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Abstract: Estimation of core temperature is one of the crucial functionalities of the lithium-ion Battery
Management System (BMS) towards providing effective thermal management, fault detection and
operational safety. It is impractical to measure the core temperature of each cell using physical sensors,
while at the same time implementing a complex core temperature estimation strategy in onboard
low-cost BMS is also challenging due to high computational cost and the cost of implementation.
Typically, a temperature estimation scheme consists of a heat generation model and a heat transfer
model. Several researchers have already proposed ranges of thermal models with different levels of
accuracy and complexity. Broadly, there are first-order and second-order heat resistor–capacitor-based
thermal models of lithium-ion batteries (LIBs) for core and surface temperature estimation. This
paper deals with a detailed comparative study between these two models using extensive laboratory
test data and simulation study. The aim was to determine whether it is worth investing towards
developing a second-order thermal model instead of a first-order model with respect to prediction
accuracy considering the modeling complexity and experiments required. Both the thermal models
along with the parameter estimation scheme were modeled and simulated in a MATLAB/Simulink
environment. Models were validated using laboratory test data of a cylindrical 18,650 LIB cell.
Further, a Kalman filter with appropriate process and measurement noise levels was used to estimate
the core temperature in terms of measured surface and ambient temperatures. Results from the
first-order model and second-order models were analyzed for comparison purposes.

Keywords: electric vehicles; stationary battery energy storage system; battery automated system;
online state estimation; thermal modeling; first-order model; second-order model; Kalman filtering

1. Introduction

Lithium-ion batteries (LIBs) have been extensively commercialized as a primary energy
storage technology for electric vehicles (EVs), stationary energy storage in the smart grid
system and several other consumer electronics. The primary dominating factors of LIBs
over other energy storage technologies include high energy density, long lifespan, and de-
clining cost [1–4]. However, from literature and practice, it is noticed that the performance
of LIBs as well as the durability and reliability are significantly influenced by the operat-
ing temperature. Moreover, excessively high temperatures may cause thermal runaway,
leading to fire, smoke and other serious safety hazards to the operators [5–7]. Therefore,
the requirement of a battery management system (BMS) has become indispensable for
effective thermal management and safety of LIB system, which essentially requires accurate
information on the core and surface temperature of each cell [8,9] besides other important
states such as state of charge (SOC) [10,11] and state of health (SOH). A few other popular
functions of an advanced BMS include cell balancing [12,13], fault detection/diagnosis [14]
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and some other safety inspection functionalities. Several recent research studies highlighted
that the accuracy of estimating cell SOC [15], SOH [16] and remaining storage capacity [17]
depends on the accurate estimation of cell temperature as all these states are the function
of temperature. Moreover, the Columbic efficiency of a cell is greatly affected by the cell
temperature during the charging and discharging period. It is worthwhile to mention
that the temperature distribution inside the cell is not uniform, and the core temperature
remains higher than the surface temperature during practical application, especially under
high charging and discharging current [18]. Typically, the difference between the core and
surface temperature varies in the range of 5–10 ◦C [19,20]; however, under high current
loading with rapid load fluctuation, it could be even more. Therefore, accurate informa-
tion on the core and surface temperature is essential to achieving the effective thermal
management of an LIB pack besides fault detection. While most of the existing temper-
ature measurement techniques measure the surface temperature directly using physical
sensors [21], the measurement of cells’ internal temperature is highly challenging when
using a physical sensor. Moreover, any high-capacity LIB pack consists of thousands of
single LIB cells; thus, installing physical sensors in each cell is not practically feasible from
the viewpoint of incremental cost and manufacturing complexity.

To sum up, accurate information on core temperature undoubtedly serves as the
essential basis for the thermal management and safety of LIB apart from SOC and SOH
estimation whilst it is difficult to measure the core temperature using physical sensors.
Therefore, a precise thermal model is crucial to accurate temperature estimation. Moreover,
it should be easy to model and computationally inexpensive in order to be implemented
in onboard BMS for online prediction of temperature. Several temperature estimation
techniques have been proposed by researchers. Typically, a temperature estimation strategy
consists of two models, namely, a heat generation model and a heat transfer model [22].
The heat generation model takes physical measurement signals from a cell, typically
voltage current, to estimate the total heat generation during charging and discharging.
Then, the heat transfer model takes the estimated total heat quantity as model input to
predict the temperature of that cell. Depending on the modeling, it can only estimate the
core temperature (single-state) or both the core and surface temperature simultaneously
(two-state).

Broadly, heat generation models can be classified into three groups, electrochemi-
cal models [23–26], data-driven empirical models [27–29] and equivalent circuit models
(ECM) [30–32]. Few other researchers have also grouped the heat generation model from
the perspective of heat concentration. According to them, the heat generation model could
be a concentrated model (all heat is generated at the core), distributed model (heat gener-
ated uniformly over the cell) [33] and heterogeneous model [30,34] (due to temperature and
current density gradient inside the cell). On the other hand, the heat transfer model can be
grouped into finite element analysis (FEA)-based models [32,35–38], lumped multi-node
models [27,39–41] and heat capacitive-resistive models [42]. The lumped multi-node model
and heat capacitive-resistive models are typically developed based on the analogy between
thermal and electrical phenomena. It can be seen that the electrochemical model can pro-
duce a very accurate heat generation value provided all model parameters are carefully
tuned. However, the electrochemical models are highly complex and computationally
expensive. The accuracy of data-driven empirical models highly depends on the experi-
mentally acquired data. Collecting such high-resolution data is challenging, and with the
increase in data volume and the number of feature vectors, computational expenses also in-
crease exponentially. On the other hand, an ECM-based estimation model can be designed
suitable for online prediction and real-world application by establishing a balance between
the computational cost and prediction accuracy. Therefore, ECM-based battery models are
extensively used in practice for estimating heat generation in LIB. Further, as far as the
heat transfer model is concerned, the heat resistor–capacitor models are easy to develop
and computationally efficient compared to FEA-based methods and lumped-parameter
multi-node models. The FEA-based methods are highly accurate; however, they come at
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the expense of a high computational cost. Resistor–capacitor-based models can be opti-
mally engineered to make a balance between prediction accuracy and computational cost
depending on the application requirement. Therefore, heat resistor–capacitor model-based
temperature estimation is the prime focus of this present study.

Researchers have proposed different kinds of heat resistor–capacitor models for the
accurate and precise internal and surface temperature estimation of LIB. However, the
major concern regarding the practical application of any model is its computational cost,
the capability of online prediction and suitability for onboard BMS. Detailed studies on
the thermal characteristics of different layers inside an LIB cell, modelling complexity
and the experimental data requirement have been carried out and are listed in the refer-
ences section [43–48]. The heat resistor–capacitor models use the analogy between thermal
and electrical phenomena, where heat capacity (thermal capacitance) and heat transfer
coefficient (thermal resistance) are represented as electrical capacitor and resistor, respec-
tively [43]. So far, a first-order (one thermal energy storage element) and second-order (two
thermal energy storage elements)-based thermal models have been reported in the litera-
ture for temperature estimation. Second-order models are typically complex and require
extensive experiments alongside the knowledge of domain experts during modeling. On
the other hand, first-order models are easy to implement, computationally inexpensive
and require far fewer experiments. Recently, extensive research effort has been made on
second-order thermal models of LIB. However, a comparative study between the first-order
and second-order model has not yet been assessed. Therefore, this research study focused
on the comparative study to investigate whether it is worth investing in developing and
implementing a second-order thermal model for the core temperature estimation of LIB in
terms of accuracy, modeling complexity and the experimental requirement and its practica-
bility in onboard BMS. Extensive experiments were conducted for data collection, and the
data was further utilized for modeling, validation and comparison purposes. The strategy
was to employ an ECM-based heat generation model for both a first-order and second-
order thermal model to determine the total heat generation inside the cell. A Kalman filter
(KF) was used in both the cases to improve prediction performance. Then, the estimation
results were compared with the measured data to assess the modeling accuracy. Finally,
the predicted results obtained from the first-order and second-order model were compared
for the purpose of model-to-model comparison.

The remaining portion of the article is subdivided into five sections for better read-
ability, representation and understanding of the readers. First-order and second-order
thermal modeling of LIB and the respective temperature estimation strategy are presented
in Section 2. The experimental setup and model parameter identification are discussed
in Section 3. Temperature estimation using the fusion of the first-order thermal model
with KF and second-order thermal model with KF is described in Section 4. Section 4 also
includes the comparative study between the first-order thermal model and second-order
thermal model in terms of prediction accuracy and modeling complexity. Major findings
and concluding remarks are drawn in the conclusion in Section 5.

2. Thermal Modeling and Temperature Estimation Strategy

Commercially, LIBs are available in many different form factors such as prismatic
cells, pouch cells [49] and cylindrical cells. Among these, cylindrical cells are widely
used in large-scale high-power applications. However, the cylindrical cell has worse
thermal heat dissipation, and the spiral format leads to a big thermal gradient inside
the cell. Therefore, the thermal modeling of a 18,650 cylindrical LIB cell is considered
in this study, considering the necessity of effective thermal management of cylindrical
LIB. The mathematical analysis and the fusion of KF with these thermal models for core
and surface temperature estimation are presented in this section. The aim is to provide a
guideline for selecting an appropriate thermal model for online prediction with an optimum
computational cost suitable for onboard low-cost BMS. As previously discussed in the
introduction section, the temperature estimation model consists of one heat generation
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model and a heat transfer model, where the heat generation model provides input to the
heat transfer model. Therefore, the modeling strategy and mathematical analysis of the
ECM-based heat generation model are considered here as well.

2.1. Heat Generation Model

The Electric Circuit Model (ECM) [50]—based thermal estimation model has been
reported to estimate the total heat generation inside the LIB cell by several researchers.
So far, electrochemical modeling has demonstrated the best performance in capturing the
nonlinearities of LIB, while at the same time, it is the most complex to model. Capturing the
high degree of nonlinearities higher-order ECM is required; however, the computational
cost and modeling complexity increase with the increase in model order. Yet the major
advantage of ECM is that a balance between the modeling complexity and model accuracy
can be achieved through optimization with the help of the model order reduction tech-
nique [51,52]. Therefore, a 1-RC (first-order) ECM is considered here to quantify the total
heat generation. The 1-RC ECM of LIB is shown in Figure 1. The basic strategy used by any
ECM-based heat generation model is to mathematically accumulate the heat generation
from internal power losses that typically depend on the internal resistance and charging–
discharging current level. Again, the heat generation depends on the cell SOC, current
level and temperature, as the internal resistances are the functions of these variables.

Figure 1. 1-RC ECM (Thevenin’s equivalent) model of an LIB cell.

The VOCV and V in Figure 1 represent the open-circuit voltage and the terminal
voltage, respectively. The steady-state DC series resistance, which represents the electrolyte
resistance to the lithium-ion transportation, is denoted as R0 in Figure 1. Further, the short
transient response is caused by the lithium-ion flow in the solid electrolyte interphase layer,
and the anode electrode is represented by polarization resistance (R1) and capacitance (C1),
respectively. These R1 and C1 appear only during the transient period [53]. A 1-RC battery
model was considered in this study due to its optimum performance, ease of modelling,
low computational cost and adequate accuracy when compared to other higher-order
RC models [54,55]. Further, the online determination of heat generation inside LIB with
these higher-order models is challenging due to computational cost. For this, Bernardi
et al. [56] developed a simplified equation for LIB heat generation calculationthatis suitable
for online prediction over other computationally expensive methods such as constant heat
generation rate [57], curve fitting technique [58] and Joule’s Law [59]-based methods. The
governing equation for the total heat generated inside the battery (Q) as developed by
Bernardi et al. [56] is shown in Equation (1).

Q = I(V − VOCV) (1)

The parameters of this equation are also the function of charging–discharging current
(I), SOC and temperature, which are estimated using the ECM of the cell. Finally, the
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value of the Q, obtained from Equation (1), is used as one of the inputs to the first-order
and second-order thermal model for temperature estimation, which is discussed in the
following section.

2.2. First-Order Thermal Modelling
2.2.1. Mathematical Analysis of First-Order Thermal Model

Now, for the first-order model, as is noted by several other researchers, the surface
temperature is considered constant throughout the surface of the cell. Heat transport is only
along the radial direction, meaning the lateral surface temperature is considered the same
as axial direction (cell temperature at two terminals), as reported in [43]. Further, regarding
heat transfer, only heat conduction from the core to the surface is considered. Heat exchange
between surface and ambient by convection is not considered. The first-order thermal
model is depicted in Figure 2.

Figure 2. First-order heat resistor–capacitor-based thermal model of LIB.

In Figure 2, the thermal parameters, that is, the heat capacity of the core, heat transfer
resistance inside the cell, heat transfer resistance outside the cell and total quantity of heat
liberated concentrated from the core, are represented by Cc (J/K), Rc (K/W), Ru (K/W) and
Q (J), respectively. The unit of each respective quantity is mentioned in the parentheses. The
temperature of the core, surface and ambient is represented by Tc, Ts and Tamb, respectively,
measured in K. The core temperature at node Tc and surface temperature at node Ts can
be monitored using this model; thus this type of model is also referred to as a two-node
or two-state thermal model [22,60].The heat resistor–capacitor model uses the analogy
between the thermal and electrical systems, as discussed in the introduction section. Thus,
for mathematical analysis, the heat transfer rate is represented by electrical current (i), and
the branch currents are represented by ia, ib in the respective branch, as shown in Figure 2.
Therefore, the governing equation of the model can be derived by applying Kirchhoff’s
Current Law (KCL) at the Tc node. The current balance equation at node Tc reads:

i = ia + ib = Q (2)

Now, by rewriting Equation (2) in terms of thermal parameters, Equation (3) can
be found:

Q = Cc
dTc

dt
+

Ts − Tc

Ru
+

Tamb − Ts

Rc
(3)

By re-arranging Equation (3) we find:

Cc
dTc

dt
= Q +

Ts − Tc

Ru
+

Tamb − Ts

Rc
(4)
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Finally, the value of Tc can be calculated by integrating Equation (4) with respect to
the total heat transfer time while the values of Ts and Tamb are known. While Tamb can
be easily measured by employing only one temperature sensor, the measurement of Ts
with physical sensors in a high-power LIB pack is challenging. Therefore, the alternative
solution is to estimate the surface temperature using a temperature estimation scheme.
One such estimation scheme is also proposed in reference [8], which estimates Ts from
known Tc.

2.2.2. KF for First-Order Thermal Model

KF is used to estimate and predict an unknown parameter from known parameters.
The state model for a KF and the first-order model, as developed in the reference [43,61]
and in [62] respectively, are also considered for this study. Now, assuming the state as Tc,t,
output as Ts,t and inputs as Q and Tamb, The state-space matrices are derived by linearizing
Equation (4) in the discrete domain. A linearized version of Equation (4) is shown in
Equation (5).

Tc,t − Tc,t−1 =
Qt−1

Cc
+

Ts,t−1 − Tc,t−1

CcRc
+

Tamb,t − Ts,t−1

CcRu
(5)

As shown in reference [8], small changes in Ts can be ignored. Hence, the term Ts,t−1
can be considered as zero.

Tc,t =
Qt−1

Cc
+ Tc,t−1(1 −

1
CcRc

) +
Tamb,t−1

RuCc
(6)

The transfer matrices of the KF-based temperature estimation model can be found by
reducing Equation (6) in the form of state models as shown in Equations (7)–(9).

Hence,

A = [1 − 1
CcRc

] (7)

B = [
1

Cc

1
CcRu

] (8)

C = D = 0 (9)

2.3. Second-Order Thermal Modelling
2.3.1. Mathematical Analysis of Second-Order Thermal Model

The condition of non-uniform Ts and heat transport in the radial direction through
conduction from the core to surface is also considered during the second-order thermal
modeling. Additionally, the heat exchange between the surface and ambient is considered in
the second-order model, which was not included in the first-order model. Only convective
heat exchange between the cell surface and ambient is considered here. Therefore, in
addition to the thermal properties of the first-order model, the thermal capacitance of cell
case (Cs) is also considered. The resulting equivalent circuit of the second-order thermal
model using heat resistor–capacitor is shown in Figure 3, similarly to the findings of other
studies [8,60,63,64].
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Figure 3. Second-order equivalent circuit thermal model of LIB.

Q needs to be estimated for the same ECM-based strategy mentioned in Section 2.1. To
derive the mathematical analysis of the second-order thermal model, heat balance analysis
in the core and surface is performed. The heat balance equation at the core and surface is
represented in Equations (10) and Equation (11), respectively [8].

Cc
dTc

dt
= Q +

Ts − Tc

Rc
(10)

Cs
dTs

dt
=

(Tamb − Ts)

Ru
− (Ts − Tc)

Rc
(11)

2.3.2. KF for Second-Order Thermal Model

Tc could be estimated by re-arranging the coupled ordinary differential equations
of the second-order thermal model. Since the thermal model has two thermal energy
storage parameters (Cc and Cs), two governing equations are used to estimate Tc in terms
of measured Ts and Tamb.

A = [1 − 1
Cc(Rc + Ru)

] (12)

B = [
1

Cc

1
Cc(Rc + Ru)

] (13)

C = [
Ru

Rc + Ru
] (14)

D = [0
Rc

Rc + Ru
] (15)

It is worth noting that Cc, Rc and Ru in the second-order thermal model are the same
as Cp, Rin and Rout, respectively, in the first-order model.

2.3.3. Fundamentals of KF

It is worth providing a basic explanation of KF as it is the heart of the temperature
estimation scheme discussed here. A KF is a linear quadratic estimator and is mainly used
in statistics and control engineering. It outputs the estimates of an unknown state and uses
the noise and the inaccuracies of the measured output. Some of the common examples of
KF usage include guidance, navigation and core temperature estimation in EVs; the general
form of KF is shown below:

Xk = Ak−1Xk−1 + Bk−1Uk−1 + Wk−1 (16)



Energies 2022, 15, 623 8 of 21

Yk = CkXk + DkUk + Vk (17)

where Xk is the state of the system (Tc,t), Yk is the output of the system (Ts,t), Uk is the input
to the system ([Tamb,t Q]T), t presents the state of the system and t−1 represents the previous
state of the system. The block diagram of a KF is shown in Figure 4. It is a robust and simple
technique used to estimate data based on its input signal. It uses mathematical modeling
of the system and by giving the same input as an actual system, it predicts the output.
The measured output from the actual system and predicted output from the mathematical
model are then compared to obtain the error. This error is multiplied with Kalman gain
and is added to the predicted state to obtain an accurate estimated state [65].

Figure 4. Fundamental building blocks of KF based estimation scheme.

3. Experimental Analysis for Thermal Model Parameterization

An automated battery testing system is the best option to collect battery test data, espe-
cially for an LIB, as LIB cells are highly sensitive to voltage, current, temperature and other
environmental uncertainties. Therefore, an in-house “Battery Automated System (BAS)”
was previously developed by the research group of Smart Transportation Electrification and
Energy Research (STEER). The setup was used to invent the constant temperature constant
current (CT-CV) charging technique [66,67] and several other prominent research studies
in the BMS domain [2,4,8]. The BAS is an experimental setup with a fully programmable
test environment control and data acquisition system. A schematic layout of the BAS is
shown in Figure 5. The experimental data were then used for the parameter estimation of
ECM and thermal modeling, model validation and model-to-model comparison purposes.
Interested readers are invited to refer to these papers [2,4,8,66,67] for more details about
the experimental setup. However, a brief overview of the experimental setup and test
conditions is also mentioned in this section as a quick reference for the readers. The basic
idea was to identify the input parameters of the thermal model, that is, heat capacity and
heat transfer coefficients, through a steady-state analysis as well as transient experiments
based on the nonlinear least square algorithm. The LIB cell was tested at three different
temperatures where the internal battery temperature was raised using standard current
pulses that were within the permissible limit specified on the manufacturer datasheet to
ensure no capacity fade occurred during testing.
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Figure 5. Schematic layout of the Battery Automated System (BAS).

Experimental Setup

Battery testing was performed on a 18,650 NMC (Lithium Nickel Manganese Cobalt
Oxide) LIB, manufactured by LG Chem. Detailed specifications of the cell as provided
by the manufacturer are mentioned in Table 1. A programmable power supply (Model:
E36313A) from Keysight and a programmable electronic load (Model: BK8601) from B&K
Precision were used for charging and discharging the battery with a predefined charging–
discharging current profile. Further, a programmable temperature chamber was used to
maintain the Tamb based on a predefined set-point. Finally, to control the BAS a MATLAB
script-based program was used. A programmable data acquisition system (DAQ) (model
DPM66204) from Chroma was used to collect the cell voltage, current and temperature data.
Different current profile sat three different ambient temperatures (Tamb = 273 K (0 ◦C), 293 K
(20 ◦C) and 323 K (50 ◦C)) were used for charging and discharging experiments. Finally, a
nonlinear least square algorithm was used for online parameter estimation for developing
the ECM and thermal model as demonstrated by Surya et al. [8]. All the model components
were designed in MATLAB using three-dimension interpolated look up tables where the
feature vectors were SOC, Ibat and Tamb. The heat generation model and the first-order
and second-order thermal model were also developed in the MATLAB/Simulink and
Simscape environment. Finally, an extensive simulation study was conducted to collect the
simulated core and surface temperature data for further analysis. Simulation results were
used for model validation as well as model-to-model comparison between the first-order
and second-order thermal models. The core temperature (Tc) was estimated using a KF
for various patterns of currents that were within the permissible limit specified on the
manufacturer datasheet to ensure no capacity fade occurred during testing.
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Table 1. Specifications of 18,650 LIB cell under test.

Specification Name Values

Manufacturer and Model LG Chem/INR18,650HG2
Cell Form Factor Cylindrical (18,650)

Chemistry Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2)
Nominal Voltage 3.6 V

Nominal Capacity 3 Ah
Standard Charging (CC-CV) 1.5 A, 4.2 V, Cut-off: 50 mA

Fast Charging (CC-CV) 4.0 A, 4.2 V, Cut-off: 100 mA
Discharging Condition 20 A (Max. Current), 2.5 V (Cut-off Voltage)
Operating Temperature Charge: 0 to 50 ◦C, Discharge: −30 to 60 ◦C

Pack Weight 48 g

4. Results and Discussion

This research study intended to answer whether it is worth developing a second-
order model instead of a first-order model for online temperature prediction by low-cost
onboard BMS, firstly, by developing a first-order and second-order thermal model utilizing
battery test data and MATLAB-based online parameter estimation; secondly, by simulating
the temperature profile of the cell using the first-order and second-order thermal models
subjected to different current profiles. The intention was to investigate the impact of
charging–discharging current on the core and surface temperature of the cell. Thirdly, we
compared the estimation results obtained from the first-order and second-order models. All
simulations were carried out in the MATLAB Simulink environment, where a fixed solver
and an appropriate step time were used [62]. Initially, simulation was carried out without
employing a KF to deduce the baseline analysis. Figure 6 shows the current profile used
for the base case analysis, and Figure 7 shows the plots of estimated Tc, Ts and the measure
Tamb. Previously, we measured Ts from experiments. By comparing the measured and
estimated Ts it was observed that both Ts were within the acceptable limit, and Tc and Ts
closely followed the current profile, and Tc > Ts > Tamb, as per the expectation, confirming
the modeling accuracy.

Figure 6. The pattern of the discharging current applied to the cell.
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Figure 7. The plot of Tc, Ts and Tamb without using KF.

In the subsequent sections, firstly, Tc was estimated using the combined first-order
thermal model and KF for three different current profiles and ambient temperatures, which
are illustrated in Case 1, Case 2 and Case 3, respectively. Secondly, a similar study was
also conducted for the second-order model and finally, the results were compared. All
experiments were carried out with different current profiles as per the manufacturer’s
recommendation to ensure no battery health degradation [58]. In all cases, the initial
currents were kept high for rapid charging of the cell.

4.1. Case 1: Tamb = 293 K (20 ◦C)

At first, Tc was initialized to Ts in the simulation as initially, the cell was in a thermal
equilibrium state. Tamb was considered as 293 K (20 ◦C), and a very low value of discharging
current was applied for the core and surface temperature to rise. The pattern used in Case
1 is shown in Figure 8, and the plot of estimated Tc and measured Ts are shown in Figure 9
whereas the difference between the estimated Tc and measured Ts is shown in Figure 10.
It was observed that Tc and Ts closely followed the current pattern, and the maximum
difference between estimated Tc and measured Ts was noted as 6.8 K, whilst it was also
noticed that for the entire duration, Tc > Ts, and the maximum difference occurred when
the current was at its peak.

Figure 8. The pattern of the discharging current applied to the cell.
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Figure 9. The plot of the estimated Tc and measured Ts.

Figure 10. Variation of the difference between the estimated Tc and measured Ts.

4.2. Case 2: Tamb = 323 K (50 ◦C)

In the second phase of the experiments, the temperature of the thermal chamber (Tamb)
was set to 323 K (50 ◦C). The pattern used in Case 2 is shown in Figure 11. Similar to Case 1,
Tc was initialized to Ts during the simulation here as well. The estimated Tc and measured
Ts are shown in Figure 12. It was observed that the temperatures closely followed the
current pattern here also. The maximum difference between Tc and measured Ts was noted
as 7K. The plot of the difference between the estimated Tc and measured Ts is shown in
Figure 13. Similar observations to those made for Case 1 were also noticed here in Case 2
regarding Tc and Ts.
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Figure 11. The pattern of the discharging current applied to the cell.

Figure 12. The plot of the estimated Tc and measured Ts.

Figure 13. Variation of the difference between the estimated Tc and measured Ts.

4.3. Case 3: Tamb =273 K (0 ◦C)

During Case 3, the temperature of the thermal chamber (Tamb) was set to 273 K (0 ◦C),
and Tc was set equal to Ts. The pattern of discharging current applied to the battery is
shown in Figure 14. Figure 15 shows the estimated Tc and measured Ts. Figure 16 shows the
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difference between the estimated Tc and measured Ts. It can be noticed from Figure 15 that
at the beginning the magnitude of Tc and Ts were very large. This was due to the high value
of discharging current during this period. It was also observed that the temperature rise
is a slow process due to the presence of thermal resistances (Ru and Rc). The temperature
difference increased as the value of discharge current increased. Therefore, it can be inferred
from these observations that the temperature rise closely follows the current through the
battery, and the rate of rising of Tc was the same as Ts for a low value of current. However,
for higher values of the current the rise in Tc was much higher than that in Ts. From these
observations, the importance of accurate core and surface temperature estimation alongside
the requirement of effective and efficient thermal management to maintain Tc under the
safe operating limit is evidenced.

Figure 14. The pattern of the discharging current applied to the cell.

Figure 15. The plot of the estimated Tc and measured Ts.
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Figure 16. Variation of the difference between the estimated Tc and measured Ts.

4.4. Comparison between First-Order and Second-Order Thermal Models

This section deals with the comparative analysis between the first-order and second-
order thermal based on the estimation accuracy, parameter identification, experimental test
requirement and suitability for onboard low-cost BMS. To compare the models, the same
values of thermal parameters, current, Ts, Tamb and Q were injected into the thermal models.
Similar current profiles to those used in Case 1, Case 2 and Case 3 of the first-order model
were also applied to the second-order thermal model. Heat generation was calculated
using the same 1-RC ECM as used in the first-order model. Finally, the estimated Tc profiles
obtained from the first-order and second-order thermal models were compared to analyze
the prediction accuracy of these models. Figure 17 shows the current profile used for the
comparative study, whereas Figures 18 and 19 depict the difference in Tc and Ts obtained
from the first-order and second-order thermal model, respectively.

Figure 17. The pattern of the discharging current applied to both the models.
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Figure 18. Difference between Tc and Ts obtained from the second-order thermal model.

Figure 19. Difference between Tc and Ts obtained from the first-order thermal model.

It was observed that the difference in temperatures was larger in the first-order ther-
mal model due to the change in Tc and not Ts. This is because of the decoupling between
Ts and Tc, as seen in Equation (3). Moreover, while comparing Equations (7)–(9) with
Equations (12)–(14), it was noticed that the output parameter Ts in KF showed no depen-
dence on the state Tc,t−1 which is also a major reason behind the estimation error in case
of the first-order model. Further, references [43,61] demonstrated that Cc and Ru of the
second-order thermal model have a significant effect on Tc. Since these parameters were
not present in the C and D matrices of the first-order model, a large increase in Tc was
observed. The thermal parameter sensitivity analysis, as conducted in references [8,61],
also confirmed the same reason behind the difference in temperature estimation by the
first-order thermal model. It was found that the difference between Ts and Tc is increased
if the discharge current increases. Hence, for currents with dynamic changes, Tc estima-
tion using the first-order model provides a large difference from the second-order model.
Further, Cc only contributed to the transient part of Tc. However, with small changes in
Rc and Ru, a large variation in Tc was also observed. The modeling complexity, experi-
mental requirement and computational expenses in the used second-order model were not
considerably high compared to the first-order model considered here. A tradeoff between



Energies 2022, 15, 623 17 of 21

the modeling complexity and accuracy requirement suggests the implementation of a
second-order model is worthwhile for smart BMS, especially for high-power applications
of LIB.

4.5. Comparison between First-Order and Second-Order Thermal Models for Higher C Rates

As discussed in the introduction, the performance of different types of battery models
is highly influenced by the value of charging–discharging current. As was already wit-
nessed from the above discussion, the second-order model is more accurate compared to
the first-order model. However, it is equally important to assess the performance of the
second-order model in a high value of discharge current for almost all practical purposes a
high value of discharge current is used. Therefore, a discharge current of 5A was applied
to both the first and second-order thermal models to observe the change in Tc. and Ts. The
difference between the estimated Tc and estimated Ts for the first and second-order thermal
models is shown in Figure 20.

Figure 20. Comparison between Tc-Ts for higher C discharge.

It was observed that the error (Tc-Ts) was higher in the first-order model than in the
second-order model. Therefore, it could be concluded that the second-order model can also
predict a highly accurate temperature state in practical applications as well.

5. Conclusions

This paper deals with the core temperature (Tc) estimation of lithium-ion 18,650 cell
using a Kalman filter (KF). This estimation provides effective thermal management, state
estimations, operational safety and the longer useful life of LIB. Initially, a detailed discus-
sion regarding the importance of core and surface temperature estimation was presented
followed by a review of the state-of-the-art temperature estimation strategies and thermal
modeling of LIB. Equivalent Circuit Models (ECM) of LIB-based heat generation model
and heat resistor–capacitor-based thermal models were developed in a MATLAB/Simulink
environment. Regarding heat resistor–capacitor-based thermal modeling, one first-order
and one second-order thermal model were developed and validated using laboratory ex-
perimental data. Further, extensive simulation studies were conducted to demonstrate the
influence of battery current and ambient temperature on the core and surface temperature
of the LIB cell. The heat transfer equations for a first-order and second-order thermal model
were derived, modeled and simulated. KF with appropriate process and measurement
noise levels was also used to estimate Tc in terms of measured surface (Ts) and ambient
temperature (Tamb). Finally, these results were compared to assess the prediction accuracy
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of these models. The difference between the core and surface temperatures was noted as
approximately 7 K to 8 Kin the first-order model, whereas it was only about 1 K to 2 Kin
the second-order thermal model. Ts showed no dependence on Tc in the first-order thermal
model. Further, the output parameter Ts in KF showed no dependence on the state Tc,t−1,
which is also a major reason behind the estimation error in the case of the first-order model.
The thermal capacitance of core (Cc) and resistances (Ru) of the second-order thermal model
have a significant effect on Tc. Since these parameters are not present in the C and D matri-
ces of the first-order model, a large increase in Tc was observed in the first-order thermal
model. Hence, the inaccuracy was only due to the error in Tc estimation. The findings are
also supported by several other research studies in the domain. Further, the consideration
of the thermal capacitance of cell casing and the impact of ambient conditions on the second-
order model were the reasons for high accuracy. Further, the performances of first and
second-order thermals were also judged with a high value of discharge current for assessing
their performance during practical operation. It was observed that the second-order model
performance was highly satisfactory compared to the first-order model even in practical
applications typically requiring a high value of discharge current. However, estimating
the additional parameters of the second-order model requires more experimental data and
time. Moreover, due to the complex mathematical form of the second-order model, it takes
more computation time. However, looking at the prediction accuracy and the increasing
stringent requirement of highly accurate states of battery, it could be stated that it is worth
investing more time, cost and expertise in developing a second-order thermal model for
more accurate temperature estimation in LIB. This is especially true for the advanced BMS
required for high-power LIB packs used in EVs and grid-tied energy storage alongside
highly sophisticated consumer electronics. The discussed second-order thermal of a single
cell can be extended to an LIB pack by integrating the thermal gradient and the impact of
peripheral cells alongside optimal placing of temperature sensors inside the battery casing
to adjust the ambient temperature parameter value in the model. All these aspects will be
considered in our future research.
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