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Abstract: Offshore geological sequestration of CO2 offers a viable approach for reducing greenhouse
gas emissions into the atmosphere. Strategies include injection of CO2 into the deep-ocean or ocean-
floor sediments, whereby depending on pressure–temperature conditions, CO2 can be trapped
physically, gravitationally, or converted to CO2 hydrate. Energy-driven research continues to also
advance CO2-for-CH4 replacement strategies in the gas hydrate stability zone (GHSZ), producing
methane for natural gas needs while sequestering CO2. In all cases, safe storage of CO2 requires
reliable monitoring of the targeted CO2 injection sites and the integrity of the repository over time,
including possible leakage. Electromagnetic technologies used for oil and gas exploration, sensitive
to electrical conductivity, have long been considered an optimal monitoring method, as CO2, similar
to hydrocarbons, typically exhibits lower conductivity than the surrounding medium. We apply
3D controlled-source electromagnetic (CSEM) forward modeling code to simulate an evolving CO2

reservoir in deep-ocean sediments, demonstrating sufficient sensitivity and resolution of CSEM data
to detect reservoir changes even before sophisticated inversion of data. Laboratory measurements
place further constraints on evaluating certain systems within the GHSZ; notably, CO2 hydrate is
measurably weaker than methane hydrate, and >1 order of magnitude more conductive, properties
that may affect site selection, stability, and modeling considerations.

Keywords: carbon sequestration; CO2 offshore storage; marine CSEM; gas hydrates

1. Introduction

Geological sequestration of CO2, including storage in the marine environment, can
facilitate a variety of strategies for reducing greenhouse gas emission and meeting net-zero
carbon targets [1–5]. Numerous theoretical, laboratory, and, in some cases, field investiga-
tions have been conducted on the containment of CO2 as a liquid, gas, dissolved-phase,
or as a solid gas hydrate phase, under relatively cool conditions, such as in deep-ocean
settings [6–10] or in moderate- to deep-ocean-floor sediments [11–18], yielding insight
into the physical, geochemical, kinetic, and thermodynamic factors involved in these
complicated multiphase systems. Offshore sequestration offers an alternative approach
to more conventional strategies involving CO2 storage in warmer terrestrial settings, for
example, as supercritical CO2 injected into deep porous rocks, sedimentary saline environ-
ments, depleted oil and gas reservoirs, or in mineral carbonation scenarios (e.g., [4,19] and
references therein).

Deep-ocean sediments at relatively high-pressure and low-temperature conditions
offer volumetrically near-unlimited and long-term containment of CO2, provided sufficient
permeability to inject CO2. Due to the high solubility of CO2 in seawater and the high
compressibility of liquid CO2 relative to seawater, liquid CO2 becomes neutrally buoyant
at roughly 2500–3000 m depth, conditions that do not exist in terrestrial settings but are
common in oceanic settings [11]. Injecting CO2 into ocean-floor sediments below roughly
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3000 m water depth and a few hundred meters of sediment is predicted to enable stable
and potentially long-term (on a geologic timescale) sequestration of CO2, even in the
event of geomechanical disturbance [11,14,16,18]. At these conditions, CO2 resides in
its liquid phase, denser than the overlying seawater or pore fluid, causing the injected
CO2 to remain gravitationally “trapped”. In the event of possible leakage, or conversion
to gas phase or upward migration, CO2 will form gas hydrate (described below) with
the sediment pore water when pressure–temperature conditions reach the CO2 hydrate
stability zone. In this context, CO2 hydrate formation can serve as a self-healing process
that greatly slows the CO2 diffusion rate and creates a low-permeability secondary cap
on the system [11,14,16,18]. Teng and Zhang [17] reviewed and modeled the short- and
long-term fate of injected CO2 stored in deep-sea sediments over different geologic and
operational conditions, including multicomponent flow considerations and the impact of
hydrate formation on storage efficiency.

Gas hydrates, also called clathrate hydrates, are crystalline solids consisting of hydrogen-
bonded water molecules forming polyhedral cage-like structures stabilized by “guest”
molecules of appropriate size, including CO2 and methane (CH4), and form naturally
where temperature, pressure, and gas supply combine to make them stable [20]. In the
marine environment, natural gas hydrates—most commonly methane hydrate—form
in continental shelves below roughly 500 m water depth depending on local conditions,
marking the upper limit of the so-called gas hydrate stability zone (GHSZ) [21]. Downslope,
the GHSZ thickens as pressure increases, with thickness limited at its base by the geothermal
gradient. Significant interest remains in advancing methane hydrate research for climate
mitigation efforts and to better understand the role of methane hydrate in the carbon cycle,
as well as in its potential as a bridging fuel—as a transitional energy source with lower net
carbon emissions than oil and coal—while existing challenges in the conversion from fossil
fuels to renewable energy sources are addressed [22,23].

In related CO2 storage research, numerous efforts have examined mixed CO2/CH4
gas hydrates and related physical chemistry processes involved during CO2-for-CH4 re-
placement, including processes and issues surrounding possible sequestration of CO2
by injection into deep methane hydrate-forming deposits with concurrent production of
methane [24–37]. In CO2-for-CH4 replacement, chemical disequilibrium is presumed to
induce transformation of the original CH4 hydrate into a CO2-rich hydrate [36]; CO2 is
thermodynamically favored in the hydrate phase compared to CH4 at relevant conditions,
and both form a structure I hydrate [20], as do mixtures of these gases [33]. Laboratory
experiments reveal that this exchange process does not necessarily involve macroscale
dissociation of the hydrate phase [27,29,37], thus ideally allowing capture and storage of
CO2 with little to no loss of hydrate-bearing sediment strength or related environmental
disturbance. Additional advantages are that the exothermic nature of CO2 hydrate for-
mation promotes CH4 hydrate dissociation, and CO2 hydrate, unlike methane hydrate, is
denser than seawater and hence can be gravitationally trapped in marine environments. At
the field scale, however, additional factors and dynamics of the natural environment com-
plicate the replacement strategy and this is a direction of active research, including possible
blockage of methane production due to rapid CO2 hydrate formation [35]. Zheng et al. [38]
provide a comprehensive review of the various approaches to CO2 sequestration that
involve gas hydrates—including storage in seawater, sediments under the sea floor, per-
mafrost regions, and in methane hydrate reservoirs via CO2–CH4 exchange—and also
address technical feasibility and potential storage capacity considerations.

A critical component for safe and reliable CO2 sequestration strategies involves moni-
toring the injection of CO2 into the targeted region and verifying long-term stability and
integrity of the storage reservoir, including possible leakage. Since the early 2000s, a variety
of geophysical methods have been applied towards monitoring geological and marine
storage of CO2 (reviewed in [39,40]), including both seismic and nonseismic technologies,
with increasing application of electromagnetic (EM) or electrical technologies that com-
plement seismic or gravity measurement methods [41–51]. EM methods are considered
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particularly useful for monitoring CO2 sequestration where displacement of pore fluid by
CO2 increases electrical resistivity.

We limit our focus to marine controlled-source electromagnetic (CSEM) technology,
now long established for offshore hydrocarbon reservoir exploration and appraisal [52,53]
and long considered for production-induced reservoir changes [54], as the technique can
be exceptionally sensitive to electrically resistive structures—such as oil, gas, and gas
hydrate [55]. Although the resolution of CSEM surveying is inherently lower than that
of seismic methods, time-lapse approaches allow measurement of even small variations
in resistivity and provide superior intrinsic resolution to potential-field methods such
as gravity and magnetic surveying [53]. Marine CSEM is now used successfully to im-
age resistive structures within the gas hydrate stability field [56–62], hence its obvious
application for offshore CO2 storage efforts (e.g., [44,47,49,50]). For example, using the
CSEM “Vulcan” system [63], specially developed to image resistive subseafloor features
in the shallower section, Kannberg and Constable [61] were able to characterize methane
hydrate in marine sediments offshore Southern California at basin scales, and resolved
seafloor resistivity down to a fraction of an Ω.m for low-resistivity sediments. When jointly
interpreted with geologic structural information from seismic reflection surveys, CSEM
methods provide a broad understanding of gas migration pathways in hydrate-bearing
sediments and hence may be particularly applicable to monitoring CO2 reservoir stability,
geometry, and possible leakage.

In this study we illustrate the value of using CSEM data to monitor CO2 sequestration
in the deep seafloor by running simulations with the 3D forward modeling code of Weiss
and Constable [64] (FDM3D CSEM). This code uses a Cartesian staggered grid for the model
mesh and a finite-volume approach to solving the electromagnetic curl-curl equations,
with demonstrated success for modeling thin, resistive structures in the seafloor [64].
Although similar to the finite-difference approach, the finite-volume method allows a more
accurate representation of the strongly varying fields near the transmitter through the
use of quadrature integration. This code has limitations in the interpretation of real data;
for example, it assumes infinite water depth, and the Cartesian mesh cannot represent
bathymetry very well, so we implemented the 2D finite-element code of Key [65] for
routine inversion of real data. However, FDM3D has several advantages for carrying out
the simulations we present here. It employs a quasi-minimal residual (QMR) algorithm
to solve the linear system of equations using less computer memory, it is fast and easy to
use, running easily on a modern laptop computer, and it is freely available through an
open-source GNU license (see Data Availability Statement).

Lastly, we review additional physical properties measurements that may influence
the measurement or stability of hydrate-bearing marine sediments where CO2 hydrate can
either form as a cap on stored CO2 below, or replace methane hydrate in the GHSZ. Labora-
tory measurements on well-characterized materials are useful for calibration of geophysical
measurement techniques and can help augment mixing models, and by extension can help
guide long-term stability assessment. Moreover, we might expect that as modeling efforts
continue to advance, so will the need for increasingly well-constrained input parameters.
While different compositions and/or structures of gas hydrates may in some cases exhibit
similarities in physical properties, in other respects they in fact exhibit strikingly different
behavior from one another: dissociation behavior, ductile strength, and electrical properties
are three prime examples discussed below.

2. Methods

Electrical resistivity can be used to discriminate between various types of materials
(including rock types), and provides important information on the porosity and pore
geometry of geologic formations as well as the nature of pore fluids. Borehole resistivity logs
are hence commonly utilized for hydrocarbon exploration and gas hydrate characterization.
CSEM technology, on the other hand, facilitates remote and noninvasive mapping of the
resistivity distribution of the subsurface without the need for boreholes. Most commonly,



Energies 2022, 15, 7411 4 of 16

marine CSEM sounding employs an electric dipole source towed just above the seafloor to
transmit a time-varying electromagnetic field (usually a few discrete frequencies), which
in turn is modified by the presence of subsurface resistive structure. The amplitude and
phase of the propagating fields are detected and logged by an array of electric and magnetic
dipole field receivers placed on the seabed or towed behind the transmitter.

The physics of these modifications can be divided into three basic phenomena. The
first is electromagnetic induction, characterized by the skin depth, or diffusive scale length,
which is inversely proportional to conductivity and frequency. In a uniform medium, the
field strength falls off exponentially with distance, with the skin depth determining the
exponential scale length. The second is the galvanic effect associated with conductivity
boundaries. Conservation of charge (and thus current) requires that the electric field must
be different on the two sides of such a boundary, and this difference is proportional to the
conductivity contrast. The third is geometric spreading: for a dipole transmitter, the fields
fall off as the cube of distance. The modeling codes we use to simulate and invert field
data incorporate all the physics by numerically solving the appropriate partial differential
equations with suitable boundary conditions.

The most significant difference between the land and marine environments is that
the skin depths of the seafloor rocks are larger than the skin depth in seawater, so the
signals measured close to the seafloor are dominated by energy that has propagated in the
target of interest, that is the seafloor geology. On land, energy can propagate through the
atmosphere and it contributes significantly to the signals that are measured in the frequency
domain. The theory and historical development of the marine CSEM method, with specific
application to sub-seafloor hydrocarbon reservoirs or similarly resistive layers, is reviewed
in [53,55].

Here, an FDM3D model domain was built from a uniform grid of 100 × 100 × 100 cells
(101 nodes in each direction), with each cell being 200 × 200 m in the horizontal directions
and 100 m in the vertical direction, for a total model size of 20 × 20 × 10 km. Horizontal
electric field transmitters in both the x/east and y/north directions were located near
the seafloor in the central 5 km of the model; 26 in total at 13 locations. Receivers were
scattered across the seafloor spaced 500 m apart in a 5 × 5 km grid; 441 in total (Figure 1).
It is computationally efficient to use a small number of transmitters and a large number
of receivers in the simulations. In practice, given the ability to tow a CSEM transmitter
continuously through seawater, real data would be collected using a relatively small
number of receivers and a large number of transmitters. However, electromagnetic field
behavior is reciprocal, in that transmitters and receivers can be exchanged and the same
fields measured, meaning that the data simulated here could be realistically acquired in
the real world. In recognition of that, the transmitters were placed 1 m above the seafloor
and the receivers 50 m above the seafloor, opposite to how data are collected in practice.
Transmission frequency was set to 0.25 Hz.

In a classic sensitivity study, forward model data would be generated, realistic levels
of noise added, and then inverted to see if the structures in the original model could be
recovered. This is a sensible procedure for determining if, for example, a particular EM
survey could determine total volume of gas in a given reservoir structure. However, not
only is the huge computational cost of 3D inversion not necessary to demonstrate the
utility of CSEM monitoring of sequestration activity (and we further note that 3D CSEM
inversion codes are only recently becoming publicly available), but we also suggest that it
is not even appropriate for the question at hand. Inversions seek to solve for the electrical
conductivity structure of the entire model domain, because this is usually unknown prior
to the collection of data. For timelapse monitoring, however, detailed knowledge of the
host rock’s conductivity structure is not needed, as we are primarily interested in changes
at the reservoir level. Furthermore, the smooth regularization that is ubiquitous in modern
inversion codes acts to smear out the effects of sharp conductivity boundaries, and will
equally smear out the effects of conductivity changes, giving a pessimistic view of data
sensitivity. It is also important to recognize that inversion models depend as much on the
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regularization penalties as the actual data, and a sharp temporal change in conductivity
will be distributed as a gradual spatial change in the host rock conductivity in ways that
might not be intuitively apparent or even helpful, a topic we return to below.
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It is also relevant to recognize that the engineers know how much CO2 has been
pumped into the sediment, and at what depth. What is necessary to know is where it is
moving to from there. We demonstrate that the actual data are very sensitive to where
changes occur, and examination of the data themselves may tell the engineers what they
need to know. This is the approach we take here. That said, comparing the responses
of informed forward model simulations of the various possible migration scenarios with
the data would also provide valuable information, and 3D inversion will be used to
fully exploit the data collected. However, comparison of independently inverted before-
and-after inversion models is not likely to address this, for reasons already articulated.
Rather, new inversion algorithms that invert the actual changes directly, constrained by the
known geometry of the sequestration horizons and the amount of CO2 injected, should be
developed. While this is well beyond the scope of the present work, we hope the results
presented here will motivate others to perform this.

3. Results

We can illustrate the sensitivity of CSEM data to a CO2 sequestration scenario using a
relatively simple model. Background seafloor conductivity is taken to be 1 S/m, typical of
marine sediments, and seawater conductivity 3.2 S/m, typical of deep water. A reservoir
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target is placed 1000 m below seafloor, a little deep for CO2 sequestration but not unrealisti-
cally so. The thickness of 100 m is one commonly used in simulations and is conveniently
one cell tall in our model. We assign the reservoir a conductivity of 0.01 S/m, a value
used by [46] but on the low side of other studies. While a simple model, this is consistent
with those used in other studies [40,44,46] and has the advantage of being identical to
the canonical oilfield model [64], allowing comparisons to be made with many existing
studies designed to examine the use of CSEM for oilfield exploration (e.g., [53,54]). The
3000 m diameter reservoir thus constructed and shown in Figure 1 would take 14 years to
accumulate in 35% porosity sediments filled to 60% saturation CO2 at an injection rate of
10 million tons of CO2 per year, considered to be a realistic injection rate [66] and less than
the current U.S. Department of Energy targets [67].

The FDM3D code computes the three orthogonal components of the complex electric
and magnetic fields at every receiver location, so each simulation generates over 100,000 real
data points which have fairly complex behavior depending on the particular geometry
of the transmitter and receiver pairs. One of the simpler components to interrogate is
the phase of the vertical electric field in the radial direction (taken to be within 45◦ of the
inline direction of a transmitter). Phase varies less with transmitter/receiver geometry
than amplitude and varies linearly, while amplitude varies exponentially, with range and
conductivity. The radial field mode is known to be sensitive to thin resistive targets [53,64].
Finally, navigation errors have a smaller impact on phase than amplitude [68], making this
a more robust measurement for repeat CSEM studies.

In Figure 2 we take the difference in vertical field phase between the background
structure (i.e., the CSEM response of the host rock without the CO2 reservoir) and reservoirs
750, 1000, and 1500 m in radius. The data are projected onto points that lie midway between
the transmitter positions and the receiver positions, and averaged where multiple midpoints
lie on the same physical position. Data with a transmitter–receiver range of less than 1000 m
are excluded, as are any points with electric field amplitudes less than 5 × 10−15 V/Am2, a
realistic noise floor for real data. The plots are scaled by the largest difference in phases,
which for the phase convention in FDM3D is positive as resistive structure is introduced,
and are between 5 and 20 degrees. It is routine to fit modern CSEM data to within 1 degree
during inversion, so these values are well within the resolution of the method. It is clear
from these plots that the phase jumps sharply within 100 to 200 m of the edge of the
reservoir; thus, reservoir size can be tracked quite effectively using these data.
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As we already stated, the engineers in control of injection know the total mass (and
approximate volume) of CO2 sequestered. Knowing the diameter of the resulting reservoir
is useful information and will depend on the thickness and saturation that is achieved.
However, of greater interest is the development of significant heterogeneity in the reservoir
structure. In Figure 3, we show the effect of a “breakout” on the edge of an otherwise
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orderly reservoir. Such behavior could be problematic if the CO2 is migrating along an
unknown fault structure or variation in permeability. The difference between the breakout
model and the background is dominated by the main reservoir response, but taking the
difference between the breakout response and the 1500 m radius reservoir clearly shows
where the breakout is developing. This highlights the value in taking stepwise differences
of the data, rather than differencing only against the baseline measurements, and argues
for collecting datasets more closely spaced in time than might otherwise be apparent.
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Figure 3. Similar data as shown in Figure 2, except we take the difference between the 1500 m radius
model and a model, as shown, where there is a breakout to the southeast. The CSEM data clearly
show where the changes have occurred in the reservoir.

While the model simulations we presented clearly show that the marine CSEM method
is sensitive to changes in reservoir structure, it is worth testing the assertion that complica-
tions in the background conductivity structure are not important. We therefore varied the
background conductivity in 800 m × 800 m patches one vertical cell tall (100 m), randomly
drawing the background conductivity from a lognormal distribution of conductivity. We
computed the response of this background model and then inserted the 1500 m radius
reservoir as before. The difference, shown in Figure 4 alongside the difference for the
uniform background, is almost identical to the previous results.
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4. Discussion
4.1. CO2 Stored in Deep Marine Environments; Monitoring Considerations

The simple simulations we presented are designed to show that the CSEM method
is sensitive to the types of structures that CO2 sequestration creates, and that changes
observed during CO2 injection are detectible and track the location of the change in a
way that is visible even in raw data. The resolution of the CSEM method depends on the
depth of the target, so by choosing to illustrate the utility of the method using models
with a relatively deep target we are presenting the pessimistic case. Shallower reservoirs,
including those in the GHSZ, would result in a stronger electromagnetic signature more
easily visible and with sharper lateral resolution.

We are not suggesting that data analysis stop at visualization, but rather that if changes
can be seen in the data themselves, then more rigorous modeling will prove even more
useful. Indeed, lateral changes are easy to visualize, but changes in vertical structure,
such as leakage from the reservoir and formation of shallower hydrate, will require more
sophisticated methods than we present here. For example, for simplicity we used only
one frequency, chosen to be sensitive to the target depth, but it was shown that inclusion
of several frequencies dramatically improves resolution of CSEM during inversion [69]
and is useful to resolve vertical structure, since the skin depth, or characteristic decay
length, of electromagnetic signals decreases with increasing frequency. In addition, it is
likely that small-scale variations in permeability, particularly those parallel to bedding, will
result in injection geometries that are not homogeneous, as was modeled here, but stacked
thin layers, as was observed at Sleipner [70]. Such thin layers are difficult to fully resolve
with seismic methods, and certainly would be below the resolution of CSEM methods.
However, they would result in significant electrical anisotropy, which can be resolved using
a combination of radial (in-line) and azimuthal (broadside) CSEM data or a combination of
CSEM and magnetotelluric data, a passive EM imaging method [53,69].

Although 3D inversion will certainly be required to achieve the full potential of the
data, we suspect that repeat regularized inversion of individual snapshots of the reservoir
will prove disappointing, as the regularization projects sharp changes seen in the data
across smooth conductivity models. More work in this regard is needed, and hopefully our
simple study will help motivate this. A first step was developed [71] in which instead of
comparing independent inversions of two time-lapse CSEM datasets, the data response
predicted by the baseline inversion model is perturbed by the data differences (the data
type we discuss here) and then inverted. The difference between the two models thus
generated is less dependent on the characteristics of the baseline model than independent
inversions would be.

There are many practical aspects to sequestration or production monitoring, some
of which have been discussed before [54] and which tend to concentrate on the ability to
replicate the navigation of repeat surveys. Likely, navigation will be tightly constrained
around the infrastructure required for CO2 sequestration, and permanent installation of
instruments will be possible. While calibrating instruments and maintaining that calibration
to better than 1% is challenging, demonstration that the phase of the CSEM signal carries
the required information sidesteps this issue to some extent; GPS timing signals can be sent
to all instruments, as has already been performed in CSEM surveying [63], allowing phase
to be measured precisely even when amplitude is uncertain.

4.2. CO2 Storage as Hydrate in the GHSZ; Insights from the Laboratory

In addition to the considerations of CO2 storage monitoring discussed above are
the related geotechnical issues involved with site selection itself, and here we turn our
attention to environments in, or proximal to, the GHSZ. Laboratory measurements can
help guide long-term stability assessment, and an important role for lab studies on marine-
hydrate-bearing sediments is careful measurement of controlled systems with known grain
characteristics, formation history, and gas hydrate concentration, to calibrate logs and
geophysical measurement techniques and to augment mixing models [72]. Numerous
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investigations have focused on the distribution and articulation of the hydrate phase within
sediments as well as the characteristics of the sediment components (e.g., grain size, shape,
mineralogy), sediment index properties (e.g., porosity, permeability, compressibility, per-
mittivity), complex effects of particle mobility, and pore fluid chemistry. Waite et al. [73]
provide a comprehensive pre-2009 review of research investigating solubility and forma-
tion considerations, thermal properties, fluid migration, EM properties, and seismic wave
speeds of hydrate-bearing sediments. A selection of more recent investigations on me-
chanical properties and water saturation effects includes [74–78], a mere fraction of the
work on this broad topic. In many cases, THF hydrate is used in experiments as it is stable
under easily accessible temperature and pressure conditions and can be formed over short
laboratory timescales. However, THF forms a structure II hydrate, unlike methane and
CO2 that both form sI hydrate, at conditions relevant to Earth. Considerably less attention
has been directed to the possible influence of the specific composition of the gas hydrate
phase itself, and its possible effects on the stability or monitoring of formations within the
GHSZ that might be suitable for carbon storage efforts.

To this end, we review a selection of in-house (or associated) lab experiments demon-
strating the measurable, and in some cases quite significant, departure in physical properties
that distinguish pure CO2 hydrate from pure methane hydrate. H2O ice is compared as
well, illustrating why in some cases it is an exceptionally poor analogue for gas hydrate.
Our basis of comparison is that all hydrate samples discussed below—over the course
of 25 years—were prepared by virtually identical methods and apparatus, in the same
laboratory, from the same distilled–deionized water source and scientific-grade gas sources,
and in most cases monitored throughout synthesis by the same instrumentation [79,80]. For
mixed hydrate/sediment aggregates, silica sand or silt standards were consistently used.
During development of synthesis methods, X-ray and neutron diffraction verified sample
purity and the expected lattice parameters (e.g., Figure 3 in [80]), and stoichiometry was
measured using a custom flow meter and gas collection apparatus (Figure 5 in [79]; also [80]
and references therein). While useful insights and trends can be gleaned from experimenta-
tion on analogue materials such as THF hydrate [74], dissociation behavior, ductile strength,
and electrical properties are three notable examples where specific composition and/or
structure of the gas hydrate critically influence material behavior.

Dissociation. CO2 hydrate is far less prone to dissociation than methane hydrate when
each is slowly warmed outside of its stability field [80] and does not exhibit complex
temperature-dependent dissociation behavior, as is observed in pressure-release experi-
ments on CH4 hydrate (i.e., anomalous preservation, first described in [79]). Instead, CO2
hydrate dissociation appears to be governed by one dominant characteristic: regardless of
the pressure–temperature pathway CO2 hydrate follows to conditions outside its stability
field, for instance, by increasing temperature or by decreasing pressure, the bulk of the
material resists dissociation (at least on a laboratory timescale) until temperatures reach
within a few degrees of the ice point, whereupon all remaining CO2 gas is released [80].
We may expect that the extremely sluggish dissociation rates play in favor for deterring
CO2 leakage. Interestingly, while CO2 hydrate and CH4 hydrate exhibit contrasting disso-
ciation behavior, dissolution of these two end-member hydrates exhibits fully predictable
behavior, fitting a diffusive boundary-layer model that incorporates relative gas solubilities
appropriate for the setting [81].

Strength. Rheological testing of a selection of gas hydrates was conducted in a triaxial
gas apparatus using standard rock mechanics methods, including encapsulated samples,
elevated confining pressures to suppress macroscopic fracture, and a pore pressure line
communicating gas to the sample to maintain it within its equilibrium stability field
throughout testing (Figure 12 in [79]; see also [82,83]). Figure 5, modified from [83],
illustrates the exceptional plastic flow strength contrast between various gas hydrates and
water ice. For example, at 263 K (−10 ◦C) and strain rate 3.5 × 10−6 s−1, the steady-state
stress supported by polycrystalline water ice is roughly 1.5 MPa, compared with ~10 MPa
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for CO2 hydrate, ~39 MPa for methane hydrate, and close to 100 MPa (extrapolated) for sII
methane–ethane hydrate [83].
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Figure 5. Rheological strength contrasts of gas hydrates and ice. (a) Ductile flow, plotted as log σ vs.
reciprocal temperature (Arrhenius plot) of sI methane hydrate, sI CO2 hydrate, sII methane–ethane
hydrate, and H2O ice. Modified from Figure 4 in Durham et al. [83]. Here, σ denotes stress. Strain rate
is 3.5 × 10−6 s−1. Not only are gas hydrates substantially stronger than water ice, but they can also
exhibit strength contrasts amongst different structures (sI vs. sII) as well as different compositions of
the same structure (sI CH4 vs. CO2 hydrate). Adding a uniform mix of 50 vol.% quartz sand to either
CH4 or CO2 hydrate (gray lines) increases strength by ~2× with respect to the pure end-members.
(b) Indium-jacketed composite sample of methane hydrate (“MH”, bottom) and ice (top) between
two end caps, illustrating the manifest strength contrast whereby sample strain is accommodated by
the significantly weaker ice phase (modified from Figure 1 in [82]). The sample was a near-perfect
cylinder prior to testing.

Importantly, the results reveal that significantly different rheologies are exhibited by
at least some sI vs. sII hydrocarbon hydrates, as well as between compositions of the
same structure hydrate (sI methane hydrate vs. sI CO2 hydrate), including at temperatures
above the ice point that are directly relevant to marine sedimentary environments. The
high strength of gas hydrates may even be of consequence for marine-hydrate-bearing
formations where hydrate concentrations are low. If conditions permit high effective
normal stresses (high confining pressure relative to pore pressure), frictional resistance
and cohesion between sediment grains may be high enough that time-dependent plastic
deformation within the weakest grains of the aggregate governs macroscopic strength [83].
In the case of methane-hydrate-bearing or CO2-hydrate-bearing sediment formations, the
hydrate is the weakest phase, and its response may have a markedly different effect than
previously predicted.

Can the distinct rheologies illustrated in Figure 5 be explained? The contrast in ductile
strength between ice Ih and sI methane hydrate is at first glance surprising as they share
similarity in oxygen–hydrogen bond angles and lengths, as well as density [20]. However,
as postulated in [82], two key factors lend insight into their contrasting behavior: (1) the
rate of molecular water diffusion may be as much as two orders of magnitude slower in gas
hydrate than in ice, rendering it more creep-resistant, and (2) unit cell considerations likely
render glide-and-climb motions of dislocations, as well as self-diffusion, more difficult
and thus increase the resistance of sI hydrate to intracrystalline plastic deformation (as
per [20], the cubic hydrate sI unit cell parameter of 1.20 nm, with 46 water molecules per
unit cell, is roughly twice the linear dimension of ordinary hexagonal ice Ih, with cell
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parameters a = 0.45 and c = 0.74 nm and four water molecules per unit cell). The rheological
contrast between sI methane hydrate and sI CO2 hydrate, on the other hand, remained an
enigma, despite the demonstrated veracity of the behavior itself [83]. We now suspect that
point-defect and lattice-imperfection factors implicated in the more recently discovered
electrical property contrasts between CO2 hydrate and CH4 hydrate (discussed below) may
likely also be rooted in other diverging responses, including rheology. Of note, in addition
to the measurable strength contrast exhibited by these two sI hydrates, the slope of the
data (proportional to activation energy Ea as plotted in Figure 5) is also different, with CO2
hydrate instead sharing commonality with warm-temperature ice in a manner similar to
Figure 6.

Conductivity. Electrical conductivity (σ) was obtained from frequency-dependent
impedance measurements made on pure, polycrystalline sI CO2 hydrate [84], on samples
synthesized by identical methods as used above for dissociation, dissolution, and rheo-
logical testing [79–83] and compared with pure sI CH4 hydrate conductivity formed and
measured in the same apparatus [85]. We previously demonstrated how EM studies in
the field can benefit from salinity–conductivity insights gained from laboratory measure-
ment of σ made on CH4 hydrate with variable amounts of ionic impurities, sediments, or
brines [86–88], and now find that composition of the guest molecule itself can significantly
influence σ as well (Figure 6). In the case of pure CO2 hydrate vs. pure CH4 hydrate, there
is over an order of magnitude difference, with pure CO2 hydrate being more conductive.
The state of excess CO2 in the pore space at CO2 hydrate grain junctions (either as gaseous
or liquid CO2 in the pore space) caused no apparent changes to impedance—nor was it
expected to. We speculated that the rather extreme fit of CO2 molecules into small cages
of the sI clathrate structure leads to cage distortion and formation of additional charge
carriers, in general agreement with interpretations noted by previous researchers (see [84]
and references therein).

Also of note is that activation energy Ea (represented by the slope of the data fits
shown in Figure 6) of CO2 hydrate is nearly identical to that of the H2O ice used to
synthesize our samples, 46.5 and 45.3 kJ/mol, respectively, suggesting commonality in
charge carrier; presumably Bjerrum defects, and different from methane hydrate [84,85].
Ea of pure methane hydrate is 34.8 kJ/mol, about 33% lower than CO2 hydrate, and,
interestingly, remains nearly unchanged upon addition of ionic impurities—including,
but not limited to, those derived from sediments—further highlighting differences from
CO2 hydrate. From this observation and results from [86], we concluded that the electrical
conductivity of “pure” methane hydrate is actually determined by trace (0.005% NaCl)
impurities in the seed ice or introduced during handling [88]. We proceeded to estimate
that the order of magnitude increase in conductivity of the MH + 0.25 wt% NaCl sample
(Figure 6, purple squares) was a result of a maximum 0.05% NaCl being incorporated
into the methane hydrate lattice, the balance of the NaCl presumably remaining in a
nonconnected (and thus virtually undetectable) NaCl–H2O phase. Adding more NaCl
into the closed system of the conductivity cell resulted in formation of interconnected
brine channels that dominated sample conductivity, and methane hydrate prepared from
seawater ice (shown and described in [87,88]) exhibits, as expected, significantly higher
conductivity than all fluid-free hydrate samples we tested, including CO2 hydrate. In an
open system such as seafloor sediments, fluid exclusion is possible, and we can infer that
the conductivity of the MH + 0.25% NaCl sample is representative of methane hydrate
formed in a seawater environment that has become virtually fluid-free. In that case, the
sizable difference in σ between CO2 hydrate and CH4 hydrate shows promise for the
application of EM methods towards monitoring CO2 hydrate formations in the GHSZ in
settings where high-conductivity seawater or brines do not dominate the system, or in
monitoring leakage from potential CO2 sequestration sites.
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Figure 6. Electrical conductivity (σ) versus reciprocal temperature for pure CO2 hydrate compared
with pure H2O ice, pure methane (CH4) hydrate, CH4 hydrate doped with 0.25 wt% NaCl (the
near-maximum impurity content in CH4 hydrate without formation of a discrete saline fluid phase),
and CH4 hydrate containing 10, 45, and 50 vol.% of quartz sand or silt. Modified from data reported
in [84–88]. CO2 hydrate exhibits measurably higher conductivity than all methane-hydrate-bearing
samples tested here, including those with varying ionic impurity contents. Unlike pure CH4 hydrate,
CO2 hydrate is also more conductive than ice.

5. Conclusions

The use of electromagnetic methods to monitor CO2 sequestration in the marine
environment has been proposed and discussed for some time, although not yet employed
in practice. Here, we demonstrated that using data visualization of CSEM data differences
is effective in observing important sequestration processes in the deep marine environment
and likely shallower zones relevant to the GHSZ. This supports the idea that the CSEM
method could be a powerful geophysical tool to monitor CO2 sequestration in the marine
environment, either as a gravitationally stable fluid phase or as a stable gas hydrate phase
(or both). The figures presented in this paper show a useful response in a very small fraction
of the entire dataset, suggesting that rather than carrying out repeated inversions of entire
datasets and looking for changes in the resulting models, we should develop methods to
invert the data differences directly.

Electromagnetic methods are also used in the terrestrial environment, and our results
support the idea that CSEM methods are sensitive to conductivity changes associated with
sequestration in general. However, there are differences between the terrestrial and marine
environments. On land, the CSEM response is diluted by energy propagation in air and it is
difficult to measure the vertical electric field component, but there is the advantage of being
able to precisely control the repeat geometry of the transmitters and receiver placement.

Lastly, we draw upon quantitative laboratory measurements of methane and CO2
hydrate properties to guide discussion of how gas hydrate may play a role in marine CO2
sequestration efforts. In particular, critical differences in dissociation behavior, strength,
and electrical conductivity may in some cases influence the monitoring strategy and even
the stability of sequestered CO2 in regions within or proximal to the GHSZ. Our final
comment is that we hope to see carbon capture and storage (CCS) technologies—including,
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but not limited to, those discussed here—safely implemented in practice, as the planet is
past the point where reducing CO2 emissions will prevent catastrophic global warming,
leaving CCS as our primary recourse.
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