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Abstract: A nuclear magnetic resonance (NMR) logging tool can provide important rock and fluid
properties that are necessary for a reliable reservoir evaluation. Pore size distribution based on T2

relaxation time and resulting permeability are among those parameters that cannot be provided by
conventional logging tools. For wells drilled before the 1990s and for many recent wells there is
no NMR data available due to the tool availability and the logging cost, respectively. This study
used a large database of combinable magnetic resonance (CMR) to assess the performance of several
well-known machine learning (ML) methods to generate some of the NMR tool’s outputs for clastic
rocks using typical well-logs as inputs. NMR tool’s outputs, such as clay bound water (CBW),
irreducible pore fluid (known as bulk volume irreducible, BVI), producible fluid (known as the free
fluid index, FFI), logarithmic mean of T2 relaxation time (T2LM), irreducible water saturation (Swirr),
and permeability from Coates and SDR models were generated in this study. The well logs were
collected from 14 wells of Western Australia (WA) within 3 offshore basins. About 80% of the data
points were used for training and validation purposes and 20% of the whole data was kept as a
blind set with no involvement in the training process to check the validity of the ML methods. The
comparison of results shows that the Adaptive Boosting, known as AdaBoost model, has given the
most impressive performance to predict CBW, FFI, permeability, T2LM, and SWirr for the blind set
with R2 more than 0.9. The accuracy of the ML model for the blind dataset suggests that the approach
can be used to generate NMR tool outputs with high accuracy.

Keywords: nuclear magnetic resonance (NMR) logs; CMR; log generation; clastic rocks; machine
learning; AdaBoost; permeability; free fluid index; bulk volume irreducible; Western Australia

1. Introduction

Well logging tools provide continuous series of subsurface information that can char-
acterize the rock and fluid properties. The nuclear magnetic resonance (NMR) logging
tool can provide some additional important information that makes it a very useful tool
in many disciplines, such as oil and gas, groundwater, carbon capture and storage (CCS),
and natural gas and hydrogen storage that deal with subsurface rock characterization.
NMR is a phenomenon that describes the response of hydrogen to a magnetic field [1]. The
relaxation of hydrogen protons and their quantification is the central basis of the NMR
technique. The petrophysical evaluation of rocks from the NMR log is a well-established
practice in the petroleum industry. The NMR data can provide several rock properties
such as porosity, pore size distribution, permeability [2–10]. In saturated porous media, the
NMR T2 relaxation rate is a function of individual intrinsic (or bulk), surface, and diffusion
relaxation processes governed by the following equation [11]:

1
T2

=
1

T2bulk
+

1
T2sur f ace

+
1

T2di f f usion
(1)
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Protons associated with clay-bound water (CBW) and fluid in small pores display
short T2, whereas fluid in larger pores shows longer T2 relaxation times. Generally, a T2
cutoff can be designated to distinguish between CBW, irreducible pore fluids or pores
containing bound water (known as bulk volume irreducible, BVI), and producible fluids
(known as the free fluid index, FFI) [1,5,12]. The T2 cutoff can be determined experimentally
from the comparison of NMR curves obtained for core samples at different saturation levels
or assumed based on lithology [12–14]. Generally, the T2 distribution is represented by a
set of 8 bins porosities (BP1 to BP8) determined for a set of T2 cutoffs. For clastic rocks, the
cutoffs shown in Figure 1 are generally used to determine the bin porosities and therefore
different types of pore systems as below:

CBW =
2

∑
i =1

BPi (2)

BVI =
4

∑
i=3

BPi (3)

FFI =
8

∑
i=5

BPi (4)

∅e =
8

∑
i=3

BPi = BVI + FFI (5)

∅t =
8

∑
i=1

BPi = CBW + BVI + FFI (6)

Swirr =
BVI

BVI + FFI
=

BVI
∅e

(7)

where BP = bin porosity; CBW = clay bound water; BVI = bulk volume irreducible;
FFI = free fluid index; ∅e = effective porosity; ∅t = total porosity; and Swirr = irreducible
water saturation.

Figure 1. The T2 distribution can be used with specified cutoffs to determine the total and effective
porosity, clay bound water, capillary bound fluid, and free fluid. These properties are shown in
relation to the T2 signal. Note that the T2 cutoff values of 3 msec and 33 msec are standard defaults
for sandstone.
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There are several models to estimate permeability based on NMR T2 relaxation data,
from which the Coates and the SDR (Schlumberger-Doll-Research) models are the most
widely used [8,13–15]. In the Coates model, permeability estimation depends on the T2
cutoff value that separates FFI from BVI:

k =

[
(
∅e

C
)2(

FFI
BVI

)

]2
(8)

where k is the matrix permeability (mD), ∅e is the NMR effective porosity (%), and C is a
constant specific to the formation that reflects the correlation between the rock’s pore throat
and pore size, and in fact, it is a function of pore geometry and is generally considered 10
as a default value for clastic rocks. FFI = the free fluid index, and BVI = the bound volume
of irreducible water.

In the SDR model, permeability is determined using the logarithmic mean of the T2
distribution:

k = aT2
2LM∅e

4 (9)

where T2LM is the logarithmic mean of the T2 distribution, milliseconds; and “a” is a
coefficient that depends on formation type and has to be determined through calibration
with core porosity. “a” is generally close to 4 for sandstone.

2. Data Acquisition and Preparation

In this study, a large dataset from WA offshore basins was used to evaluate the
performance of several ML methods to synthesize NMR logging tool outputs. A total of
available 16,025 data points from 16 formations (Figure 2) with the age range of Permian
to Tertiary were used. The data were collected from 14 wells with a complete set of CMR
and conventional logs, such as Scarborough and Pluto wells. Wells are located within
3 main offshore basins of WA (Browse, Northern Carnarvon, and Perth Basins) with a
depth range of from 1188 to 4138 meters (Table 1). All data were combined in one file and
after randomizing, 80% of data (12,820 data points) were used for training purposes and
20% (3205 data points) as blind samples to check the ML performance.

Figure 2. Number of data points for each formation and basins used for this study.
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Table 1. The list of the basins, formations, and their details used for this study.

Basin Formation Age Depth (m) Fluid Type Main Lithology

Browse Bassett Tertiary 1390–1408 Gas-Cond. Sandstone

Browse Grebe Tertiary 1312–1385 Gas-Cond. Sandstone

Browse Nome Triassic 3823–3848 Gas Sandstone

Browse Plover Jurassic 3776–3823 Gas Sandstone

Browse Vulcan Juras. to Cre. 3942–4138 Oil Sandstone

N. Carnarvon Angel Jurassic 3400–3700 Oil Sandstone

N. Carnarvon Barrow Group Cretacous 1890–1936 Oil Sandstone

N. Carnarvon Brigadier Triassic 3037–3162 Oil Sandstone

N. Carnarvon Forestier Cretacous 2983–3147 Brine Claystone

N. Carnarvon Muderong Cretacous 2960–2982 Brine Shale

N. Carnarvon Mungaroo Triassic 3045–3710 Oil and Gas Sandstone

Perth Cattamarra Jurassic 2940–3052 Oil Sandstone

Perth Dongara Triassic 1276–1281 Oil Sandstone

Perth High Cliff Permian 1310–1476 Oil Sandstone

Perth IRCM Permian 1278–1475 Oil Sandstone

Perth Kockatea Triassic 1188–1427 Brine Shale

Although some typical well logs have a weak correlation with NMR log outputs
they were not excluded since it was realized that even removing those with the smallest
prediction contribution reduces the ML performance. The well logs used in this study as
ML’s inputs are density (RHOB), neutron (NPHI), photoelectric (PEF), resistivity (deep,
shallow, and very shallow), and sonic (DT). Additional inputs such as volume of shale
(Vsh) from GR and effective porosity calculated from density tool (PHIDeffe) were included
to improve model accuracy to synthesize NMR log outputs. Coates permeability (kCoates),
SDR permeability (kSDR), FFI, BVI, Swirr, and T2LM are ML’s outputs.

Assuming a linear relationship, the volume of shale was calculated for all formations
with the following equation:

Vsh =
GRlog − GRmin

GRmax − GRmin
(10)

This is also known as the GR index equation (IGR). The GRmin and GRmax values are
the values of the sand and shale lines respectively taken from the GR reading for each well.

The effective porosity in shaly formations may be calculated by including a correction
for the contribution of shale to the log measurements. Density log was used to calculate
effective porosity for shaly formations using the following equation:

φDshc ≈ φe =
ρma − ρb
ρma − ρ f

− Vsh
ρma − ρsh
ρma − ρ f

(11)

where ρb = bulk density (g/cc); ρf = fluid density (g/cc); ρma = matrix density (g/cc);
Vsh = volumetric fraction of shale; ρsh = shale bulk density (g/cc) that was identified for
each well separately; φDshc = shale corrected density porosity and φe = effective porosity.

Synthesizing NMR log outputs heavily relies upon the quality and consistency of the
input dataset available to build the ML model. Log data require proper quality control and
editing task to make them reliable as input parameters. The most common errors observed
in well logs are depth mismatching (depth differences between different logs); bad hole
data that can be detected on caliper and DHRO logs; cycle skipping where occasionally
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tools, such as the sonic log miss out a reading due to a weak signal, leading to sudden blips
on the well log; and spikes that are the unusual response of logs due to tool failure. All
well logs were quality controlled and checked for the above-mentioned errors. A careful
depth match was conducted between NMR and other logs using GR that was available for
both datasets.

3. Machine Learning (ML) Models

Machine learning (ML) is a computer program that can be trained to perform assigned
tasks or make decisions [16,17]. ML methods enable computer systems to learn patterns
from data observations [18–20]. Training is the process of learning from data during which
the model is exposed to a proportion (usually 70–85%) of the data known as the training
set. Training is accomplished by optimizing the model’s hyperparameters to best match
the training set. To improve the generalizability of the trained model, a specified fraction
(usually 15–30%) of the data are used to test and validate the performance of the trained
model. To evaluate the overall performance of the model, it is good practice to also blind-
test it on a held-out portion of the data [21]. Some related examples of the application of ML
are synthetic well log generation [22–25]; porosity, permeability, and other petrophysical
parameters prediction [23,26–34]; permeability predictions [35–43]; and geomechanical
property estimation [44,45].

Different ML methods have been used to synthesize the NMR logs [24,25,46], but it
is critical to find the best approach that provides the most accurate prediction. Ensemble
learning improves machine learning outputs by combining several models. Ensemble
learning provides better predictive performance compared to a single model. The two most
widely used ensemble methods are bagging and boosting models. Bagging uses a training
set of individual models in which random subsets drawn by bootstrap sampling with
replacement from the training data are used to build multiple decision trees in a parallel
way. Each model is trained by a random subset of the data and the overall performance is
obtained as the majority vote of the performances of the individual models [47,48]. Random
forest is a good example of this type of ensemble learning [49]. Boosting, on the other
hand, is a sequential type of ensemble learning that utilises weighted random subsets
of the training data to build separate decision trees which are then combined through
a weighted majority vote [47,48]. The weighting assigned to each subset of data learns
from mistakes made by the previous model and adjusts over time by its contribution to
the overall performance [48]. Adaptive Boosting (AdaBoost) is an example of boosting
ensemble learning.

The most common models, which can easily be applied in most statistical packages,
have been used for this study using Python. A total of five machine learning methods
including artificial neural network (ANN), k-nearest neighbor (kNN), support vector
machine (SVM), Adaptive Boosting (AdaBoost), and random forest (RF) were utilized to
assess the performance of each for prediction of NMR log outputs. A very brief explanation
of the methods used in the paper is given below:

Application of artificial neural networks (ANN) in the industry has proved to be a
valuable tool for rock and fluid property prediction (e.g., [23,30,50,51]). A neural network is
a mathematical model that can be trained to solve a problem. ANN can distinguish complex
patterns within a dataset that making it possible to get the existing nonlinear relationships
that are normally not well understood between input and output parameters. The basic
structure of an ANN is neurons and their connection strengths (weight). Neural networks
are classified by the way they are trained, using either supervised or unsupervised learning.
In supervised learning, the ANN will be trained using a dataset for which both the input
and output values are available to the program. In unsupervised learning, the ANN is
presented with a series of inputs and lets the neural network look for patterns itself. In a
classic neural data processing system, the database is divided into training and test sets.
The training set is used to develop the desired network that is used to help the network
adjust the weights between its neurons (supervised training). In this study, a three-layered
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back propagation supervised neural network was trained using the rectified linear unit
function as the activation function for the hidden layer and L-BFGS-B (an optimization
algorithm in the family of quasi-Newton methods) for the solver for weight optimization
with 200 neurons in hidden layers.

K-nearest neighbor (kNN) is a simple supervised machine learning method used
in classification and regression cases. This algorithm calculates the distances between
an unclassified case and the nearest k training cases. The kNN algorithm uses the k
nearest points of the input to predict the response [52]. Indeed, the method searches for
k closest training examples in feature space and uses their average as a prediction. A
variety of distance metrics can be used, however, the most commonly used is the Euclidean
distance [53]. In this study, Euclidean metric with uniform weight and five neighbors
were used.

Support vector machine (SVM) is a supervised machine learning technique that sup-
ports both classification and regression problems. SVM separates the attribute space with
a hyperplane, thus maximizing the margin between the instances of different classes or
class values. SVM performs linear regression in a high dimensional feature space and
its performance depends on a good setting of cost (penalty term for loss and applies for
classification and regression tasks, C), regression loss epsilon (defines the distance from
true values within which no penalty is associated with predicted values, ε) and kernel
parameters. The Kernel is a function that transforms attribute space to a new feature
space to fit the maximum-margin hyperplane, thus allowing the algorithm to create the
model with linear, polynomial, radial basis function (RBF) and Sigmoid kernels. In this
study, radial basis function (RBF) was used as the kernel function, the C was set to 1.0, and
regression loss epsilon was set to 0.1.

The AdaBoost algorithm, presented by Freund and Schapire [54] is a boosting ensemble
model and works especially well with the decision tree. AdaBoost is fast, simple, and easy
to program with no critical parameters to tune (except for the number of estimators) [55].
AdaBoost trains the base classifiers using random bootstraps data samples selected from
original data and then integrate their decisions through a weighted majority vote. Firstly,
it allocates equal weights to all the training data and then adjustments of weights are
made based on the misclassifications obtained through the initial base classifier. For the
next modified training dataset, the weights of misclassified data are increased to increase
the chances of occurrence of misclassified samples in the next training dataset [56]. The
AdaBoost algorithm has an accuracy-oriented tactic and concentrates on the incorrectly
classified samples while increasing the weight until it approaches the target.

Random forest (RF) is an ensemble learning technique that can be used for classification
and regression tasks. Random forest is an ensemble model using bagging as the ensemble
method and decision tree as the individual model that builds a large number of decision
trees from bootstrap samples of the training data [49]. When developing individual trees, a
random subset of attributes is drawn from which the best attribute for the split is selected.
The final model is based on the majority vote from individually developed trees in the
forest. RF does not require extensive tuning for its parameters that are the number of trees
and growth control. In this study, 10 decision trees were included in the forest.

4. Results
4.1. Porosity Prediction

NMR log provides rock’s pore volumes based on the hydrogen content. Ignoring
structural hydrogen, hydrogen within the chemical structure of minerals such as clays
and gypsum, it generally exists in pore-filling fluids, such as water and hydrocarbons.
Based on the NMR T2 cutoffs, three types of pore spaces can be detected by the NMR tool
including CBW, BVI, and FFI. Clay bond water (CBW) is a layer(s) of water molecules that
cover the surface of clay minerals, therefore, occupy part of the pore spaces. Clay particles
generally have a negative charge at the surface. The accumulation of negative charges
attracts cations and water molecules on the surface of clay particles known as CBW. CBW
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is strongly attached to the surface of clays and shows a low T2. In clastic rocks, pore spaces
that occur between T2 values of 0.3 to 3.0 ms are considered CBW. Other studies by [57,58]
indicates different cutoff values for shale reservoirs. The volume of CBW depends mostly
on the type of clay, and pore water salinity. In well log interpretation, effective porosity is
defined as total porosity minus CBW and there are different approaches to quantify CBW
volume using Vsh. Figure 3A,B show CBW variations in the training and blind datasets.
Adaboost both in training and blind datasets shows the best performance to predict CBW
(Figure 4A,B) followed by RF, kNN, and ANN. Based on Pearson correlation the most
influencing inputs to predict CBW in the order of importance are NPHI, Vsh, and DT. A
confidence interval of 95% was used for the presentation of all results in this study.

Figure 3. CBW, BVI, and FFI distribution in training (left histograms) and blind datasets (right
histograms).
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Figure 4. AdaBoost performance for prediction of CBW, BVI, and FFI in training (A–E) and blind
(B–F) datasets, respectively.

BVI or bulk volume irreducible represents pore fluids or pores containing bound water
or immobile water. Pore spaces associated with BVI are small pores with high capillary
pressure where hydrocarbon buoyance pressure is unable to displace the pore filling water.
In clastic rocks, pore spaces that occur between T2 values of 3.0 to 33.0 ms are considered
BVI. Figure 3C,D show BVI variations in the training and blind datasets. Based on Pearson
correlation the most influencing inputs to predict BVI in the order of importance are DT,
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PEF, and RHOB. Adaboost both in training and blind datasets shows the best performance
to predict BVI (Figure 4C,D) followed by RF, kNN, and ANN.

FFI or free fluid index indicates the relatively larger pore spaces where mobile or
producible fluids reside. In clastic rocks pore spaces with T2 values larger than 33.0 ms are
considered FFI. Figure 3E,F show FFI variations in the training and blind datasets. The
same as CBW and BWI, Adaboost predicts FFI with high performance both in training and
blind datasets (Figure 4E,F) followed by RF, ANN, and kNN. The most influencing inputs
to predict FFI in the order of importance are PHIDEFFE, RHOB, and Vsh.

4.2. Permeability Prediction

In this study, Coates and SDR permeabilities were predicted using different ML models.
The logarithm of permeability as output proved to increase the ML models’ performance
to predict permeability. Figure 5 shows Coates and SDR permeabilities variations in the
training and blind datasets. Adaboost both in training and blind datasets shows the best
performance to predict permeability values (Figure 6) followed by RF, ANN, and kNN.
Based on Pearson correlation the most influencing inputs to predict permeability in the
order of importance are PHIDEFFE, Vsh, and RHOB.

Figure 5. Distribution of the logarithm of Coates and SDR permeabilities in training (A,C) and blind
(B,D) datasets.

T2LM and SWirr were also generated separately. The same as other outputs, Adaboost
performed better in both training and blind datasets to predict these parameters (Figure 7).
PHIDEFFE, RHOB, and Vsh were the most influential inputs for T2LM and Swirr prediction.
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Figure 6. AdaBoost performance for prediction of Coates and SDR permeabilities in training (A,C)
and blind (B,D) datasets, respectively.

Figure 7. Cont.
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Figure 7. AdaBoost performance for prediction of T2LM and Swirr in training (A,C) and blind (B,D)
datasets.

Figure 8 compares the performance of each ML method in the prediction of the NMR
tool’s outputs for the Training and Blind datasets. The R2 coefficient was used to measure
the prediction accuracy of the model.

Figure 8. Performance of different ML methods for prediction of NMR log outputs for training (A)
and blind (B) datasets. The AdaBoost method performs the best for both training and blind datasets.
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5. Discussion and Conclusions

In this study NMR tool’s outputs were synthesized from conventional well logs using
5 ML techniques. The AdaBoost model shows the best performance to predict CBW, FFI,
permeability, T2LM, and SWirr for the blind set with R2 of more than 0.9 (Figure 9). BVI
was the only parameter that was predicted with less accuracy with R2 around 0.8. Unlike
CBW and FFI that can be related to some log inputs such as Vsh and effective porosity
respectively, BVI has no strong correlation with conventional logs. Perhaps this could be
one of the reasons that most of the ML methods fail to predict BVI with a high accuracy.

Figure 9. A comparison of the Adaboost’s performance for the training and blind datasets in
predicting NMR log outputs.

In most of the cases, RF, kNN, and ANN models respectively follow AdaBoost in their
performance for both training and blind datasets. SVM model performs weakly to predict
the targets of both training and blind datasets. In general, complex tree-based techniques
such as AdaBoost and random forest worked the best for this purpose.

To better display the ability of ML methods in predicting NMR log outputs, especially
the AdaBoot model, real and predicted NMR outputs are shown for Pluto 3ST1 well from
Northern Carnarvon Basin (Figure 10). For this well, the same as the whole dataset, well
logs were randomly divided as training and blind datasets to check the performance of
the AdaBoost model for this borehole. As can be seen in Figure 10 the model successfully
predicts NMR log outputs for both training and blind datasets.

Generally, the presence of clays affects log readings due to the physical and chemical
characteristics of clays. Clays generally have a higher hydrogen index and are associated
with abundant micropores. This affects all porosity tools (neutron, density, and sonic
tools) to overestimate porosity. Besides, clays create excessive conductivity due to their
cation exchange capacity (CEC) and therefore result in reducing resistive logs readings.
To evaluate the performance improvement of the ML models for clay-rich and clay-poor
lithologies, well logs were separated based on shale content. The dataset was classified
based on Vsh (Vsh < 50% and Vsh > 50%), to separate shale from shaly sand. Then the
same procedures, explained before, were applied for training and blind datasets for each
case. Comparison of the results showed that generally there were no improvements in the
MLs performance, and even, the performance was reduced for permeability prediction in
the blind dataset from 0.92 to 0.82. Perhaps the performance deterioration could be due to
the reduction of the number of data points for each case that affects the training quality of
each ML model.
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Figure 10. Real and predicted NMR log outputs for Pluto 3ST1, Northern Carnarvon Basin. Track
2 shows Vsh calculated from GR, and Track 3 displays density and neutron logs shaded yellow for
sandstone lithology. Tracks 4 to 8 show real NMR log outputs (grey curves), AdaBoost predicted on
training (red dashed lines), and AdaBoost predicted on randomly chosen blind datasets (blue dots).
Real NMR log and AdaBoost predicted outputs on Training dataset overlie each other and AdaBoost
predicted outputs on blind dataset closely follow the trends but with minor misprediction for some
of the data points.

The same as clays, within a gas interval, most of the logging tools’ responses will be
affected but in a different way. For example, the density tool will show lower density and
thus overestimate porosity whereas the neutron tool will underestimate porosity due to
less hydrogen index of gas zones. NMR tool, the same as the neutron tool, underestimates
porosity within a gas interval due to less concentration of hydrogen and this will result in
permeability underestimation too. Again, to evaluate the performance of the ML models
for liquid- and gas-bearing formations separately, well logs were separated based on pore
fluid types (liquid or gas, from Table 1). The results showed that there are some minor
improvements in the performance of ML models to predict NMR log outputs in liquid-
bearing formations. But the performance of ML models was reduced for gas zones. This
indicates that the ML models can pick the log variations in oil and gas zones the same as the
NMR tool and thus exactly mimic and provide NMR response for all intervals regardless
of pore fluid type and shale content. Such a response can be explained through the fact
that in gas zones other logging tools will respond differently and ML models can pick
and be trained such responses. This indicates that if the dataset for the training purpose
encompasses all rock and fluid variations then the ML models can be trained for all possible
scenarios and can predict the outputs in the right way and therefore data separation is not
required to achieve a good result.

In conclusion, this study indicates that the AdaBoost model can be utilized to generate
NMR log outputs with high accuracy from conventional logging tools for clastic rocks.
Classification of data for rock types (based on shale content) and fluid types (liquid and
gas content) is not that necessary and the ML model can pick up all patterns and can
successfully predict the NMR log outputs.
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