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Abstract: Lithium-ion capacitors (LICs) are a novel and promising form of energy storage device
that combines the electrode materials of lithium-ion batteries with supercapacitors. They have the
potential to deliver high energy density, power density, and long cycle life concurrently. Due to the
good electrochemical performance of lithiated manganese-based materials in LICs, they have received
extensive attention in recent years. The latest advancements in lithiated manganese-based materials
as electrode materials in lithium-ion capacitors are presented here, including LiMnPO4, LiMn2O4,
and Li2MnSiO4. These electrode materials have a lot of potential as high-performance energy storage
materials. Apart from capacitive-type electrodes, lithiated manganese-based materials are also used
in the creation of LIC battery-type electrodes. The LICs based on lithiated manganese-based electrode
materials demonstrated energy density, power density, and cycle life, which are relatively comparable
with various electrode material values reviewed in this paper. The electrochemical performance
of lithiated manganese-based materials is attributed to the synergistic effect of the doping and the
conductive carbon coating which provided new pathways for the movement of Li+ ions and electrons,
thus facilitating charge transfer reactions. Although much effort has gone into synthesizing lithium-
ion battery electrode materials and contracting LICs based on them because of their higher energy
density, there is still work to be carried out. Additionally, the potential barriers and opportunities for
LIC-based future research in energy applications are explored.

Keywords: lithium manganese oxide; lithium manganese phosphate; lithium manganese silicate;
lithium-ion capacitors; energy density; power density

1. Introduction

Electrochemical energy storage devices with high energy and power densities are
essential for meeting the need and rapidly increasing global demand for sustainable energy
supply. The performance of energy storage devices is primarily influenced by the active
components and cell architecture. The main test in the development of energy storage
devices is the balanced relationship between power and energy density. Energy storage
systems such as lithium-ion capacitors are chosen based on two performance characteristics:
the amount of energy they can store (energy density) and the speed with which they can be
charged and discharged (power density). The Ragone plot is a plot used for comparing the
energy and power densities of various energy storing devices, as shown in Figure 1. On
such a chart, the values of specific energy (in W h kg−1) are plotted versus specific power
(in W kg−1). The energy density of lithium-ion batteries (LIBs) is high (>10 W h kg−1) with
lower power density (1 kW kg−1) and cycle life of about 300 to 500 charge cycles, while
supercapacitors (SCs) have a high power density (>10 kW kg−1) and lower energy density
(5–10 W h kg−1) [1–4]. Both lithium-ion batteries and supercapacitors have drawbacks that
limit their use in some industries. Lithium-ion capacitors (LICs), or hybrid capacitors, were
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designed to bridge the gap between LIBs and SCs. They incorporate the benefits of both
LIBs and SCs. A LIC device usually consists of a high-capacity battery-type electrode and a
high-rate capacitor-type electrode, both of which are connected by an electrolyte.
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Figure 1. Ragone plot—comparison of the performance of different energy storage devices. Repro-
duced with permission [5]. Copyright 2017, Wiley-V.CH.

Hybrid capacitor devices are gaining popularity because of their higher energy and
power density combined with good cycle stability. In hybrid capacitors, the capacitor-type
electrode might be the anode or cathode, while the battery-type electrode is the counter
electrode. It is worth mentioning that the capacitor-type and battery-type electrodes operate
in separate potential windows, allowing hybrid capacitors to operate over a wider voltage
range and achieve higher energy densities. Hybrid capacitors’ energy and power densities
are mostly determined by the electrode materials used in the devices. In recent years, much
research has focused on developing the electrodes utilized in LICs. As a result, various
kinds have been shown to perform differently in LIC architectures. A list of current studies
on various materials is provided in Table 1.

Table 1. Summary of energy/power densities of LIC electrode.

Device Configuration (Anode//Cathode) Voltage
Range (V) Cycling Stability Maximum Energy

Density (W h kg−1)
Maximum Power
Density (W kg−1) Ref.

N-doped carbon nanopipes//rGO 0–4 91% over 4000 cycles 262 9000 [6]

B&N-doped carbon nanofiber//
B&N-doped nanofiber 0–4.3 81% over 5000 cycles 220 22,500 [7]

Graphite//graphene 2–4 97% over 3500 cycles 135 1500 [8]

Commercial graphite//activated carbon 2–4.5 69% over 2500 cycles 125 69 [9]

Li4Ti5O12//graphite 1.5–3.7 V 88% over 10,000 233 20,960 [10]

Artificial graphene//Na0.76V6O15 1–3.8 V 70% over 5000 cycles 119 21,793 [11]

TiO2 nanobelt arrays//graphene hydrogels 0–3.8 73% over 600 cycles 82 19,000 [12]

Silicon/flake graphite/carbon
nanocomposite//biomass-derived
porous carbon

2–4.5 V 80% over 8000 cycles 159 31,235 [13]

Li4Ti5O12-CNT//graphene foam 1–3.6 84% over 5000 cycles 101.8 12,300 [14]

MnO on C//trisodium citrate-derived
carbon 0–3.9 85.69% over 10,000 cycles 235 25,000 [15]

Amatucci et al. were the first to develop hybrid capacitors in 2001 [16]. The research
has grown in popularity since then. Although advancement in hybrid capacitor systems
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has been addressed in various energy storage evaluations, there has not been a thorough
review focused on lithiated manganese-based materials for lithium-ion capacitors. The
essential idea of LICs will be described in this paper, as will the lithiated manganese-based
battery-type electrode materials and their resurrection throughout several decades. The
major roles of lithiated manganese materials as active materials in the applications of LICs
are then highlighted. After a brief overview, the potential and limitations of LICs are
reviewed, providing a detailed understanding of lithiated manganese-based electrodes for
future LIC research.

2. The Bases of Electrochemical Capacitors

As seen in Figure 2, there are three main categories of supercapacitors: electric double-
layer capacitors (EDLCs), pseudocapacitors, and asymmetric supercapacitors. Asymmetric
supercapacitors can be divided into two categories: hybrid capacitors and systems with
two capacitive electrodes. One electrode of hybrid capacitors is known to store charge via a
battery-like Faradaic process, while the other electrode does it using a capacitive mechanism.
The reversible adsorption of electrolyte ions on the surface of the active material stores
energy in EDLCs, storing charge electrostatically rather than using a Faradaic (redox)
process [17–19].
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To avoid electrical contact, EDLC cells typically have two carbon-based electrodes
separated by a separator immersed in an electrolyte. Nanoporous materials with a large
specific surface area (1000 m2 g−1) are active materials for EDLCs [20]. In 1879, Helmholtz
defined the energy storage mechanism for EDLCs, and Stern and Geary improved it later.

Activated carbon (AC) is a widely accessible EDLC electrode with a cell voltage in
an organic electrolyte of up to 2.7 V, a high power density (up to 10 kW kg−1), and a
long cycle life (1,000,000) [16,21]. The energy density, on the other hand, is still lower
than 10 W h kg−1 [4,22–24]. The reduced energy density is owing to the AC electrode’s low
capacitance and high ionic resistance [25,26]. Therefore, this limits their application and
they cannot meet the various performance demands required by the markets.

The charge storage process of pseudocapacitors (PCs) is based on reversible reactions
between the electrolyte and electrode surface. PCs rely on quick redox reactions [25,27,28].
Transition metal oxides, conducting polymers, nitrides, carbines, and hydroxides are ex-
amples of common materials [29–31]. Electroanalytical investigations can separate PC
electrode materials from battery electrode materials because their kinetics are constrained
by a surface-related mechanism rather than diffusion-controlled processes that regulate the
electrochemical response of battery electrodes [20]. The capacitance of PCs with transition
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metal oxide (TMO) electrodes has been reported to be between 300 and 1000 F g−1 [28,32],
however, due to very unpredictable cycling behavior over a few cycles, they suffer from
capacity fading. The specific energy density of pseudocapacitors with an asymmetric config-
uration of two metal oxides is 5–10 W h kg 1. The behavior of the lithiated manganese-based
electrodes (LMP, LMO, and LMSO) reviewed in this paper resembles that of PCs [33–36].
Since the energy density is a product of capacitance and voltage, increasing the voltage is
necessary to enhance the energy density. Increasing the voltage is more effective because the
energy density increases in proportion to squared voltage. Essentially, there have been three
main approaches to achieving this goal: the first is to develop alternative carbonaceous or
redox materials with higher capacitance; the second is to develop a novel electrochemically
durable electrolyte or an ionic electrolyte with a large, stable voltage window; and the
third and most promising approach under serious investigation is the development of
non-aqueous Li-ion capacitors (LICs), also called hybrid Li-ion supercapacitors, which
have the potential to essentially increase the voltage.

Lithium-ion capacitors (LICs) are hybrid capacitors made up of two electrode ma-
terials, one of which stores charge electrostatically and the other of which store’s charge
Faradaically. LICs are intended to bridge the gap between high-energy Li-ion batteries and
high-power supercapacitors by combining their major benefits into a single device [31]. It
is necessary to first define the components of LICs before comprehending their fundamen-
tal energy storage mechanism. A LIC is a hybrid supercapacitor that has a battery-type
electrode for lithium-ion insertion/extraction and a capacitor-type electrode for pseudoca-
pacitance or ion adsorption/desorption, while an asymmetric supercapacitor is assembled
using two dissimilar electrode materials (pseudocapacitors and EDLCs) and offers a dis-
tinct advantage of a wide operational voltage window, thereby significantly enhancing the
energy density.

3. Lithium-Ion Capacitor Materials
3.1. The Mechanism of the Lithium-Ion Capacitor

Lithium-ion capacitors combine the energy storage mechanisms of batteries and
supercapacitor-type electrode materials in an electrolyte containing lithium ions. The
charge storage mechanism in lithium-ion capacitors is the development of an EDL at the
supercapacitor electrode and ion intercalation/de-intercalation at the Li-ion battery-type
electrode [28,30,37]

The charge/discharge process, as depicted in Figure 3, involves the transfer of a
lithium ion between two electrodes, with the electrolyte serving primarily as an ionic
conductor. Amatucci et al. were the first to suggest or propose LIC principles when
they created a 2.8 V hybrid capacitor using Li4Ti5O12 (LTO) [38]. Due to its zero-strain
qualities, Ohzuku et al. identified LTO to be an ideal Li intercalating spinel anode material
for Li-ion battery applications. It has a high-rate capability and a specific capacity of
150 mA h g−1 [39]. The battery-type electrode can function as both an anode and a cathode,
and the LICs are split into two types: (a) in an LTO/AC system, the anode is a battery-type
electrode, while the cathode is a capacitor-type electrode, which was demonstrated by
Amatucci and co-workers; (b) when the anode is the capacitor-type electrode, and the
cathode is the battery-type electrode. Here, similar to a battery, charges are stored by a
Faradaic reaction that occurs by solid-state diffusion of the ions into the electrode. This
process leads to phase changes during the charging–discharging process which leads to
less stability. These two mechanisms are shown in Figure 3.
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As previously stated, the purpose of the battery type (Faradaic) electrode is to insert/de-
insert Li-ions with a relatively constant voltage, resulting in a large specific capacity. The
purpose of the non-Faradaic capacitor electrode is to adsorb and de-adsorb ions. These
processes are reversible in varied ranges. The charge at each contact and the voltage differ-
ence between two plates determine the amount of energy stored in a capacitor (anode and
cathode). The following equation is used to calculate the energy densities of the LIC.

E =
∫

VdC (1)

The operating voltage is V , and the capacitance is C. Operating voltage has a direct
relationship with both energy and power, and it plays a significant role in both. Optimizing
the voltage window improves the electrochemical performance of LICs significantly. To
enhance the quantity of energy that can be stored, a high operating voltage is required. To
achieve this, three-electrode experiments for each electrode are required to (i) estimate the
specific capacitance of materials, (ii) understand the electrolyte stability under a working
environment, (iii) calculate contributions of surface and diffusion-controlled currents in
hybrid systems, (iv) during charge/discharge operations, determine the oxidation and
reduction potentials of active materials.

The mass ratio between the battery-type and the capacitor-type electrodes, as well as
the intrinsic behavior of the battery-type and capacitor-type electrodes, has a significant
impact on the cycle life of LICs. The charges at both electrodes should be balanced in an
asymmetric cell (qanode = qcathode). The voltage must be shared evenly between the two
electrodes using the mass balancing equation: qcathode = qanode, where qcathode represents
the charges stored at the positive electrode and qanode represents the charges stored at the
negative electrode. The formulae for the charge stored are as follows:

q = Csp·m·∆E (2)

or
mcathode
manode

=
Cspanode × ∆Eanode

Cspcathode × ∆Ecathode
, (3)

where m represents mass, ∆E denotes the potential window calculated from the charge/discharge
patterns of the three-electrode arrangements of the negative and positive electrodes, re-
spectively, and Csp refers to specific capacitance. The electrode material determines the
capacitance and stored energy to a large extent. Specific capacitance (Csp) and equiv-
alent series resistance, which are influenced by pore size distribution, specific surface
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area, and electrode material conductivity, are two more key components in increasing LIC
performance [25,40,41].

The discrepancy in power capability and charge storage capacitance between the two
electrodes used in producing high-performance LICs is one of the problems in developing
them. Limiting cycling-induced electrode degradation, particularly at high rates, to match
the high-power properties of anode carbon-based materials is the most difficult component
of constructing a Li intercalation cathode. Due to its lower capacity (30–35 mA h g−1) com-
pared to cathodes, the carbon-based anode has difficulties, further diminishing the energy
density [42]. This paper summarizes the electrochemical activity of lithiated manganese-
based materials and their relevance in LIC applications. Furthermore, the review evaluates
the material modifications for fast ions and electron transport, such as thin-film design,
porosity enhancement, nanostructuring, and composite design.

3.2. Design and Development of Lithiated Manganese-Based Materials for Li-Ion Capacitors

Lithium-ion batteries offer the highest energy and power densities of all commercially
available batteries. As a result, lithium-ion chemistries may be used in hybrid superca-
pacitors to attain useful energy and power characteristics. Lithium-ion technologies in
non-aqueous fluids have progressed considerably in the consumer electronics and grid
energy storage industries [43–45]. Lithium-ion technologies have now surpassed all others
in consumer electronics and electromobility when it comes to maximum energy density.
However, in grid energy storage applications where cost is more essential than energy
density, cost-effective analog technologies could be considered. The abundance rank and
cost (USD kg−1) of lithium, as well as sodium, potassium, magnesium, zinc, calcium, and
aluminum, are shown in Figure 4 [46].
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Figure 4. Different charge carriers’ relative abundance rank and cost (Li+, Na+, Mg2+, Ca2+, Zn2+,
and Al3+) for rechargeable batteries.

Employing lithiated manganese-based electrode materials in lithium-ion capacitors
is advantageous due to the high energy density, design flexibility, and long cycling ca-
pabilities of lithium-ion chemistries [47–49]. Manganese or its oxides are appealing for
hybrid supercapacitors because it is a transition metal with five unpaired electrons and the
most oxidation states in the periodic table, including the highest oxidation state (VII). Man-
ganese’s unique electronic structure makes it redox-active and it exists in a variety of oxide
forms (including MnO, MnO2, Mn2O3, Mn3O4 (MnO·Mn2O3), and Mn2O7) [49,50]. Second,
among pseudocapacitive oxides, manganese is the most common transition metal. This re-
view discusses progress in the development of better LICs using lithiated manganese-based
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electrodes (lithium manganese oxide (LiMn2O4), lithium manganese phosphate (LiMnPO4),
lithium manganese silicate (Li2MnSiO4)), as well as nanocomposite. A few figures from the
selected publications are briefly shown for better understanding.

3.2.1. Lithium Manganese Phosphate

The lithium manganese phosphate (LiMnPO4) cathode has received a lot of interest
because of its high operating voltage (4.1 V vs. Li) and ability to produce a maximum energy
density of 700 W h kg−1, outperforming the commercially available cathodes of lithium
cobalt oxide (518 W h kg−1), lithium manganese oxide (400 W h kg−1), and lithium iron
phosphate (495 W h kg−1) [51–53]. Olivine compounds have been extensively studied as
positive electrodes in lithium-ion batteries and they have demonstrated several advantages,
including being economically valuable, environmentally friendly, and having excellent
thermal stability [54–56]. In a LiMnPO4 olivine structure, the O atoms are arranged in a
hexagonal close-packed configuration, while the MnO6 octahedron is separated by the PO4
polyanion. Mn and Li occupy the octahedral 4c and 4a positions, respectively, with the P
atom in the 4c site [51]. All oxygen ions in LiMnPO4 form strong covalent bonds with P5+

in the tetrahedron to form PO4
3- polyanion which stabilizes the entire three-dimensional

framework as shown in Figure 5 [57–59]. Due to their increased stability, olivine cathode
materials have the benefit of being able to function in harsh environments while being
safe. LiMnPO4 has a higher working voltage of 4.1 V, which is within the non-aqueous
electrolyte’s stability window, and a theoretical capacity of 170 mA h g−1 [46–48].
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3.2.2. Lithium Manganese Oxide

One of the most promising lithium-ion battery cathodes is lithium manganese oxide
(LiMn2O4) with a spinel structure. They are low-cost, safe, and produce 400 W h kg−1 of
theoretical energy. The lattice spinel LiMn2O4 contains cubic close-packed oxygen ions
while the cations are distributed among the available octahedral and tetrahedral sites, pro-
viding structural stability [61–64]. Mn cations occupy half of the octahedral interstitial sites
and one-eighth of the tetrahedral sites. The interstitial space in the [Mn2]O4 framework,
as illustrated in Figure 6, consists of a diamond-like network of tetrahedral surrounding
octahedral sites that share edges and faces to create 3D diffusion routes for Li+ ions diffu-
sion [64–66]. The discharge occurs in two phases, one at 4 V and the other at 3 V with a
capacity of ≤120 mA h g−1 [53,67–70]. Only the 4 V plateau is typically used, implying
that the cell is built in a depleted condition and must be charged before use. The structure’s
cubic symmetry does not change throughout cycling, and the unit cell compresses very
slightly across a wide range of compositions, confirming the structure’s stability.
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3.2.3. Lithium Manganese Silicate

Lithium orthosilicates, Li2MSiO4 (M = Mn, Fe, Co), have caught the attention of
several researchers as high-capacity electrode materials for Li-ion batteries and hybrid su-
percapacitors [61–63]. Due to their many enticing qualities, including their high theoretical
capacity (330 mA h g−1) when more than one lithium ion is extracted per formula unit,
they are becoming increasingly popular [72–74]. The extraction of more than one lithium
ion per formula unit provides high thermal stability [35]; Li2MnSiO4 is a more promising
orthosilicate electrode material because it allows for the reversible extraction of two moles
of Li+ ions utilizing the Mn2+/Mn3+ and Mn3+/Mn4+ redox couples, and this results in a
greater energy density [74,75]. Li2MnSiO4 has an orthogonal structure. The orthorhombic
forms (Pmn21 and Pmnb) have two-dimensional channels for Li-ion diffusion, whereas the
monoclinic forms (P21ln and Pn) have three-dimensional routes (see Figure 7). The 2D
structures are destabilized when Li-ion is eliminated.
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of MnO4 tetrahedra (purple), SiO4 tetrahedra (blue) with Li-ions (green). Reproduced from [76] with
permission from the Royal Society of Chemistry.
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4. Application of Lithiated Manganese-Based Materials as Lithium-Ion Capacitors

Several investigations on lithiated manganese-based electrodes have been undertaken
to determine their use in LICs. Other lithium-based positive electrodes were used in
Wang and co-workers’ studies [77]. Several studies on lithium-ion capacitors have yielded
promising results, with lithium metal phosphates, spinel oxides, and manganese silicate
having been investigated as the promising electrode material.

Yang et al. created a LiMn2O4//nitrogen-doped graphene/porous carbon com-
posite in an aqueous 0.5 M Li2SO4 with a specific energy of up to 44.3 W h kg−1, a
specific power of 595 W kg−1, and an output voltage of 1.8 V [78]. Using an aqueous
LiNO3 electrolyte, Yen-Po Lin and Nae-Lih Wu produced LiMn2O4//MnFe2O4 cells with
a specific energy of 5.5 W h kg−1 and a power density of 1.8 kW kg−1 under a maxi-
mum working voltage window of 1.3 V [79]. Pazhamalai and colleagues used an aque-
ous 1 M Li2SO4 electrolyte with an operating voltage of 2.2 V to create an asymmetric
LiMn2O4//graphene LIC with high specific energy of 30.96 W h kg−1 and a power density
of 440 W kg−1 [80]. Liu and co-workers assembled a LiMn2O4//WO3 all-inorganic elec-
trochromic Li-ion hybrid supercapacitor which demonstrated a volumetric energy/power
density of 16.2 W cm−3/0.21 W h cm−3 at a working voltage of 2.5 V and remarkable
cycling stability with 95.4% capacitance retention after 5000 cycles [81]. However, high
ionic and electrical resistance hinder further improvements for lithiated manganese-based
materials in their electrochemical activity. In addition, Table 2 contains several other
potential LICs.

Table 2. Lithiated manganese-based material LIC summary.

Device Configuration (Anode//Cathode) Voltage
Rage (V) Cycling Stability Maximum Energy

Density (W h kg−1)
Maximum Power
Density (W kg−1) Ref.

AC//LiMnPO4 0–2 83% over 1000 cycles 28.8 2500 [82]

LiMn2O4//nitrogen doped graphene 0–1.8 85 % over 1000 cycles 44.3 595 [78]

LiMn2O4//graphene 0–2.2 90% over 1000 cycles 39.96 440 [80]

LiMn2O4//AC 0–2 75.9% over 2000 cycles 32.63 10,000 [83]

Li2MnSiO4//AC 0–1.3 95% over 5000 cycles 7.75 1650 [84]

Porous nanosized Li2MnSiO4 0–0.6 90% over 500 cycles 7 135 [85]

4.1. Effect of Doping on the Pristine Material

Doping is the process of introducing small amounts of a semiconductor element to a
material to change or regulate its electrical characteristics. Extrinsic semiconductors are
those that have been lightly doped, whereas degenerates are those that have been doped
to such great degrees that they behave more like a conductor than a semiconductor [86].
Doping refers to the process of activating a substance. Despite their potential, manganese-
based electrode materials suffer from considerable capacity loss during cycling [87–90]. The
presence of Jahn–Teller distortion, which is caused by Mn3+ and results in lower cyclability
during the Li+ diffusion process, is the main reason for this.

Doping manganese cathode materials can reduce manganese dissolution and Jan–
Teller distortion and raise power and energy density while improving conductivity and
maintaining and improving the capacity of active materials [91]. Several studies have used
various doping techniques to modify the surface of manganese-based cathode materials.
However, the search for new electrode materials with lower costs and better properties
is still important in the development of lithium-ion capacitors. Table 3 further high-
lights the energy and power densities of recently developed LIC-based manganese-based
doped materials.
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Table 3. Summary of energy/power densities of LICs on basis of doped manganese-based material.

Device Configuration (Anode//Cathode) Voltage
Range (V) Cycling Stability Maximum Energy

Density (W h kg−1)
Maximum Power
Density (W kg−1) Ref.

AC//LiMn0.95Ni0.05PO4 0–2 71% over 800 cycles 9.4 1610 [34]

LiNd0.01Mn1.99O4//black pearl carbon 0–1.6 86 % over 2500 cycles 17 397 [66]

AC//Li2MnSiO4/Al2O3 0–2.2 93.6% over 100 cycles 10.4 4020.8 [35]

LiMn2O4@LiNbO3//WO3 0–2.3 83.5% over 3000 cycles 106.1 574.7 [92]

4.2. Effect of Carbon on the Pristine Material

The electrochemical performance of manganese-based materials, for example, may be
improved by the surface coating, in lithiated manganese-based materials lowering Mn2+

and enhancing lithium-ion transit [7,93]. For high-rate manganese-based cathode materials,
carbon coating is required, and the quality of the carbon coating has a significant influence
on the lithium-ion cathode material. Different research groups looked at manganese-based
materials created with various carbon sources to see if carbon coating increases conductivity
and rate performance.

Due to their remarkable properties, carbon-based materials have been employed
in a variety of research sectors, particularly in the field of energy storage, due to their
outstanding qualities. Graphene, for example, is a one-atom-thick sheet of sp2-connected
carbon atoms with a polyaromatic honeycomb crystal structure [20]. With a large specific
surface area of 1500 m2 g−1, high electrical conductivity of 106 S cm−1, good flexibility
and tuneability, good chemical and thermal stability, and a wide potential window, its
thin monolayer structure delivers a good platform for the growth of great capacitive
hybrid energy storage devices [27,31,32]. Figure 8 depicts a schematic representation of
the LiMnPO4/reduced graphene oxide aerogel produced by solvothermal treatment and
subsequent restacking.
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Carbon-based lithium-ion capacitors have been found to function better, with higher
energy and power density, as well as faster charging and discharging over many cycles.
Zhang et al. [94] developed an Fe3O4-graphene nanocomposite for LICs with a specific
energy of 60.5 Wh kg−1 and a power density of 45.4 kW kg−1 in the 1–4 V potential win-
dow. At a voltage of 1–2.5 V, Lu and colleagues created a Li4Ti5O12/graphene nanosheet
composite for LICs that possessed specific energy of 14 W h kg−1 and a power density
of 2.7 kW kg−1 [95]. Figure 9a–j display the performance testing results of LICs based on
Li2MnSiO4/CNTs. The authors employed cyclic voltammetry, impedance spectroscopy,
and galvanostatic charge/discharge to demonstrate the device’s good performance in pow-
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ering LED lights. Table 4 summarizes the performance of carbon-based coated manganese-
based materials.
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Figure 9. Lithium-ion capacitor performance of Li2MNSiO4/CNTs, (a) CV plots of nanocomposite
@15 mV s−1, (b) CV curve cell at different scan rates, (c) GCD curves at various current density values,
(d) Nyquist plot of the device, (e) specific capacitance as a function of current density, (f) Ragone
plot showing power density as a function of energy density for an asymmetric cell, (g) CV curves
of two supercapacitor devices @ 10 mV s−1 when connected in series and parallel, (h) two parallel-
connected devices powering a DC motor fan with inset showing the non-rotating motor fan, (i) two
series-connected cells lighting up a blue LED, and (j) 8 red LEDs. Reproduced with permission [75].
Copyright 2020, American Chemical Society.

Table 4. Summary of the performance of carbon-based coated manganese-based materials.

Device Configuration (Anode//Cathode) Voltage
Range (V) Cycling Stability Maximum Energy

Density (W h kg−1)
Maximum Power
Density (W kg−1) Ref.

AC//LMNP/graphene 0–2 83% over 750 cycles 14 1900 [34]

LiMnPO4/rGO//rGO 0–1.5 91.2% over 10,000 16.46 4520 [96]

LiMn2O4/graphene//AC 0–2.3 90.6% over 500 cycles 38.8 12.6 [36]

LiMn2O4/graphene/CNs//N/S co-doped AC 0–2.1 90.8% over 5000 cycles 62.77 2967.96 [97]

Li2MnSiO4/CNTs//AC 0–1.6 83% over 2500 cycles 31 177 [74]

5. Conclusions and Perspectives

Increasing global demand for sustainable energy supply requires more efficient energy
storage devices with high energy and power densities. The performance of energy storage
devices depends mainly on the active materials and the design of the cell. Nowadays, the
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development of novel materials is helping in the improvement of the required character-
istics of energy storage devices. Therefore, it is an important technological task related
directly to the commercial applications of these devices. Recently developed LICs are mak-
ing their way into different commercial applications. LIC electrode materials have yet to
reach their full potential. In comparison to other energy storage devices such as lithium-ion
batteries, supercapacitors, etc., LICs are the only energy storage technology that provides
high energy, power density, and longer cycle life. Optimizing interfacial interactions and
the manufacture of uniform structures to improve charge transfer in high-performance
energy storage systems using LICs requires a thorough understanding of the surface chem-
istry of capacitors and battery components. The present state of lithiated manganese-based
materials as electrode materials in lithium-ion capacitors is summarized in this paper. The
materials of choice were LiMnPO4, LiMn2O4, and Li2MnSiO4. The energy density, power
density, and cycle life values of the LICs based on lithiated manganese-based electrode
materials were proven to be generally equivalent to those of various electrode materials.
The electrochemical performance of lithiated manganese-based materials is attributed to
the synergistic effect of the doping and the conductive carbon coating which provided
new pathways for the movement of Li+ ions and electrons, thus facilitating charge transfer
reactions. However, there is still more work to be carried out. For practical applications,
electrodes with high power and energy, as well as better electrochemical and mechanical
properties, should be investigated further. In the field of LICs, manganese-based materials
will continue to push scientific and technical progress. LICs have achieved great progress
in the last several years. Nonetheless, there are still many challenges to be tackled, both at
fundamental levels as well as at practical application levels, to enable high-performance
LICs in terms of materials and their properties.
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