QR factorization for multicore architectures. Concurr. Comput. Pract.

Exp. 2008, 20, 1573–1590. [CrossRef]

http://doi.org/10.1007/978-3-642-10485-5_8
http://doi.org/10.18420/in2017_256
http://doi.org/10.1016/j.jocs.2013.01.005
http://doi.org/10.1016/j.camwa.2019.02.025
http://doi.org/10.1137/17M1153637
http://doi.org/10.1016/j.parco.2010.06.001
http://doi.org/10.1002/cpe.1301

Energies 2022, 15, 7509 15 of 15

35. Merchant, F.; Vatwani, T.; Chattopadhyay, A.; Nandy, S.K.; Narayan, R. Efficient realization of householder transform through
algorithm-architecture co-design for acceleration of QR Factorization. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 1707–1720.
[CrossRef]

36. Noble, J.H.; Lubasch, M.; Stevens, J.; Jentschura, U.D. Diagonalization of complex symmetric matrices: Generalized Householder
reflections, iterative deflation and implicit shifts. Comput. Phys. Commun. 2017, 221, 304–316. [CrossRef]

37. Getmanskiy, V.; Andreev, A.; Alekseev, S.; Gorobtsov, A.; Egunov, V.; Kharkov, E. Optimization and Parallelization of CAE
Software Stress-Strain Solver for Heterogeneous Computing Hardware. In Proceedings of the Creativity in Intelligent Technologies
and Data Science. Second Conference, CIT&DS 2017, Volgograd, Russia, 12–14 September 2017; Communications in Computer
and Information Science. Springer International Publishing: Berlin/Heidelberg, Germany, 2017; Volume 754, pp. 562–674.

38. Low, T.M.; Igual, F.D.; Smith, T.M.; Quintana-Orti, E.S. Analytical Modeling Is Enough for High-Performance BLIS. ACM Trans.
Math. Softw. 2016, 43, 1–18. [CrossRef]

39. Schreiber, R.; VanLoan, C. A Storage-Efficient WY Representation for Products of Householder Transformations. SIAM J. Sci. Stat.
Comput. 1989, 10, 53–57. [CrossRef]

40. Golub, G.; Van Loan, C. Matrix Computations, 3rd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 1996; p. 728.
41. Eljammaly, M.; Karlsson, L.; Kagstrom, B. On the tunability of a new Hessenberg reduction algorithm using parallel cache

assignment. In Parallel Processing and Applied Mathematics; Springer: Cham, Switherland, 2018; Volume 10777, pp. 579–589.
42. Andreev, A.; Doukhnitch, E.; Egunov, V.; Zharikov, D.; Shapovalov, O.; Artuh, S. Evaluation of Hardware Implementations of

CORDIC-Like Algorithms in FPGA Using OpenCL Kernels. In Knowledge-Based Software Engineering, Proceedings of 11th Joint
Conference, JCKBSE, Volgograd, Russia, 17–20 September 2014; Communications in Computer and Information Science; Springer
International Publishing: Berlin/Heidelberg, Germany, 2014; Volume 466, pp. 228–242.

43. Egunov, V.A.; Kravets, A.G. Povyshenie effektivnosti programm dlya vychislitel’nyh sistem s ierarhicheskoj strukturoj pamyati
[Improving the efficiency of software for computing systems with a hierarchical memory structure]. Mat. Metod. V Tekhnologiyah I
Tekhnike 2022, 4, 100–103. [CrossRef]

44. Glinsky, B.; Kulikov, I.; Chernykh, I.; Weins, D.; Snytnikov, A.; Nenashev, V.; Andreev, A.; Egunov, V.; Kharkov, E. The Co-design
of Astrophysical Code for Massively Parallel Supercomputers. In Proceedings of the Algorithms and Architectures for Parallel
Processing, ICA3PP 2016 Collocated Workshops: SCDT, TAPEMS, BigTrust, UCER, DLMCS, Granada, Spain, 14–16 December
2016; Lecture Notes in Computer Science. Springer International Publishing: Berlin/Heidelberg, Germany, 2016; Volume 10049,
pp. 342–353.

45. Dominguez, T.; Quintana, A.E.; Orti, E.S. Fast Blocking of Householder Reflectors on Graphics Processors. In Proceedings of the
26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP, Cambridge, UK, 21–23
March 2018; pp. 385–393.

46. Egunov, V.A.; Andreev, A.E. Vektorizaciya algoritmov vypolneniya sobstvennogo i singulyarnogo razlozhenij matric s is-
pol’zovaniem preobrazovaniya Hauskholdera [Vectorization of algorithms for performing proper and singular matrix expansions
using the Householder transformation]. Prikaspijskij Zhurnal: Upr. I Vysok. Tekhnologii 2020, 2, 71–85.

47. Andreev, A.E. Solving of Eigenvalue and Singular Value Problems via Modified Householder Transformations on Shared Memory
Parallel Computing Systems. In Supercomputing: RuSCDays, Proceedings of the 5th Russian Supercomputing Days, Moscow, Russia,
23–24 September 2019; Springer: Cham, Switzerland, 2019; Volume 1129, pp. 131–151.

48. Egunov, V.A. Implementation of QR and LQ decompositions on shared memory parallel computing systems. In Proceedings of
the 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM, Chelyabinsk, Russia,
19–20 May 2016; p. 5. [CrossRef]

http://doi.org/10.1109/TPDS.2018.2803820
http://doi.org/10.1016/j.cpc.2017.06.014
http://doi.org/10.1145/2925987
http://doi.org/10.1137/0910005
http://doi.org/10.52348/2712-8873_MMTT_2022_4_100
http://doi.org/10.1109/ICIEAM.2016.7911607

	Introduction
	Basic Transformation
	Software Cache Optimization-Based Methodology
	Row-Oriented Householder Reflection
	Single-Pass Householder Reflection

	Results and Discussions
	Conclusions
	References

