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Abstract: Developing biomass energy, seen as the most important renewable energy, is becoming a
prospective solution in attempting to deal with the world’s sustainability-related challenges, such
as climate change, energy crisis, and carbon emission reduction. As one of the most promising
second-generation energy crops, giant silvergrass (Miscanthus × giganteus) is highly valued for its
high potential for biomass production and low maintenance requirements. Mapping the potential
global distribution of marginal land suitable for giant silvergrass is an essential prerequisite for the
development of giant silvergrass-based biomass energy. In this study, a boosting regression tree
was used to identify the marginal land resources for giant silvergrass cultivation using influencing
factors, which include climate conditions, soil conditions, topography conditions, and land use.
The results indicate that there are 3068.25 million hectares of land resources worldwide suitable
for giant silvergrass cultivation, which are mainly located in Africa (902.05 million hectares), Asia
(620.32 million hectares), South America (547.60 million hectares), and North America (529.26 million
hectares). Among them, countries with the most land resources, Russia and Brazil, have the first-
and second-highest amounts of suitable marginal land for giant silvergrass, with areas of 373.35 and
332.37 million hectares, respectively. Our results also rank the involved factors by their contribution.
Climatic conditions have the greatest influence on the spatial distribution of giant silvergrass, with an
average contribution of 74.38%, followed by land use, with a contribution of 17.38%. The contribution
of the soil conditions is 7.26%. The results of this study provide instructive support for future biomass
energy policy development.

Keywords: giant silvergrass; boosting regression tree; marginal land; environmental suitability

1. Introduction

Climate change is a global issue that will severely threaten human security without
proper response to it [1]. In recent decades, many international organizations have set
up policies to cope with climate change. The Paris Agreement of the 21st United Nations
Climate Change Conference (COP21) set a goal of guaranteeing global average temperature
increases below 2 ◦C above pre-industrial levels and, if possible, putting further efforts to
limit the temperature increase to 1.5 ◦C [2]. At COP26, it was proposed that all signatories
should resolutely pursue the ultimate goal of 1.5 ◦C [3–5]. Emissions of greenhouse gases
must be reduced if we want to avoid further global warming [6]. Up until now, a great deal
of effort has been put into mitigating global warming, and developing renewable resources
turns out to be one of the most effective means that is conducive to carbon emission
reduction [7,8]. As one of the reliable and renewable energy sources, bioenergy occupies
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an important position in the energy system because of its extensive sources and pollution-
reducing capability [9,10]. According to the Renewables 2021 Global Status Report, modern
bioenergy provided 5.1% of total global final energy required in 2019, accounting for
around half of all renewable energy in final energy consumption [11]. Among all the
plants producing bioenergy, giant silvergrass (Miscanthus × giganteus), a tall C4 perennial
rhizomatous grass from Asia, is the most popular energy crop of the genus Miscanthus
due to its physiological characteristics [12,13]. It can survive in a wide range of climatic
conditions, with temperatures ≥ −23 ◦C and precipitation ≥ 400 mm [13,14]. In addition,
it contains high quantities of carbohydrates, including approximately 45.5% cellulose,
29.2% hemicellulose, and 23.8% lignin (dry weight, w/w) [15].

To assess the biomass production of energy plants, we need to start by understanding
their potential spatial distribution. In addition, it is our assumption that the grass will only
be planted on the widely available marginal land in case its exploitation takes up land
for food production, incurring more environmental consequences [16,17]. Currently, there
are two main methods to identify the marginal land suitable for energy plants. One is a
multi-factor analysis method, which distinguishes the marginal land by comprehensively
considering the crops’ growing conditions. Zhuang et al. used this method to identify
marginal land for bioenergy development in China, aided by the data of several major
energy plants on the eco-environmental requirements and natural habits [18]. Taking into
account the growing conditions of each energy plant, they were able to map the marginal
land resource distribution of cassava [19], switchgrass [20], Pistacia chinensis [21], and
Jatropha curcas L. in China [22]. In another case, Liu et al. used the Geographic Information
System (GIS) software combined with land use datasets to identify the potential marginal
land area in Canada through multi-factor analysis [23]. The other method, machine learning,
has been introduced by some scholars for land resource identification, with increasing atten-
tion paid to big data and machine learning technology [24,25]. Yang et al. performed land
productivity estimation in the contiguous United States through machine learning based
on biophysical properties, including climate, soil, and land slope [26]. Jiang et al. mapped
the global marginal land suitable for Sorghum bicolor (L.) Moench [27], switchgrass [28], and
cassava [29] from the perspective of environmental suitability using the machine learning
method along with the plants’ occurrence records. Compared to the multi-factor analysis
method, the machine learning method could identify the environmental niche of giant
silvergrass and provide the relative importance of factors, making a reasonable assessment
to support the long-term planning of giant silvergrass-based bioenergy resources [29].

So far, we have found no attempt to map the potential marginal land suitable for
growing giant silvergrass globally. Therefore, the goal of this study was to (1) identity
the global marginal land resources for giant silvergrass with a machine learning method,
and (2) evaluate the contribution of each involved environmental factor to the worldwide
spatial distribution of giant silvergrass.

2. Materials and Methods

Step 1: The preparation of the occurrence records and pseudo-absence records

The technical flow chart shown in Figure 1 illustrates the research procedures of this
study, which can be boiled down to 3 steps. The first step was to generate the occurrence
records and pseudo-absence records of giant silvergrass to meet the requirement of the
model training process. We gained access to the occurrence records of Miscanthus on the
Global Biodiversity Information Facility website (https://www.gbif-uat.org/ (accessed on
2 October 2021)), which provides the global samples of known giant silvergrass cultivation,
including 2000 georeferenced records. To obtain the raster data for the records, we used
the ArcGIS software (https://www.arcgis.com/index.html (accessed on 20 May 2021)) to
transform the point data into raster data with 5 × 5 km. Since a raster may contain more
than one georeferenced record, eventually we acquired a total of 1839 grid record samples.
The same number of pseudo-absence records appearing in unsuitable growing regions were
also required to build the simulating model. Here, we used the land cover, temperature,
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and precipitation to determine the pseudo-absence records distributed in these regions. In
terms of identifying unsuitable land resources for giant silvergrass cultivation, the urban,
barren, and cropland were excluded for their unavailability [20]. In addition, areas with
low temperatures (temperatures < −23 ◦C) or low precipitation (precipitation < 400 mm)
were also deemed unsuitable for giant silvergrass [15]. Therefore, the same number of
pseudo-samples were randomly drawn from these regions.

Figure 1. The technical flow chart of this study.

Step 2: Constructing covariates

In our second step, we carefully selected covariates with respect to their effects on
the overall spatial distribution of giant silvergrass. It is well-known that the growth of
crops depends heavily on harvest time, soil and climate conditions, and management
practices [30]. Considering the growing conditions of giant silvergrass and the availability
of data, we selected climate conditions, soil conditions, topography conditions, and land use
as covariates of our model. We applied Geographic Information System (GIS) techniques
to process all the covariates and sample data to the same spatial resolution and coordinate
system. The specific environmental factors that we used as the covariates in this study are
listed in Table 1. The detailed information about the covariates is available in our previous
paper [28].

Table 1. The covariates in this study.

Environmental Conditions Covariates Data Sources

Climate

Maximum temperature

Adapted from WorldClim database, version 2.0 [31]Minimum temperature
Annual cumulative precipitation

Mean solar radiation

Soil
Effective soil depth Adapted from world soil information [32]

Soil class
Soil water content Adapted from consortium for spatial information [33]

Topography Slope Adapted from The NASA shuttle radar topography
mission [34]

Land use Land cover Adapted from NASA’s earth observatory group [35,36]
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Step 3: Model selection and realization

In the final step, we needed to select a model to run the simulation of the global
suitability for giant silvergrass cultivation and identify the contribution of each factor.
We adopted a machine learning method, boosting regression trees (BRTs), to simulate
the potential spatial distribution of giant silvergrass. The BRT model is a self-learning
method based on the classification and regression tree, which can improve the stability
and prediction accuracy of the model by generating multiple regression trees through
random selection and self-learning methods [37,38]. A certain amount of sample data
is randomly selected several times during the operation to analyze the influence of the
independent variable on the dependent variable, while the remaining sample data are used
to test the fitting results, and the averages of the generated multiple regressions are the
final output [39,40]. The BRT method can yield the influence of the independent variable
on the dependent variable and the interrelationship between that independent variable
and the dependent variable when the other independent variables are taken as the mean or
constant [41]. We believe it was a wise choice to select the BRT model for this study due to
its success in the application of simulating species distribution and identifying marginal
land for energy plants, such as sweet sorghum [28] and cassava [29].

During the model process, all 3678 grid units, including 1839 occurrence records
and the same number of randomly sampled pseudo-absence records, were used as the
dependent variables, while the 9 covariates were introduced as independent variables. We
carried out 100 simulations to ensure our results’ reliability, and we randomly selected
pseudo-absence records during each simulation. The R version 3.3.3 statistical program-
ming environment was used in combination with the extension packages (i.e., dismo, caret,
and gbm) to build the BRT model. We set the learning rate to 0.005, drawing 50% of the
data each time for training while leaving the rest data for testing. In addition, we applied
ten-fold cross-validation to verify the accuracy of the simulation.

3. Results
3.1. Accuracy Evaluation

For the simulation of globally potential land resources done with the BRT model,
we assembled a database of geolocated sites where giant silvergrass occurs worldwide,
containing a total of 1839 records. Visually, these globally scattered sample points are
mostly located in regions predicted to have relatively high environmental suitability for
giant silvergrass, shown in Figure 2.

In addition, we used both the 10-fold cross-validation and standard deviation values
that quantify the uncertainty of the spatial prediction to evaluate the performance of the
BRT model for simulating the potential land resources for growing giant silvergrass.

The test results using the two above techniques indicate high accuracy of the model’s
simulation, with the 10-fold cross-validation of AUC = 0.987 ± 0.002, and the low-level
pixel-wise uncertainty in spatial prediction depicted in Figure 3.
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Figure 2. Spatial distribution of the global occurrence records for giant silvergrass.

Figure 3. Visualized uncertainty in spatial prediction using standard deviation values calculated for
each pixel across the model ensemble.
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3.2. Potential Land Resources Suitable for Giant Silvergrass
3.2.1. Potential Environmentally Suitable Regions for Giant Silvergrass

The global map showing the environmentally suitable land resources for giant silver-
grass is presented in Figure 4. According to the map, the preferred locations for growing
giant silvergrass are mainly distributed in the tropics, subtropics, and temperate regions
and concentrated in Central and Southern Africa, a quite large proportion of South America
and Europe, Central and Southern North America, the western part of Northern Asia and
Southeast Asia, as well as most coastal regions of Oceania.

Figure 4. Global map of the predicted environmental suitability for giant silvergrass.

In Africa, areas with the highest suitability for giant silvergrass are mostly distributed
in Central and Southern Africa, including Angola, Zaire, South Sudan, Tanzania, Zambia,
Ethiopia, Central African Republic, and South Africa. In North America, the potential
areas are mainly distributed in the Southern United States, parts of Canada (Western
Canada, Ontario, Quebec, and Atlantic provinces), Venezuela, the northern and central
parts of Argentina, Bolivia, and Peru. Environmentally suitable areas for giant silvergrass
cover almost the whole of Europe except its southeast part located in Russia, bordering
Ukraine, which is scarcely distributed with suitable areas as well. In Asia, countries in
the western part of Northern Asia and Southeast Asia exhibit high suitability for giant
silvergrass, including Myanmar, Laos, Thailand, Vietnam, Cambodia, Indonesia. Besides,
Western and Southeast Russia, India coastal regions, as well as regions outside of North
and Western China are also predicted to have a high potential for growing giant silvergrass.
In Oceania, while other countries are almost wholly at the disposal of potential giant
silvergrass cultivation, only the northern and eastern parts of Australia are identified as
suitable areas for planting.

3.2.2. Potential Environmentally Suitable Regions for Giant Silvergrass

We used the threshold value of 0.5 to sift out all the qualified 5 × 5 km units for
identifying the qualified land resources for giant silvergrass cultivation. On this basis, we
selected only shrublands, savannas, and grasslands as qualified marginal lands. The final
global map of potential marginal land resources suitable for giant silvergrass is depicted
in Figure 5.
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Figure 5. Global distribution of the estimated potential marginal land resources supporting giant
silvergrass cultivation.

Globally, the suitable land covers a total area of 3068.25 million hectares. The results of
quantified potential marginal land suited for planting giant silvergrass are listed in Table 1
in descending order by size.

Africa has more suitable marginal land resources than any other continent in the world,
the area of which is 902.05 million hectares. After Africa, Asia owns the second-largest
amount of suitable land for giant silvergrass, which is 620.32 million hectares, followed by
South America’s 547.60 million hectares and North America’s 529.26 million hectares. The
two remaining continents, Europe and Oceania, each have less than half the land resources
of North America, with 241.88 and 227.15 million hectares, respectively.

Only six countries possess more than 100 million hectares of marginal land for po-
tential giant silvergrass cultivation. Among them, Russia and Brazil possess the first-
and second-largest amounts of suitable land, the only two countries having more than
300 million hectares of land resources with areas of 373.35 and 332.37 million hectares,
respectively. The following countries are the United States (234.70 million hectares), Aus-
tralia (215.96 million hectares), Canada (210.31 million hectares), and China (129.64 million
hectares). The sum of suitable land in all six countries is 1496.35 million hectares, account-
ing for nearly half of the total area (48.77%). Aside from the countries listed in Table 2, there
are also a few countries in Africa possessing considerable amounts of suitable land, such as
Angola (95.21 hectares), Zaire (79.24 hectares), and Sudan (70.19 hectares).

Table 2. Potential marginal land resources suitable for giant silvergrass in major global regions and
the countries with an area of suitable land > 100 million hectares.

Region Estimated Potential Area (Million Hectare)

Continent

Africa 902.05
Asia 620.32

South America 547.60
North America 529.26

Europe 241.88
Oceania 227.15

Country

Russia 373.35
Brazil 332.37

United States 234.70
Australia 215.96
Canada 210.31
China 129.64
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In terms of the global land-use composition of potential land resources, 31.44% of the
total is woody savannas, followed by 26.55% as savannas, 24.67% as grasslands, 17.15% as
open shrublands, and only 0.19% as closed shrublands.

Regarding the land-use structure in each continent shown in Figure 6, potential land
resources in Africa are mostly savannas (41.48%) and woody savannas (38.12%), while the
total area of grasslands and shrublands only take 20.40%. In Asia, the largest proportion
is taken by woody savannas (36.74%), and the following types are grasslands (34.45%),
open shrublands (27.28%), and savannas (1.44%), while its close shrublands, as negligible
as in other continents, only contributes 0.09% to the total area. In South America, the
predominant land-use type of suitable land resources is savannas, contributing 61.39% to
the total amount, followed by grasslands (23.71%), woody savannas (9.05%), and open
shrublands (5.82%). In North America, grasslands take 34.87% of the total suitable land
while woody savannas and open shrublands contribute similarly to the whole, with a
percentage of 28.76% and 28.30%, respectively, leaving 7.79% as the savannas. In Europe,
potential land for growing giant silvergrass mainly consists of woody savannas (56.49%),
grasslands (28.75%), and open shrublands (13.46%). The potential land resources in Oceania
are composed of open shrublands (36.51%), woody savannas (23.97%), savannas (22.47%),
and grasslands (16.89%).

Figure 6. Bar chart with the percentages of all land-use types in each continent.

3.3. Relative Importance of the Spatial Predictor Variables

Table 3 presents the calculated relative contributions of each influential variable in the
modelling process for environmental suitability. The most significant factor is precipitation,
accounting for 62.85% (95%CI 62.51–63.20%) of the variation, followed by land cover,
which contributes 17.38% (95%CI 17.10–17.66%) to the total. The sum of the remaining
seven factors, listed in descending order, accounts for only less than 20% of the total,
which are soil water content (6.26% (95%CI 5.93–6.59%)), minimum annual temperature
(4.52% (95%CI 4.22–4.82%)), mean solar radiation (4.18% (95%CI 3.97–4.38%)), maximum
annual temperature (2.83% (95%CI 2.58–3.08%)), soil class (0.99% (95%CI 0.92–1.06%)), and
soil depth (0.01% (95%CI 0–0.01%)).
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Table 3. Relative contribution of each spatial predictor variables.

Environmental Conditions Covariates Mean (%) 95%CI

Climate

Annual cumulative
precipitation 62.85 62.51–63.20

Minimum
temperature 4.52 4.22–4.82

Mean solar radiation 4.18 3.97–4.38
Maximum

temperature 2.83 2.58–3.08

Soil
Soil water content 6.26 5.93–6.59

Soil class 0.99 0.92–1.06
Soil depth 0.01 0.00–0.01

Topography Slope 0.98 0.90–1.06

Land use Land cover 17.38 17.10–17.66

Figure 7 depicts the marginal effect curves of the major spatial predictors. There is
a highly positive association between the probability of suitable land and precipitation
before the rainfall hits 1000 mm, after which the growth of the probability with precipi-
tation becomes considerably slow. The profiles of soil water content, minimum annual
temperature, and mean solar radiation exhibit positive relationships between the possi-
bility of potentially ideal land for giant silvergrass and these three variables. Maximum
annual precipitation, on the other hand, is observed to have a negative association with
the probability.

Figure 7. Marginal effect curves of major spatial predictors in the ensemble BRT model fitted
to the full data set. The land-use classes that the values in the graph stand for are listed as fol-
lows: (1) Evergreen Needleleaf Forests, (2) Evergreen Broadleaf Forests, (3) Deciduous Needleleaf
Forests, (4) Deciduous Broadleaf Forests, (5) Mixed Forests, (6) Closed Shrublands, (7) Open Shrub-
lands, (8) Woody Savannas, (9) Savannas, (10) Grasslands, (11) Permanent Wetlands, (12) Croplands,
(13) Urban and Built-up Lands, (14) Cropland/Natural Vegetation Mosaics, (15) Permanent Snow
and Ice, (16) Barren.
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4. Discussion

As a promising energy plant, the current research on giant silvergrass mainly focuses
on assessing biomass potential, and the economic and environmental benefits based on
the statistical data [36,42–45]. There are only a few studies working on the potential
land resources for growing giant silvergrass. Xue et al.’s estimation through multi-factor
analysis shows that 172 million hectares of marginal land are available for producing giant
silvergrass [15], which is larger than our results of 129.64 million hectares. This is because
the resulting values obtained from the multi-factor analysis are 0 and 1, representing
unsuitability or suitability for planting giant silvergrass, respectively, and therefore, they
fail to reflect the spatial variability of land resources suitable for giant silvergrass [46,47].
In contrast, the output values from the machine learning method in our study ranging
from 0 to 1 could reflect more refined information. Xue et al.’s results provide a reference
for this study, and we have made quite a lot of improvements to their research. For
example, in our study, areas identified with high environmental suitability for planting
(value > 0.5) and that can be prioritized to be exploited have higher resulting values than
those with low environmental suitability when other restrictive conditions are met. In
addition, the growth of energy plants is complexly influenced by the interaction of various
environmental factors, of which the contributions to energy plants’ growth were equally
considered. In this study, we combined the occurrence records of giant silvergrass with
the corresponding environmental factors to simulate the potential land resources through
the BRT model, and we, therefore, obtained the contribution of different elements to the
growth of giant silvergrass and the response curves exhibiting the relationships between
the growth of plants and these elements. This is very helpful for the scientific planning of
giant silvergrass-based bioenergy development.

The global spatial distribution of marginal land suitable for giant silvergrass in this
study provides a macroscopic map from the perspective of environmental suitability. In
practice, bioenergy production has complex interactions with other social and environmen-
tal systems [48]. Bioenergy development requires us to consider marginal land resources,
the process of biomass energy production, ecological protection policy, energy conservation,
and emission reduction benefits, and so on. Countries need to determine their developable
potential land resources based on their actual situation. For example, in China, ecological
civilization and protection take precedence over marginal land development. Examples
are the implemented national nature reserve policy and ecological protection red line
policy [19]. Consequently, the actual amount of marginal land that can be exploited in
China will be less than the results of this study. For another example, the United States and
Brazil, having a large amount of marginal land, are the two leading producers of biofuels,
accounting for around 80% of global production [11]. Therefore, the United States and
Brazil have the greatest potential to exploit marginal land resources. In general, this paper
provides a map of the potential global distribution of marginal land suitable for giant
silvergrass from the perspective of environmental suitability. However, with respect to the
notable differences between these regions, the developing conditions for marginal land in
each region should be further constrained according to local policies.

5. Conclusions

This study used a machine learning method with the specifically selected environmen-
tal factors and a boosting regression tree to identify the potential marginal land suitable
for giant silvergrass. The results indicate that 3068.25 million hectares of land resources
worldwide are suitable for giant silvergrass cultivation, of which the main land-use types
are woody savannas and savannas. The marginal land suitable for giant silvergrass is
mainly distributed in Africa (902.05 million hectares), followed by Asia (620.32 million
hectares), South America (547.60 million hectares), and North America (529.26 million
hectares). Among all the countries possessing marginal land resources for giant silvergrass,
Russia and Brazil own the most resources, which are the only two countries with more
than 300 million hectares of land resources, with 373.35 and 332.37 million hectares, re-
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spectively. From the perspective of environmental suitability, climate conditions had the
greatest influence on growing giant silvergrass, especially precipitation, which contributed
62.85% (95%CI 62.51–63.20%) to the spatial distribution of giant silvergrass.

The potential land resources of energy plant cultivation are the basis for the large-scale
development of bioenergy. This study provides more granular data for the development of
political procurement. Our results identify land resource development from the perspective
of environmental suitability prior to deciding the locations of plantations suiting specific
requirements and constraints of different countries. Moreover, this study found that
precipitation has the biggest impact on giant silvergrass compared to other elements.
Therefore, in terms of management, it is possible to optimize the growth conditions of giant
silvergrass through technical means to obtain higher yields.

In the present study, the variables used in the BRT model might be incomprehensive.
We are aware that the development of energy plants is also affected by other environmental
constraints, such as acid rain, accumulated temperature, and protected area distribution
data [49,50], which are limited by data acquisition and were, therefore, not included in this
article. In future research, more environmental elements could be included to obtain the
finer potential spatial distribution of land resources suitable for energy plants. In addition,
the potential land resource distribution of energy plants varies with climate change. Hence,
future climate pattern data can be taken into consideration to simulate the potential land
resources distribution of energy plants. In general, this research can assist governments in
advancing future biomass development policies and plans.

Author Contributions: Conceptualization, D.J. and M.H.; methodology, F.D. and M.H.; software,
F.D.; validation, F.D. and S.C.; formal analysis, F.D.; data curation, S.C.; writing—original draft
preparation, M.H., S.C. and Y.Q.; writing—review and editing, M.H., S.C. and Y.Q.; visualization,
Y.Q.; supervision, D.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of China, grant
number 2020YFC1807404.

Acknowledgments: We thank Tian Ma and Xiaolan Xie for providing valuable suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, X.S.; Vedlitz, A.; Alston, L. Regional news portrayals of global warming and climate change. Environ. Sci. Policy 2008, 11,

379–393. [CrossRef]
2. Lennard, C.J.; Nikulin, G.; Dosio, A.; Moufouma-Okia, W. On the need for regional climate information over Africa under varying

levels of global warming. Environ. Res. Lett. 2018, 13, 040601. [CrossRef]
3. U.C.C.C.U. COP 26 Goals. 2021. Available online: https://ukcop26.org/cop26-goals/ (accessed on 1 September 2020).
4. Wyns, A.; Beagley, J. COP26 and beyond: Long-term climate strategies are key to safeguard health and equity. Lancet Planet. Health

2021, 5, E752–E754. [CrossRef]
5. Jacobs, M. Reflections on COP26: International Diplomacy, Global Justice and the Greening of Capitalism. Political Q. 2021.

[CrossRef]
6. Rodriguez-Alloza, A.M.; Heihsel, M.; Fry, J.; Gallego, J.; Geschke, A.; Wood, R. and Lenzen, M. Consequences of long-term

infrastructure decisions?the case of self-healing roads and their CO2 emissions. Environ. Res. Lett. 2019, 14, 114040. [CrossRef]
7. Koelbl, B.S.; van den Broek, M.A.; van Ruijven, B.J.; Faaij, A.P.C.; van Vuuren, D.P. Uncertainty in the deployment of Carbon

Capture and Storage (CCS): A sensitivity analysis to techno-economic parameter uncertainty. Int. J. Greenh. Gas Control 2014, 27,
81–102. [CrossRef]

8. López-Peña, Á.; Pérez-Arriaga, I.; Linares, P. Renewables vs. energy efficiency: The cost of carbon emissions reduction in Spain.
Energy Policy 2012, 50, 659–668. [CrossRef]

9. Ramachandra, T.V.; Joshi, N.V.; Subramanian, D.K. Present and prospective role of bioenergy in regional energy system.
Renew. Sustain. Energy Rev. 2000, 2000, 56. [CrossRef]

10. Cornelissen, S.; Koper, M.; Deng, Y.Y. The role of bioenergy in a fully sustainable global energy system. Biomass Bioenergy 2012, 41,
21–33. [CrossRef]

11. REN21 (2021) Renewables 2021 Global Status Report; REN21 Secretariat: Paris, France, 2021.
12. Dubis, B.; Jankowski, K.J.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass production and energy balance of Miscanthus over
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