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Abstract: Energy consumption in buildings is expected to increase by 40% over the next 20 years.
Electricity remains the largest source of energy used by buildings, and the demand for it is growing.
Building energy improvement strategies is needed to mitigate the impact of growing energy demand.
Introducing a smart energy management system in buildings is an ambitious yet increasingly
achievable goal that is gaining momentum across geographic regions and corporate markets in the
world due to its potential in saving energy costs consumed by the buildings. This paper presents a
Smart Building Energy Management system (SBEMS), which is connected to a bidirectional power
network. The smart building has both thermal and electrical power loops. Renewable energy from
wind and photo-voltaic, battery storage system, auxiliary boiler, a fuel cell-based combined heat
and power system, heat sharing from neighboring buildings, and heat storage tank are among
the main components of the smart building. A constraint optimization model has been developed
for the proposed SBEMS and the state-of-the-art real coded genetic algorithm is used to solve the
optimization problem. The main characteristics of the proposed SBEMS are emphasized through eight
simulation cases, taking into account the various configurations of the smart building components.
In addition, EV charging is also scheduled and the outcomes are compared to the unscheduled
mode of charging which shows that scheduling of Electric Vehicle charging further enhances the
cost-effectiveness of smart building operation.

Keywords: battery storage system (BSS); combined heat and power system (CHP); electric vehicle
(EV); real coded genetic algorithm (RCGA); renewable energy system (RES); smart building energy
management system (SBEMS)

1. Introduction

The worldwide electrical energy consumption of the building sector which includes
both residential and commercial buildings is about 20% of the total energy produced [1].
The building sector alone is responsible for 35% of greenhouse gas emission, 65% of halo-
carbon and approximately 30% of black carbon emissions [2]. Due to the rapid growth in
population and fast economic growth, building energy consumption is expected to rise at
a pace of 1.3% per year from 2018 to 2050 [3]. The detrimental environmental impact of
this rising energy consumption has sparked widespread concern throughout the world.
Therefore, it is very important to improve the energy efficiency in buildings in order to
reduce the carbon emission and mitigate carbon footprint. For these reasons, buildings
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nowadays are required to be both energy efficient and environmentally friendly, with
renewable energy being used in part or entirely instead of fossil energy, notably solar energy.
Integration of passive solar systems in buildings is one option for sustainable growth in
this direction. Annual heating demand can be reduced by up to 20% using passive solar
approaches [4]. Several architectural elements, such as solar roofs [5], solar chimneys [6],
Trombe walls [7], etc., are mostly employed in today’s construction of buildings. Trombe
walls, also known as storage walls or solar heating walls, are a popular choice among these
devices due to their ease of installation, high efficiency, and low operating costs [7]. Apart
from being ecologically benign, putting a Trombe wall in a building may save up to 30%
overall energy consumption. [8].

The rapid increase in global electrical energy demand and its generation from conven-
tional resources, along with the increasing integration of intermittent and inexhaustible
renewable energy resources to the electricity network called for enhancement and updating
of the existing electrical grid infrastructure to obtain efficient, reliable, and clean energy [9].
Consequently, this emerges the concept of the smart grid from which the consumer can
intelligently manage their energy consumption [10]. It is feasible to construct a two-way
energy exchange system using Micro-Grids (MGs). MGs will not only be utilised for
peak shaving, load shifting, and energy management, but will also strive to optimise RES
integration in order to reduce power exchange with the main grid. [11]. When more than
one energy source is used to fulfill a certain load, an efficient energy management system is
required [12]. The construction of an Efficient and Intelligent Building Energy Management
systems (BEMS) with the objective of minimizing energy cost by the integration of Fuel
Cell, RES, EVs, BESS, and Heat Storage Tank is indeed a challenging task.

In this paper, a certain number of distributed energy resources (DER) components are
connected to a large scale residential building connected to a bidirectional utility grid is con-
sidered. These components consist of a photo voltaic and wind turbine installation, a fuel
cell based CHP system, a battery storage system (BSS), and a number of EVs used for day to
day work-related trips. Stochastic characteristics are used to model the mobility behavior
of EVs used in this study. A bi-directional energy flow mechanism is considered for the
energy produced by the DERs between the grid and smart building. In this research work,
the smart building energy management system (SBEMS) has been designed to optimize
the energy consumption and building automation by utilizing the energy management
system (EMS). SBEMS fulfills all the objectives of energy savings, centralized control of the
system, decreased human resources, enhanced human security, and finally reduced human
error. The major goal of utilizing SBEMS in buildings is to profit from the economic benefits
and optimum control of energy consumption, as well as to provide a safe and peaceful
environment. The SBEMS system can easily be accessed from anywhere, both outside and
inside the building, by using appropriate software via internet and mobile communication.

1.1. Literature Review

The concept of a smart building (SB) is a novel issue in recent study, and it has
a lot of potential for development due to its varied nature. Though SB appears to be
highly appealing, it confronts a number of problems, particularly those related to energy
management [13,14]. Numerous studies have been carried out to address issues and
development of smart building energy management system (SBEMS), and the following is
a detailed review of the available literature:

The author in [15] develops a mathematical model for building energy management
that is compromised of a BSS, a PV, and a plug-in EV. Using a rule-based controller, the
model in this study manages the power flow between the resources. The Author in [16]
developed a new hybrid genetic-based harmony search (HGHS) approach for modelling
the home energy management system, which helps to reduce consumers’ electricity bills
and usage during peak load hours by scheduling both household appliances and smart
home deployed energy resources during peak load hours. In Ref. [17], a Home Energy
Management (HEM) system with small-scale renewable energy generation and BSS is
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being investigated. The model is built on a mixed-integer linear programming formulation
that takes vehicle-to-grid (V2G) and demand response techniques into account. To better
guide peak shaving techniques, researchers investigated the best energy management of
a building energy system (BES) using multi-energy flexibility metrics, especially under
the energy payback effect. It was discovered that load recovery is an unavoidable aspect
of the demand side management (DSM) process, and that ignoring it might result in
overestimating the response value and potentially have a detrimental impact on DSM goal
outcomes [18]. The author in [19] presents a strategy for reducing a building’s power usage
and electricity expenditures by optimizing the charging and discharging of Plug-In Hybrid
Electric Vehicles (PHEVs). The main goal in the research work [20] is to minimize the daily
electricity charges. Moreover, energy generated from PV and building load demand is
forecasted using a stochastic model. In order to optimize the operation cost of a micro
grid, the BSS scheduling optimization is presented in [21] on a micro grid application
level. The deployed model’s restrictions include energy balance and power limitations
for both EVs and BSS. Furthermore, binary variables are utilized to ensure that storage
batteries are not both charged and drained at the same time. In Ref. [22], a mixed-integer
linear programming model for EV charging is suggested, taking into account the use of
PV production.

A review of EV charging techniques is presented in [23,24]. Charging techniques
are broadly classified according to: un-regulated charging, off-peak hours charging, and
charging to reduce peak demand and increase load factor. It has been noticed that the
first two approaches are simple to execute but provide little value when compared to the
last two techniques, whereas better voltage values and an improved frequency profile is
achieved in the third and fourth techniques along with enhanced integration of renewable
energy resources and also the load profile is flattened. In [25], the effects of EV charging on
power system voltage are evaluated, and a strategy to mitigate the impacts of EV loading
is presented.

The intermittent characteristics of renewable energy resources (RES), as well as the
stochastic nature of EV departure and arrival timings, provide a challenge to the power
grid. However, experts are researching ways to improve their combined operation both
technically and economically [26,27]. In [28], a fast charging station is optimally designed
for an EV integrated with BEES and renewable energy resources by using genetic algorithms
and Monte Carlo techniques. For the combined operation of electric vehicle and renewable
energy resources, an adaptive and robust optimization technique is suggested in [29],
which considers the uncertainties in the time-in and time-out of EV.

When EV is used with micro-CHP, it generally results in better economy in comparison
to when they are operated individually as reported by many authors [30–33]. A case
study [30] was carried out in Italy, in which two semi-detached residential buildings
are considered in two different sites and their combined operation is compared with
their individual operation, and it is reported that up to 60% of cost saving is achieved in
combined operation. The author in [31] developed a combined model of EV and micro-
CHP and evaluated the system using an MILP technique, and the author found that the
combined operation of both results in better efficiency.

The previous work contributes significantly to literature and provide a platform for
future study, whereas the integrated behavior of RES, CHP, battery, EV, neighborhood
heat exchange, and heat storage tank in a bidirectional electricity grid necessitates further
observation as the present economic and environmental problems address for their com-
bined use at the smart building. The aforementioned research work does not address the
optimized scheduling and integrated operation of thermal and electrical demand of smart
buildings [23,25,34–46]. Likewise, the rising trend of EV adaptability and its charging
effects on power system needs significant attention because the EVs consist of a major part
of the electrical demand in a modern smart building.
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1.2. Contribution and Paper Organization

The research paper is organized and presented in the following manner:

1. First of all, the smart building model is developed which includes a fuel cell based
CHP system, heat storage tank, neighborhood heat exchange, electrical vehicles (EV),
battery, PV, and wind turbine. Bidirectional utility is considered for this case flat and
variable type of tariff is used for analysis.

2. Optimization model of smart building is developed for the cost-effective working
of Smart Building Energy Management System (SBEMS). Constraints for the system
and device are carefully selected and well defined. A real coded genetic algorithm
(RCGA) is utilized to solve the problem of building demand response and optimal
scheduling of its resources.

3. Eight different test cases are developed, based on different scenarios, in order to fully
analyze and explore the role of different components installed in the smart building.
The results obtained from these different cases revealed the fascinating attributes of
the optimization process and the smart building energy management model.

The rest of the article is organized into: Section 2 specifically introduces the develop-
ment of the smart building model and its different items. Section 3 explores the technique
used for the optimization problem and their constraints related to SB’s load and compo-
nents. Section 4 elaborates the use of RCGA and its implementation in the smart building
model. Section 5 discusses simulation and results of test cases. Finally, Section 6 presents
the conclusion and future work recommendations.

2. Development of the SB Model

The Smart Building considered in this study is a multi-story residential building
having 100 residential apartments. Normal electric and thermal load have been considered
for every individual apartment. In addition, a Plug-in Electric Vehicle (PEV) which acts as
a load while in charging mode is considered for each apartment. The necessary building
related details are given in Table 1. The schematics of a proposed modern SB model are
given in Figure 1. The SB thermal and electrical demand is fulfilled from different types of
power resources such as electric power and natural gas. The power flow is divided into
two loops:

Figure 1. Overview of a smart building.
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Table 1. System parameters.

Parameter Description Symbol Value Unit

Electric Vehicle Chevy
Volt

Nissan
Leaf

Kia
eSoul

Tesla
Model 3

Capacity of EV CEV 18 40 27 55 kWh
Overall electric drive efficiency ηEV 6.67 6.67 5.37 7.14 -
Range of EV REV 120 265 145 390 km
EV maximum charging power PEVchmax 3.3 6.6 7.2 6.6 kW
Minimum SOC of EV SOCEVmin 20 %
Maximum SOC of EV SOCEVmax 100 %
EV SOC at plugging-out time SOCEVpo 100 %
Plug-in time Ti 17:00 hour
Plug-out time To 7:00 hour

Fuel Cell

FC maximum power limit PFCmax 130 kW
FC minimum power limit PFCmin 5 kW
FC ramp rate limit for increasing power ∆PFCup 81.25 kW
FC ramp rate limit for decreasing power ∆PFCdn 97.5 kW
FC startup cost α 0.15 $
FC shutdown cost β 0 $

Battery Energy Storage System

Maximum energy limit WBmax 200 kWh
Minimum energy limit WBmin 0 kWh
Minimum charging rate limit PBchmax −50 kW
Maximum discharging rate limit PBdchmax 150 kW
Charging efficiency of Battery ηBch 0.927 -
Discharging efficiency of Battery ηBdch 0.971 -
Operation & maintenance cost of Battery Com 0.0072 $/kW

Renewable Energy Resources

Wind Turbine maximum power limit Pw 200 kW
PV maximum power limit Ppv 100 kW

Heat Storage Tank (HST)

Maximum energy limit of HST WSTmax 200 kWh
Minimum energy limit of HST WSTmin 0 kWh
Initial energy limit of HST WSTini 0 kWh
Maximum rate of heat storing of HST HSTchmax −100 kW/h
Maximum rate of heat discharging of HST HSTdchmax 100 kW/h
Efficiency of ST ηST 0.98 -
Operation & maintenance cost of HST CSTom 0.0001 $/kW

Neighborhood Smart Building (NSB)
Maximum buying energy from NSB HNBBmax −50 kW
Maximum selling energy to NSB HNBSmax 50 kW
Efficiency of pipes connecting SB & NSB ηNB 0.94 -
Cost of heat buying from NSB CHNBbuy 0.04 $/kW
Cost of heat selling to NSB CHNBsell 0.03 $/kW

General

Number of hours n 24 hour
Length of time interval T 1 hour
Cost for purchasing gas Cgas 0.05 $/kW
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Table 1. Cont.

Parameter Description Symbol Value Unit

Electric Vehicle Chevy
Volt

Nissan
Leaf

Kia
eSoul

Tesla
Model 3

Cost for buying power from utility CUb 0.13 $/kW
Cost for selling power from utility CUs 0.07 $/kW
Crossover probability Pc 0.5 -
Mutation probability Pm 0.1 -

Electrical Loop

It is composed of responsive and non-responsive electrical resources and demands (i.e.,
utility, Fuel Cell, RES, and BSS). Electricity from utilities, fuel cell, battery, and renewable
energy resources powers the domestic appliances and charges the electric vehicle batteries.
This study considers the two-way flow between utility companies and SB. Therefore, when
power is needed, SB buys power from the utility and sends the excess power to the utility.

Thermal Loop

It is composed of heating load, boiler, heat obtained from fuel cell, heat exchange
between the community, and heat storage tank. Natural gas is used to power fuel cells and
auxiliary boilers. The heat energy wasted from fuel cell is obtained and is used to meet
the building heating demand. If the heat obtained from fuel cell is inadequate to fulfill the
overall demand of thermal energy, then auxiliary boiler, neighborhood heat exchange, and
storage tank is used to provide the insufficient heat energy.

2.1. Modeling the Fuel Cell

Fuel cells are available in different sizes and shapes based on the fuel type used and
their design. The different components of a typical FC are shown in Figure 2. A power
conditioning unit, fuel processing unit, and a stack are all important parts of the fuel cell.
This research study considered an FC based on proton exchange membrane operated on
natural gas while providing heat and electrical powers as outputs.

Figure 2. Fuel cell based CHP model.

Part load ratio (PLR) is used to calculate the efficiency of fuel cell. The PLR is the
ratio of electrical power obtained from a fuel cell at the i-th interval to its maximum power
ratings, as calculated by Equation (1):

PLRi = PFC.i/PFCmax (1)

where PLRi is the PLR at the i-th interval for the output power of FC (PFC.i) during
this interval.
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Mathematically, the efficiency of fuel cell ηFC and thermal to electrical power ratio of
FC (rTE.i) for the i-th interval is given below [47]:

When PLRi < 0.05:
ηFC.i = 0.2716 (2)

rTE.i = 0.6816 (3)

When PLRi > 0.05:

ηFC.i = 0.9033PLR5
i − 2.9996PLR4

i + 3.6503PLR3
i − 2.0704PLR2

i + 0.4623PLRi + 0.3747 (4)

rTE.i = 1.0785PLR4
i − 1.9739PLR3

i + 1.5005PLR2
i − 0.2817PLRi + 0.6838 (5)

Now, the thermal power (HFC.i) generated by fuel cell at time interval i is measured as:

HFC.i = rTE.iPFC.i (6)

The relationship among FC efficiency and PLR is represented in Figure 3. It is evident
from the curve that the FC’s performance is poor at low PLR (5%) because of large parasitic
losses [47], whereas, after this low PLR area, the fuel cell operates at 30–40% efficiency. It
is clear from the efficiency curve that the values of ηFC are relatively large at lower PLR
regions as compared to peak power of FC’s usage.

Figure 3. Role of PLR on ηFC and rTE.i of Fuel Cell.

2.2. Electric Vehicle Modeling

Modeling of electric vehicle relies on many factors, like deriving style, type of route,
distance traveled by EV and state of charge at plug out time. In this paper, the area of study
is focused on residential building, which is why we considered an electric vehicle for each
apartment of the smart building. Four different types of EVs are selected from a list of top
10 EV models by sale in the USA [48]. Nissan Leaf [49], Chevy Volt [50], Kia Soul [51], and
Tesla Model 3 [52] are selected for the analysis purposes. The different parameters of the
four selected electric vehicles are given in Table 2. In this study, it is considered that all
the participants’ EVs complete their battery charging when they leave the building in the
morning. As the time interval (∆) is taken as 60 min, the available slots in a particular day
is therefore 24. AC level type 2 is taken as an EV charging device in this study.

Table 2. Specification of EV models.

EV Type Battery (kWh) Charging Power (W) Consumption (kWh/km)

Chevy Volt 18 3.3 0.15
Nissan Leaf 40 6.6 0.15
Kia e-Soul 27 7.2 0.13

Tesla Model 3 55 6.6 0.14



Energies 2022, 15, 574 8 of 28

Required travel data of EVs such as time of arrival, time of departure, and daily
distance traveled are randomly generated based on statistical probability by using data
obtained from [53]. Random data sets for the arrival time and departure time are generated
through normal distribution. To randomly generate EVs’ departure times from the building,
the value of µ = 7.0 and σ = 1.5 are taken to randomly generate the departure time
from the building and for the arrival time at the building the value of µ = 18.0 and
σ = 3.0 are considered. Log-normal distribution with µ = 3.2 and σ = 0.88 is used to
randomly generate the values for the daily traveled distance by EVs [54]. Matlab probability
distribution function is used to calculate time of departure, time of arrival, and distance
traveled per day are represented in Figures 4 and 5.

Figure 4. Probability of EVs’ time in and time out.

Figure 5. EVs’ daily distance traveled.

This research work considers SOC (state of charge) at plugged in-time depends on the
distance traveled per day and used the data available in [55]:

SOCEV.pi =

SOCEVmin i f
(

SOCEVpo − d
ηEV EVcap

)
≤ SOCEVmin

SOCEVpo − d
ηEV CEV

Otherwise
(7)
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where
PEVi Charging power (kW)
SOCEV.i SOC of EV (%) at interval i
SOCEVpi Plugged-IN SOC of EV

SOCEVpo Plugged-OUT SOC of EV
SOCEVmin Minimum SOC of EV(%)
d Daily travelled distance (km)
ηEV Net drive efficiency (km/kWh) of EV
CEV EV battery capacity (kWh)

If the values of d and SOCEVpo are available, then SOCEVpi is determined by using
Equation (7). It is clear from this equation that, in order to safeguard the EV batteries, a
lower boundary condition is applied to SOCEVpi .

Equation (8) schedules the charging process of EVs:

SOCEV.i = SOCEV.i−1 +
PEV.i
CEV

× T × 100 (8)

2.3. Modeling the Battery Storage System (BSS)

The battery storage system model is presented in Equation (9), which governs the
process of charging and discharging of batteries:

WB.i = WB.i−1 +
[

TηB.ch − T
ηB.dch

]
µi (9)

where WB.i is the energy of the battery at the i-th interval, and µi =

[
PB.i,ch

PB.i,dch

]
denotes a

power column vector that holds the battery charging and discharging powers, whereas
ηB.ch is the charging efficiency and ηB.dch is the discharging efficiency. T is the simulation
step time. When the battery is charging (PB.i,ch), the valve of PB.i is taken as positive
(+ve) and, when the battery is discharging (PB.i,dch), the value of PB.i is taken as a negative
value. It is also worth noting that the µi vector will only store one value (either positive or
negative) at any given time interval and the other value will be placed at zero.

2.3.1. Modeling the Neighborhood Heat Exchange

The availability of the Neighborhood Smart Building (NSB) for buying from and
selling to the SB is modeled as:

HNBa.i = HNBBmax + (HNBSmax − HNBBmax )× rand(24, 1) (10)

where HNBBmax and HNBSmax are the maximum buying and selling limits of the NSB, and
HNBa.i is the availability of NSB for either heat buying from or selling to the SB at interval
i. Note that +ve value of HNBa.i means that NSB has surplus heat to offer to the SB while
negative values shows that it itself needs thermal energy.

2.3.2. Modeling the Heat Storage Tank

The storing of thermal energy to the HST is governed by Equation (11):

WST.i = WST.i−1 + T × HST.i × ηST.ch (11)

The discharging of thermal energy from the HST is governed by Equation (12):

WST.i = WST.i−1 −
T × HST.i

ηST.dch
(12)
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Here, HST.i is -ve during heat storage and +ve when heat is removed from the HST.

2.4. Electricity Tariffs

Here, in this research paper, a ’peak valley tariff’ is used for selling (export) and for
buying (import) of electricity from the utility [56,57]. The peak valley tariff is widely used
across the globe as it offers different unit prices at different time intervals during the day
for the electricity consumption. Another advantage of using a peak valley tariff is that it
reduces the stress on the utility grid and also helps in improving the overall load factor
of the utility grid. The peak valley tariff used in this study has three different blocks
(valley, plain, and peak) used in their respective time as mentioned in Table 3. It is evident
from Table 3 that the buying price (Tb) is higher then the selling price (Ts) of peak valley
tariff in order to give benefit and attraction to the buyer to purchase electricity from a
smart building.

Table 3. Peak valley tariff.

Tariff Duration Buying Price Tb (p.u) Selling Price Ts (p.u)

Peak Tariff
[09:00–12:00]

1 1
[17:00–22:00]

Plain Tariff [13:00–16:00] 0.9 0.8

Valley Tariff
[01:00–08:00]

0.78 0.6
[23:00–24:00]

2.5. Renewable Energy Generation

In this research, PV system and wind system are used as renewable energy resources. A
typical power curve PV and wind are shown in Figure 6. As we know, the power produced
from wind and the PV system depends on weather conditions. During the day time
(9:00 a.m.–5:00 p.m.), in the presence of sunlight, the PV produces its maximum generation
while the wind power fluctuates sharply, whereas, during the night, the wind power
produces its peak and PV stop working because of the unavailability of solar irradiance. It
should be noted that both curves for wind and PV power are forecasted (estimated) and
the mean-to-peak ratio value of wind power is 53.6% and PV power is 26.46%.

Figure 6. PV and wind profile.

3. Optimization Model

This section introduces an optimization model of SBEMS for the proposed SB model.
The primary objective of SBEM is the optimization of energy produced and utilization
of various resources and demands to minimize the total system cost while fulfilling its
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constraints. Therefore, the objective of this research work is the minimization of daily
energy cost of SB.

3.1. Objective Function

The objective function is the minimization of 24 h energy cost of the smart building,
as given in (13):

min

[
n

∑
i=1

(CFC.i + CNB.i + CBL.i + CST.i + CB.i + CU.i)

]
(13)

CFC.i =


T · Cgas

(
PFC.i
ηFC .i

)
+ α if PFC.i−1 = 0, and PFC.i > 0

β if PFC.i−1 > 0, and PFC.i = 0

T · Cgas

(
PFC.i
ηFC.i

)
else

(14)

CBL.i = T · Cgas · HBL.i (15)

CU.i =

{
T · Tb · CUb · PU.i if PU.i ≥ 0
T · Ts · CUs · PU.i if PU.i < 0

(16)

CB.i =

{
CBom · PB.i · T if PB.i ≥ 0
−CBom · PB.i · T if PB.i < 0

(17)

CNB.i =

{
T · THb · HNB.i if HNB.i ≥ 0
T · THs · HNB.i ∗ ηNB if HNB.i < 0

(18)

CST.i =

{
T · CSTom · HST.i if HST.i ≥ 0
−T · CSTom · HST.i if HST.i < 0

(19)

where
n No of hours
T Span of time interval (h)
α Startup cost of FC ($)
β Shutdown costs of FC ($)
CFC.i FC total cost ($)
CBL.i Total cost Boiler ($)
CU.i Total cost of Utility ($)
CB.i Cost of battery at interval i ($)
Cgas Natural gas purchasing cost ($/kW)
CUb Utility buying cost ($/kW)
CUs Utility Selling cost ($/kW)
CBom Battery operation and maintenance cost ($/kW)
PFC.i Electrical output of FC at time i (kW)
HBL.i Boiler heat generation at time i (kW)
PU.i Utility power at time i (kW).
Tb Energy buying price of utility ($)
Ts Energy selling price of utility ($)
ηFC.i FC efficiency

For purchasing the power from utility, the value of PU.i will be positive, and, for selling
the power to utility, the value of PU.i will be negative.
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3.2. Constraints

In this section, the constraints related to the power balance and devices installed in
the smart building are explained and presented in the following subsections.

3.2.1. Power Balance Constraints
Electrical Power Balance Constraint

In order to avoid load shedding, the SBEMS should fulfill the electrical demand completely.
During the charging of battery, the power balance equation will be:

PD.i + PEV.i − PFC.i − PW.i − PPV.i −
PB.i
ηch

− PU.i = 0 (20)

In addition, during the discharging of battery, the power balance equation will be:

PD.i + PEV.i − PFC.i − PW.i − PPV.i − ηdchPB.i − PU.i = 0 (21)

where
PD.i Electrical load at interval i (kW)

PW.i Wind power at interval i
PPV.i PV powers at i-th interval (kW)

PB.i BSS charging or discharging power at the i-th interval (kW).
PEV.i EV charging power at i-th interval (kW)

ηch Charging efficiency of the BSS (p.u)
ηdch Discharging efficiency of the BSS (p.u)

During the charging interval of BSS, PB.i is negative, and, during the discharging
interval, it is positive.

Thermal Power Balance Constraint

The heat requirement is fulfilled from FC, boiler, neighborhood heat exchange, and
heat storage tank. Therefore, three different strategies are used for thermal power balance.
The constraints related to each strategy are explained as under:

Strategy 1: Heat from FC and Boiler

HD.i − HFC.i − HBL.i + Hlost.i = 0 (22)

where HBL.i is the output of the boiler in kW at interval i.

Strategy 2: Neighborhood Heat Sharing

If heat is sold to the Neighborhood Smart Building:

HD.i − HFC.i − HNB.i/ηNB + Hlost = 0 (23)

If heat is bought from the Neighborhood Smart Building:

HD.i − HFC.i − HNB.i − HBL.i = 0 (24)

Strategy 3: Heat Storage Tank (HST)
When heat is stored in the HST:
If heat is sold to the Neighborhood Smart Building:

HD.i − HFC.i − HNB.i/ηNB − HST.i/ηST.ch + Hlost = 0 (25)



Energies 2022, 15, 574 13 of 28

If heat is bought from the Neighborhood Smart Building:

HD.i − HFC.i − HNB.i − HST.i/ηST.ch − HBL.i = 0 (26)

when heat is removed from the HST:
If heat is sold to the Neighborhood Smart Building:

HD.i − HFC.i − HNB.i/ηNB − HST.i × ηST.ch + Hlost = 0 (27)

If heat is bought from the Neighborhood Smart Building:

HD.i − HFC.i − HNB.i − HST.i × ηST.ch − HBL.i = 0 (28)

3.2.2. Device Constraints

The smart building devices’ constraints are presented as below.

Fuel Cell Constraints

The rate of change in the fuel cell’s output power is subjected to the ramp rate
constraints for smooth functioning of fuel cell:

PFC.i − PFC.i−1 < ∆PFCup (29)

PFC.i−1 − PFC.i < ∆PFCdn (30)

Similarly, the FC output is controlled by the power generation’s minimum and maxi-
mum constraints:

PFCmin < PFC.i < PFCmax (31)

where
∆PFCup Ramp Up rate of FC
∆PFCdn Ramp down rates of FC
PFCmin Minimum power of FC
PFCmax Maximum power of FC

Electric Vehicle Constraints

In order to prevent any damages to the EV battery, its max charging and state of
charge (SOC) limit must be taken into consideration:

PEV.i < PEVchmax (32)

SOCEVmin ≤ SOCEV.i ≤ SOCEVmax (33)

where PEVchmax Maximum limit of EV charging power
SOCEVmax Maximum limit of SOC of the EV battery

BSS Constraints

The following are the maximum energy and minimum energy constraints of the
battery that must be fulfilled:

WBmin < WB.i < WBmax (34)

When the BSS is charging:

WB.i − WB.i−1 < PBchmax × T (35)
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When the BSS is discharging:

WB.i−1 − WB.i < PBdchmax × T (36)

where
WB.i BSS energy level at Time i-(kWh)
WBmin BSS energy lower limits
WBmax BSS energy upper limits
PBchmax Maximum charging rates of battery
PBdchmax Maximum discharging rate of battery

Neighborhood Smart Building Thermal Constraints

If HNBa.i is the excessive or required thermal power at the NSB side at interval i, then
it must fulfill the following maximum selling and buying constraints.

If NSB is buying thermal energy from the SB:

HNBBmax ≤ HNBa.i ≤ 0 (37)

If NSB is selling thermal energy to the SB:

0 < HNBa.i ≤ HNBSmax (38)

Constraints of Pipes Connecting the Buildings

A thermal efficiency ηNB of the pipes connecting the neighboring buildings is consid-
ered. The heat loss during the heat transfer intervals between the buildings will be taken
care of by the building which is selling heat. Therefore:

If SB is buying from the NSB ( NSB is selling), then:

HNB.i ≤ HNBa.i × ηNB (39)

However if the SB is selling to the NSB ( NSB is buying), then:

HNB.i × ηNB ≥ HNBa.i (40)

Heat Storage Tank Constraints

The minimum energy and maximum energy constraints of heat storage tank that must
be fulfilled are as follows:

WSTmin < WST.i < WSTmax (41)

During heat storing:

WST.i − WST.i−1 < HSTchmax × T (42)

During heat releasing:

WST.i−1 − WST.i < HSTdchmax × T (43)

4. Real Coded Genetic Algorithm

Modern heuristic techniques are fast and emerging tools for optimizing nonlinear
systems. They are generally superior to traditional derivative-based techniques, which have
the limitations of trapping into local minima, computational complexity, or in-applicability
to certain objective functions. The genetic algorithm (GA) is one of the most widely
used evolutionary algorithms in power system applications. Its mechanism is based
on the evolution of nature, and the algorithm essentially consists of genetic selection,
hybridization, and mutation operations applied to chromosome populations. RCGA is
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an enhanced version of GA and is used for optimization in this research. For numerical
optimization problems with real values, the integer or floating point representation of global
variables in RCGA is better than the binary representation of variables in GA. Compared
with GA, RCGA provides higher consistency, higher accuracy, and faster convergence
speed [58,59].

RCGA is an efficient method, and the optimal solution can be found without de-
riving the objective function. Therefore, unlike linear programming or derivative-based
techniques, RCGA can effectively deal with various objective functions and constraints,
whether they are smooth or non-uniform; linear, nonlinear; continuous, discontinuous;
convex, and non-uniform convex. Comprehensive details of RCGA are given in [60–62].
The following sections provide an overview of the processes involved in this method,
which employ RCGA to model and solve the SBEMS optimization problem:

4.1. Step I: Initialization

The first stage of RCGA, like other global optimization approaches, is to construct the
starting population. Chromosomes are the name for the first population. The chromosomes
are made up of genes, each of which reflects the power (kW) of a certain device in the SB. If N
represents the overall genes in a chromosome, then the location of i-th gene is illustrated by:

Chromosomei = [x1, x2, x3, . . . , xi, . . . xN ] (i = 1, 2, . . . , N) (44)

The SBEMS’ dimensionality must be taken into consideration. There are dependent
and independent variables in the system given in this paper. The RCGA uses the indepen-
dent variables for optimization. Here the independent variables are PFC, PEV ,PB and HST .
Dependent variables HFC, PU , HBL, PLR, ηFC, rTE etc. are calculated from fixed variables
of power demands and resources. Lastly, these variables are utilized in Equations (14)–(19)
to determine the overall cost of energy.

The cost of the SB is calculated by the RCGA during a 24-h period. This study
employed a one-hour time period. As a result, the SBEMS is investigated for 24 time
sections and four variables (PFC, PEV , PB, HST) in each time slot determining the size of
optimization problem N = 24 × 4 = 96.

If M is the number of chromosomes in one generation then M × 96 gives the dimen-
sionality in terms of one generation of the RCGA as shown in Figure 7.

Energies 2021, 1, 0 14 of 27

with GA, RCGA provides higher consistency, higher accuracy, and faster convergence
speed [63].

RCGA is an efficient method, and the optimal solution can be found without de-
riving the objective function. Therefore, unlike linear programming or derivative-based
techniques, RCGA can effectively deal with various objective functions and constraints,
whether they are smooth or non-uniform; linear, nonlinear; continuous, discontinuous; con-
vex, and non-uniform convex. Comprehensive details of RCGA are given in [64–66].This
work uses RCGA to model and solve the optimization problem of SBEMS, and a summary
of the steps involved in this process is presented in the following sections:

4.1. Step I: Initialization

Like other global optimization techniques, the first step in RCGA is to generate the
initial population. This initial population is called chromosomes. The chromosomes are
composed of genes where each gene represents power (kW) of a certain device installed in
the SB. If N is the total number of genes in a chromosome, then the position of i-th gene is
represented as:

Chromosomei = [x1, x2, x3, . . . , xi, . . . xN ] (i = 1, 2, . . . , N)

It is important to take into account the dimensionality of the SBEMS. The system
presented in this work is constitutes of dependent and independent variables. The inde-
pendent variables are used by the RCGA for optimization. Here PFC, PEV ,PB and HST are
the independent variables. With their use, and with the use of fixed variables of power
demands and renewable resources, the remaining dependent variables of HFC, PU , HBL,
PLR, ηFC, rTE etc. are computed. Finally these variables are used in Equations (14) – (19) to
calculate the cost.

The RCGA calculates the cost of the SB for a 24 hour period. The time interval
used in this study is 1 hour. Therefore, the SBEMS is studied for 24 time sections with 4
variables (PFC, PEV , PB, HST) in each interval resulting in the size of optimization problem
N = 24 × 4 = 96.
If M is the number of chromosomes in one generation then M × 96 gives the dimensionality
in terms of one generation of the RCGA as shown in Figure 7.

PEV
1
1 PEV

2
1 . . . PEV

24
1 PFCe

1
1 PFCe

2
1 . . . PFCe

24
1 PB

1
1 PB

2 . . . PB
24
1 HST

1
1 H2

ST . . . HST
24
1

PEV
1
2 PEV

2
2 . . . PEV

24
2 PFCe

1
2 PFCe

2
2 . . . PFCe

24
2 PB

1
2 PB

2
2 . . . PB

24
2 HST

1
2 HST

2
2 . . . HST

24
2

...
...

...
...

...
...

...
...

...
...

...
...

PEV
1
M PEV

2
M . . . PEV

24
M PFCe

1
M PFCe

2
M . . . PFCe

24
M PB

1
M PB

2
M . . . PB

24
M HST

1
M HST

2
M . . . HST

24
M

Figure 7. Chromosomes in one generation of the RCGA

4.2. Step 2: Implementation of the Constraints

The system constraints for PFC.i, HBL.i and PEV.i are checked during each time interval.
The equations governing this step are given in Section 3.2.2. The logical process and
variable operations in the RCGA for the fulfillment of these constraints are given in the
flow chart in Figure 8.

4.3. Step 3: Using RCGA Operators
4.3.1. Selection

The selection of the fittest individual to the successive generation is a significant pro-
cess in the RCGA. The individuals (chromosomes) are carefully chosen for the succeeding

Figure 7. Chromosomes in one generation of the RCGA.

4.2. Step 2: Implementation of the Constraints

During each time interval, the system constraints for PFC.i, HBL.i and PEV.i are checked.
Section contains the equations that control this stage are given at Section 3.2.2. The flow
chart in Figure 8 shows the logical process and variable operations in the RCGA for
satisfying these requirements.

4.3. Step 3: Using RCGA Operators
4.3.1. Selection

In the RCGA, one of the most important processes is the selection of the fittest person
for each consecutive generation. Individuals (chromosomes) are chosen with care for future
generations depending on their fitness value. Some frequent selection procedures include
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ranking, tournament, and roulette-wheel. The roulette-wheel selection technique is used in
this work to carry out the selection operation [63].

4.3.2. Crossover

The search space must be reached by the starting population for the RCGA to ef-
fectively search for the potential solution. A crossover operation is performed to assure
the GA’s global search feature. In RCGAs, this operator is quite important. In actuality,
it is considered as its distinguishing feature [64]. It should be noted that this operator
does not apply to all chromosomes throughout the process of establishing intermediate
populations. The crossover rate, also called as the crossover probability, Pc is used to
quantify the likelihood of crossover application on a chromosomal pair [65].

Fulfill Device Constraints 

Selection
(Roulette Wheel Method)

Calculate Objective Function

Constraints of FC

Constraints of BESS

Constraints of EV
(Similar to that of BESS)

Initialize Population

Linear Crossover

Muhlenbeins Mutation
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Fetch Optimal Solution

Schedule the Devices
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Fetch Devices Status

Stopping 
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NO

Generate Variables

Define & Set Parameters

Constraints of HST

Begin

End

Figure 8. Proposed SBEM flow chart.

4.3.3. Mutation

The mutation operator alters one or even more genes on a specific chromosome at
random to increase the population’s basic variability. RCGA can prematurely converge to
sub-optimal solutions if it is not subjected to mutation. This operator’s job is to reintroduce
undiscovered or lost but viable solutions into the population’s search space. The RCGA
method has a non-zero probability of arriving at any solution in the search space thanks
to mutation. Every chromosomal location in the population has an arbitrary probability
of suffering a random change. This phenomenon is expound by mutation probability, or
mutation rate Pm. Muhlenbeins Mutation operator presented in [66] is applied here.

With crossover and mutation, another selection strategy, called elitism is used to ensure
that the finest chromosomes always remain uninjured from one population to the next [67].
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The flowchart shown in Figure 8 depicts the different steps involved in implementing
RCGA to optimize scheduling of the Smart Building Energy Management System (SBEMS).

5. Simulation Results

In this section, different simulation scenarios are presented which demonstrate the
significant characteristics of the suggested optimization model of the smart building energy
management system. The renewable energy resources, fuel cell, battery storage system,
peak valley tariff, electric vehicle scheduling, and heat sharing between Neighborhood
Building and Heat Storage Tank are included incrementally into the SBEMS as given
in Table 4.

Table 4. Proposed test cases.

Case No. PV+Wind Fuel Cell Battery TOU Tariff EV Scheduling Neighborhood HST

Base No No No No No No No
1 Yes No No No No No No
2 Yes Yes No No No No No
3 Yes Yes Yes No No No No
4 Yes Yes Yes Yes No No No
5 Yes Yes Yes Yes Yes No No
6 Yes Yes Yes Yes Yes Yes No
7 Yes Yes Yes Yes Yes Yes Yes

Figure 9 represents the normalized thermal and electrical load demands of a modern
smart building [68]. The maximum thermal demand is taken as 50 kW, while the maximum
electrical demand is taken as 200 kW. Table 1 summarized the values of different variables
used in this study.

Figure 9. Daily electrical and thermal load requirements of a smart building.

5.1. Base Case

In this case, the smart building electrical demand is fulfilled by the utility and the
thermal demand is fulfilled by the boiler which uses natural gas as shown in Figure 10.
Unscheduled EV charging is adopted in this case; as soon as the EV arrived at the building,
it starts charging. In this case, RES, BSS FC, scheduling of EVs, peak valley tariff, neighbor-
hood sharing, and heat storage tank are not considered as shown in Table 4. The proposed
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optimization technique is not applicable in this case. This case will serve as a reference case
for all other cases in this study. The net daily energy cost for this case is 658.95 ($/day).

Figure 10. Base Case mode of house.

5.2. Case 1: Addition of Solar and Wind Resources

In this case, the impact of adding the solar and wind based RES to the smart building
is analyzed. The solar and wind power resources have given priority in meeting the
electrical demand of the building compared to the utility. While the heating demand of the
building is fulfilled by using an auxiliary boiler. Utility is made bidirectional, so that the
surplus amount of energy can be sold to the utility grid. Figure 11 represents the impact
of adding solar and wind power to the building. Positive power indicates that power
is purchased from the utility, while negative power indicated that surplus power sold
back to the utility. In the intervals of 01:00–02:00, 03:00–06:00, 11:00–12:00, 13:00–14:00 and
16:00–17:00, the electrical demand of the building is less than the total RES generation,
and the SB is selling excessive energy to the utility. The peak loading in the system occurs
in 02:00–03:00, 06:00–11:00, 14:00–16:00 and 17:00–24:00 when the RES cannot fulfill the
demand; therefore, the power is purchased from the utility. The net daily energy expenses
for this case are $240.60, which is 63.48% lower than the base case.

Figure 11. Addition of renewable energy resources (RES).
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5.3. Case 2: Addition of Fuel Cell Based CHP

In this case, a fuel cell base combined heat and power system is added to the smart
building. The building thermal requirements are fulfilled by heat generated by FC and the
boiler, whereas electrical demand is fulfilled by FC generated electrical power, RES, and a
bi-directional utility.

As is evident from Figure 12 that the building electrical demand exceeded RES power
at 7:00 a.m. and, from this time, FC initiates its operation to fulfill the increase load
requirement. Most of the time, the building electrical demand is fulfilled from the the
power generated from RES and fuel cell and the surplus amount of power is sold to
the utility during time intervals 01:00–02:00, 03:00–06:00, 11:00–12:00, 13:00–14:00 and
16:00–17:00. Whereas, during time intervals 07:00–11:00 and 17:00–23:00, the combined
generation of both FC and RES is insufficient to fulfill the building demand because of
EV charging load from 5:00 p.m.–11:00 p.m. Therefore, the deficient power is purchased
from the utility during these hours. The total daily energy cost of SB in this case is 212.44$,
which is 67.76% less as compared to the base case and 11.70% less than the previous case.

Figure 12. Hybrid energy supply with the FC.

5.4. Case 3: Addition of Battery

In this case, the battery storage system is connected to the smart building and its
impact is analyzed. It is worth noted that using utility and BSS together can only bring
economic operation if and only if the product of BSS charging efficiency and discharging
efficiency is greater than the valley-to-peak ratio. Due to this reason, BSS is charged during
the valley region and discharged during peak hours. Therefore, it is important to introduce
battery efficiency in this section, which is ηB = ηB.ch × ηB.dch. In this research work, battery
efficiency (ηB) is taken as 0.9, and the BSS charging and discharging pattern is shown in
Figure 13. It is evident from Figure 13 that introducing a battery into the system results in
economic operation. The daily operation cost of the smart building in this case is 203.30$,
which is 69.14% lower than the base case and 4.30% less than the previous case.

Figure 13. Optimized generation schedule with BSS included.
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5.5. Case 4: Introducing Peak Valley Tariff

Flat rate tariff is considered in all the previous cases in purchasing electricity from the
utility. In this case, and the following cases, peak valley tariff is considered which is widely
used in the present power market. The selling and buying rate of peak valley tariff are
shown in Table 2. It is clear from Figure 14 that FC adjusts its output and BSS adjusts its
charging in such a manner to take full advantage of the valley prices.

Figure 14. Introduction of the peak valley tariff.

In order to obtain an economic operation in this case, the FC increases its output
during peak hours and reduces its output during off-peak hours. Similarly, the BSS
discharges during peak hours and starts charging during off-peak hours. This is because
the optimization algorithm tries to get the minimum possible energy from the utility in
order to achieve a nearly zero energy building concept. Due to the introduction of a variable
tariff into the system, the net daily cost of the building reduces to 202.77$, which is 69.22%
less than the basic case and 0.25% less than the previous case.

5.6. Case 5: EV Charging Scheduling

In this case, the electric vehicle charging scheduling is introduced into the system. As
it is evident from the literature, scheduling the high power and non-critical electric load
such as EVs, washing machine, etc. results in reducing the overall cost and improving
technical benefits [44,45]. Figure 15 represents the scheduling of electric vehicle charging.
The EV arrival time is shown in Figure 4. The EV is connected to the system as soon as it
arrives at the building. However, the optimization algorithm schedules the charging of EV
in those particular hours where consumers can get more benefits and reduces the overall
cost of electricity. In this case, the net cost is reduced to 183.88 ($/day), which is 72.09%
less than the base case and 9.31% less than the previous case.

5.7. Case 6: Neighborhood Heat Sharing

In this case, a novel concept of buying and selling thermal energy from the neighbor-
hood smart buildings is proposed. Figure 16 gives the electrical and Figure 17 depicts the
thermal powers of the SB in this case.

From 01:00–02:00, 04:00–06:00, 07:00–08:00, 11:00–13:00, and 21:00–23:00, the thermal
demand is more than the FC thermal output and heat provided by the boiler. During these
time intervals, the deficient heat is purchased from neighborhood smart buildings (NSB),
and the SBEMS buys as much heat from the NSB as possible. The auxiliary boiler (AB)
output is complementary to the heat availability from the NSB. For those hours, where
NSB can provide more heat, AB output is comparatively less and vice versa. An interesting
situation occurs at 04:00–06:00 and 11:00–13:00 hours. Here, FC can fulfill the SB’s thermal
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needs if it keeps on generating the same energy as it has been continuously providing.
However, the SBEMS anticipated the heat availability from the NSB. It bought heat from
the NSB and lowered the FC output, thus allowing FC to run on an improved efficiency.
From 8:00 a.m. to 10:00 a.m., the heat generated from FC is more than the heat demand,
so, during this period, the excess heat is sold out to the neighborhood smart building. For
electrical loads of the SB, the utility output complements the FC and RES output. When FC
and RES output is insufficient to fulfill the building requirements, then the utility provides
the electrical energy in those hours. When electrical output from the RES and FC increases,
buying from the utility decreases. The net daily cost in this strategy has reduced to 180.80$,
which is 72.56% less than the base case and 4.09% less than the previous case.

Figure 15. Results of the system with scheduling of EV.

Figure 16. Electrical powers for Case 6.

5.8. Case 7: Addition of Heat Storage Tank (HST)

In this strategy, HST is installed in the SB. It works along with NSB energy buy-
ing and selling capability of the SB. The deficient power is also supplied by the AB.
Figures 18 and 19 depict the electrical and thermal powers of the SB respectively in this
case. Similar to other strategies, the utility is complementing the FC electrical output in
this case also. FC efficiency is higher in the middle hours of the day as compared to the
starting and ending hours.
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Figure 17. Thermal powers for Case 6.

Figure 18. Electrical powers for Case 7.

In the initial hours, between 1:00–10:00, the thermal energy usage and generation
pattern are similar to the previous case. Thermal loading is more than FC thermal output
and HST does not find any energy to store. The initial energy in the HST is considered zero;
therefore, it does not provide any heating either. From 1:00 to 10:00 hours, the system buys
heat from the NSB as much as available and, at 11:00, it buys according to its needs. Some
of this heat is being provided to fulfill the needs of the SB and the remainder is being stored
in the HST. Further heat storage in the HST starts at 12:00 p.m. when SB heat requirement
decreases. The excessive thermal heating of the FC now stores in the HST. The storage of
energy in the HST ends at 5:00 p.m. The SBEMS ensures that the HST is full from optimally
storing the available energy from the FC and from the NSB before 6:00 p.m. ( when demand
exceeds the FC output again) as shown in Figure 19. The net energy cost of SB in this case is
176.62 $/day, which is 73.19% less than the base case and 2.30% less than the previous case.

Table 5 provides the cost of Utility, Boiler, Fuel Cell, and Neighborhood heat sharing
for each case. It is clear from the table that Case 7 has the lowest cost as compared to
the Base Case and all other cases. Table 6 illustrates the numerical values of the power
demands and generations, and Table 7 provides 24-h operation cost of the smart building.
The utility, FC, and boiler are mainly responsible for the total cost of operation on the smart
building, whereas the operation and maintenance cost of battery and heat storage tank are
negligible (i.e., $0.0062 per day).
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Figure 19. Thermal powers for Case 7.

Table 5. Costs comparison table.

Item Base Case Case # 1 Case # 2 Case # 3 Case # 4 Case # 5 Case # 6 Case # 7

Utility Cost ($/day) 604.20 185.85 86.22 64.46 71.82 26.41 18.52 29.36
Boiler Cost ($/day) 54.75 54.75 26.78 23.85 26.46 15.78 8.88 1.67
FC Cost ($/day) 0 0 99.43 110.04 100.53 138.19 147.19 134.74
NSB Cost ($/day) 0 0 0 0 0 0 2.60 8.88

Net Cost ($/day) 658.95 240.60 212.43 203.30 202.77 183.88 180.80 176.62

Saving relative to the
Previous Case (%) - 63.48 11.70 4.30 0.25 9.31 4.09 2.30

Saving relative to the
Base Case (%) - 63.48 67.76 69.14 69.22 72.09 72.56 73.19

Table 6. 24 h power demands and generations.

TI PD PEV PPV + PW PFC PBESS PU HD HFC HBL HNB HST
h (kW) (kW) (kW) (kW) (kW) (kW) (kW) (kW) (kW) (kW) (kW)

1 124 122.64 156.71 57.38 0.00 32.54 49 41.48 0.19 7.32 0.00
2 121 51.08 114.81 23.07 0.00 34.20 48.25 15.48 0.00 38.06 −5.21
3 119 102.47 158.24 58.30 0.00 4.92 47.50 42.25 0.10 0.00 5.21
4 120 179.78 200 24.23 0.00 75.54 46.75 16.28 0.00 46.17 −15.47
5 122 113.62 176.61 46.75 0.00 11.25 46 32.85 0.11 12.61 0.42
6 133 0.00 114.52 19.57 −1.38 0.39 45.50 13.10 0.00 44.22 −11.64
7 153 0.00 83.51 59.45 −29.69 42.06 45 43.23 1.14 0.00 0.63
8 172 0.88 71.96 54.45 −19.46 67.35 45.75 39.14 0.06 0.00 6.64
9 184 0.00 58.50 54.56 24.10 0.55 46 85.28 0.06 31.36 −69.65

10 190 0.04 122.80 101.53 0.02 −0.105 39 50.06 0.00 4.67 −15.50
11 192 0.20 228.57 67.31 −33.74 0.03 39.50 0.00 7.93 4.98 26.98
12 188 0.00 188.14 0.00 −0.177 0.04 43 0.00 2.96 0.00 40.65
13 186 0.00 235.76 0.00 −46.04 −0.09 44 0.00 1.88 35.28 6.93
14 184 3.36 165.31 21.28 0.75 0.02 44.50 14.26 0.69 0.00 29.99
15 182 24.77 186.60 19.92 0.06 0.17 44.50 13.33 16.22 14.93 0.00
16 184 41.98 228.88 0.00 −2.32 0.01 44.50 0.00 2.05 42.44 0.00
17 200 0.00 114.82 82.38 2.29 0.56 44.50 64.21 0.00 −19.71 0.00
18 198 0.13 51.74 62.07 82.79 3.92 44.75 45.47 0.00 0.33 −1.04
19 195 0.04 80.92 91.72 22.80 0.25 45.25 73.93 0.00 4.96 −33.14
20 184 1.13 93.43 89.82 0.00 1.88 45.75 71.87 0.00 1.65 −27.36
21 182 0.00 92.79 88.82 0.00 0.37 48 70.81 0.00 −17.96 −4.78
22 170 0.00 113.36 56.54 0.00 −0.01 49 40.87 0.00 36.87 −28.31
23 154 26.63 176.31 0.00 0.00 4.31 50 0.00 0.00 6.09 44.58
24 140 1.50 134.40 0.00 0.00 7.09 49 0.00 0.00 −0.30 50.06
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Table 7. 24 h cost of the smart building.

T CFC CNB CBL CBESSOM CSTOM CU Total Cost
h ($) ($) ($) ($) ($) ($) ($)

1 7.35 0.22 0.01 0.0000 0.0000 3.30 10.88
2 2.82 1.14 0.00 0.0000 0.0005 3.47 7.43
3 7.48 0.00 0.01 0.0000 0.0005 0.50 7.98
4 2.96 1.39 0.00 0.0000 0.0015 7.66 12.01
5 5.87 0.38 0.01 0.0000 0.0000 1.14 7.40
6 2.40 1.33 0.00 0.0100 0.0012 0.04 3.78
7 7.64 0.00 0.06 0.2138 0.0001 4.27 12.18
8 6.95 0.00 0.00 0.1402 0.0007 6.83 13.92
9 14.17 0.94 0.00 0.1736 0.0070 0.07 15.37

10 8.77 0.14 0.00 0.0002 0.0016 −0.01 8.91
11 0.00 0.15 0.40 0.2430 0.0027 0.00 0.80
12 0.00 0.00 0.15 0.0013 0.0041 0.01 0.16
13 0.00 1.06 0.09 0.3315 0.0007 −0.01 1.48
14 2.75 0.00 0.03 0.0054 0.0030 0.00 2.80
15 2.44 0.45 0.81 0.0005 0.0000 0.02 3.72
16 0.00 1.27 0.10 0.0168 0.0000 0.00 1.40
17 11.17 −0.56 0.00 0.0165 0.0000 0.07 10.70
18 8.01 0.01 0.00 0.5961 0.0001 0.51 9.13
19 12.50 0.15 0.00 0.1642 0.0033 0.03 12.85
20 12.19 0.05 0.00 0.0000 0.0027 0.24 12.49
21 12.03 −0.51 0.00 0.0000 0.0005 0.05 11.57
22 7.24 1.11 0.00 0.0000 0.0028 0.00 8.35
23 0.00 0.18 0.00 0.0000 0.0045 0.44 0.63
24 0.00 −0.01 0.00 0.0000 0.0050 0.72 0.72

Net Cost 134.74 8.89 1.67 1.9130 0.0424 29.36 176.62

6. Conclusions and Future Work

In the fight against climate change, with many global economies setting mid-century
net zero carbon reduction targets, the pressure is on to develop strategies to bring down
emissions in our cities, save energy, and speed up the transition to renewable energy.
Therefore, using hybrid energy resources can play a significant role in not only reducing
the reliance on fossil fuel depletable resources, but it can also bring a significant change
in improving the environment both at global and regional levels. This research work has
mainly focused on designing and modeling an SBEMS in the context of modern smart
buildings to optimize their economic operation by utilizing RCGA which demonstrates the
efficient usage of renewable energy resources in conjunction with grid connected energy
resources which can potentially create a new ecosystem that can rely more on renewable
energy, saving energy cost, minimising energy waste, and slashing carbon emissions.

In order to fulfil the electrical and thermal needs, the proposed SB model includes
a hybrid energy system which incorporates electric power from a bidirectional utility,
BSS, wind turbine, and a PV system as well as a thermal system including a natural gas
fired fuel cell based CHP system, auxiliary boiler, heat exchange from neighbourhood
buildings, and a heat storage tank. The model for these system devices were presented
and the constraint of electrical and thermal power balance, minimum and maximum
capacity constraints of the BSS, EV, storage tank and neighbourhood heat sharing were
also modelled along with the maximum charging rate and discharging rate constraints of
these devices. The FC’s start-up and shut-down costs and its ramp rate constraints were
also considered. In this work, a bidirectional utility grid is considered where the building
can sell out their surplus power to the grid. A typical EV charging scheduling was added,
and their impact on the building economy was considered, keeping in mind the large
loading implications of EVs. Different heating strategies were also incorporated for thermal
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load management. The system was optimized using a real coded genetic algorithm which
gives optimal scheduling of hybrid energy resources to minimize the cost of 24-h energy
consumption. According to simulation results, the proposed SBEMS optimally scheduled
energy resources and EV charging at the same time, resulting in a cost-effective economic
operation of the SB. To demonstrate the features of the proposed model, a comparison
of the costs and savings of SB devices was summarized. The inclusion of RES, FC, and
BSS resulted in 63.48%, 11.70%, and 4.30% reduction in energy costs, respectively. The
scheduling of EV charging further reduces the cost by 9.31%; the inclusion of HST and
NSB buying and selling resulted in better thermal energy routing and reduced the cost by
4.09% and 2.30%, respectively. This study shows that optimal usage of HES enhanced the
economy of SB while reducing the utility dependency in the presence of EVs. It is evident
from the simulation that the recommended SBEMS optimally schedules energy resources
and loads to minimize the daily operating cost of the smart building. The effectiveness of
the proposed formulation has been validated by means of various case studies, which have
configured the efficient performance of this formulation. This work maybe unfold in the
future to incorporate stochastic analysis of various components of SB. Furthermore, the
benefits of SBEMS from the environmental aspect can further be investigated and analyzed.
Similarly, considering bidirectional energy flow from electric vehicle (V2B and B2V) in the
proposed model may yield interesting results. An optimal sizing of the CHP system and
HST can also be performed for enhanced coordination of the installed devices and a better
economy. A Matlab GUI could also be built that might select various devices, takes system
parameters of the user choice, and generate the optimal cost by economically dispatching
the installed devices.
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