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Abstract: Compared with the pole-to-pole short circuit, the fault characteristics are not obvious when
a monopolar grounding fault occurs in a DC distribution network, and it is difficult to locate the fault
accurately. To solve this problem, this paper proposes a fault location method based on improved
ReliefF and Weighted random forest (WRF). The 24 time and frequency-domain fault features of the
postfault aerial mode current are calculated, and the most useful features are selected to form the
optimal feature subset for input to the fault location estimator. In this paper, the ReliefF algorithm is
utilized for automatic feature selection and obtaining the weights of features. In addition, the WRF
algorithm is used to build the fault location estimator. Considering the fault location, fault resistance,
noise and time window length, the Matlab/Simulink simulation platform is used to simulate the
fault situation and compare it with other algorithms. The simulation results show that the average
positioning error of the fault location method is less than 0.1%, which is not affected by the fault
resistance and has strong robustness.

Keywords: DC distribution network; fault location; monopolar grounding fault; ReliefF; weighted
random forest

1. Introduction

With the rapid development of renewable energy, energy storage devices and various
new flexible loads, flexible DC distribution networks have received extensive attention
from experts and scholars due to their unique advantages [1–4]. The flexible DC distribu-
tion network is not limited by synchronization stability and has the advantages of large
transmission capacity, high power quality and flexible control.

The DC line is generally composed of underground cables, so it is difficult to locate
faults through the traditional manual method. The faults of DC cables are generally
permanent rather than transient. The DC system has low inertia, and the fault transition is
rapid, while the superimposed output of multiple converter stations after the fault makes
the consequences of the fault more serious. From the perspective of power system safety
and stability, the fault must be quickly located. The rapid and accurate fault location is one
of the key points to ensure its reliable operation and rapid recovery [5].

However, due to the late beginning, the fault location technology of a flexible DC
distribution network based on a voltage source converter (VSC) has not been fully studied,
and there is no better plan, especially for DC monopolar grounding fault location. On
the one hand, the potential risk of rapidly rising fault currents in low fault resistance in
effectively grounded distribution networks leads to a significant limitation of available
information and measurement time for fault location methods [6]. On the other hand, when
a high fault resistance grounding fault occurs, the weak fault characteristic information
will become a serious test of the fault ranging method. There is a lack of research on this
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issue [7]. At the same time, the distribution lines of the DC distribution network are short,
and the network structure is complex. When applying some fault location methods of
HVDC, such as the traveling wave method, the adaptability is greatly reduced due to
problems such as the traveling wave head identification and extremely high sampling
frequency requirements.

Existing research on fault location for flexible DC distribution networks based on
voltage source converter (VSC) mainly focuses on short circuits between poles, and the
topology is mainly radial connection or tree connection with a simple structure. The tech-
niques for short-circuit fault location in DC distribution networks are mainly divided into
three categories: fault analysis method, traveling wave method and artificial intelligence
method. The fault analysis method performs fault location based on the functional rela-
tionship between the collected voltage, the current or its characteristic parameters and the
fault distance. This method is simple in principle and low in sampling frequency and has
high research and application value in medium and low voltage DC distribution networks.
Considering the drawbacks of the mentioned single-terminal protections, the literature [8]
proposes a current waveform curvature based on a protection scheme. To compensate for
the shortcomings of the existing two-terminal fault location methods and to obtain accurate
fault location information, a two-terminal fault ranging model based on the time-domain
differential equations of RL lines was established in [9]. However, the defects of the RL
model itself make the method not suitable for networks with complex topology. In [10], the
scholar proposes to use the time difference between two consecutive reflected wave heads
for fault location on DC transmission lines, named the traveling wave method for fault
location. However, as the identification of traveling wave heads is difficult and requires
high sampling frequency, the investment in related equipment is high, which limits the
development of the traveling wave method in DC distribution systems [11–13]. As scholars
pay more and more attention to machine learning, some fault location schemes based on
intelligent algorithms have gradually become the focus of research. In [14], the authors
carry out parameter identification of fault locations of DC distribution lines under different
fault types based on genetic algorithms. The improved fault location method based on
clustering and iterating algorithms is proposed in reference [15], which eliminates the
negative influence of signal dimension fluctuation and false spectrum peak phenomenon of
multiple signal classification significantly. Reference [16] uses a particle swarm algorithm
for parameter identification and uses double-terminal power to obtain the fault location.
The random forest algorithm has strong performance in processing high-dimensional input
feature vectors. The authors in [17] propose an intelligent method for fault location in
HVDC systems using single terminal post-fault voltage signals with a feature selection tool
and a random forest estimator. This method has high practical value, but the redundancy
of feature subsets is not considered, which may lead to unreliable fault location results.

The main contributions of this paper are listed as follows:

1. When a monopolar grounding short-circuit occurs in DC distribution lines, we con-
struct 24 time and frequency-domain fault characteristics using the aerial mode current
at the single terminal of the line.

2. In this paper, the limited coefficient q is introduced to solve the shortcomings of
the ReliefF algorithm in application and combined with the Pearson correlation
coefficient method to automatically screen the optimal feature subset. The optimal
subset and feature weight are calculated by the improved ReliefF algorithm, and the
average value of the weights is taken as the final weight value. The optimal feature
subset containing the weight coefficient can be obtained. The weight coefficient can
continue to be used to improve the performance and fault location accuracy of the
WRF algorithm in subsequent steps.

3. The weighted random forest algorithm proposed in this paper mainly improves the
traditional random forest algorithm in two aspects. On the one hand, considering that
the improved ReliefF can obtain the specific values of the feature weight, it can be
combined with the RF algorithm to form a weighted random forest algorithm, which
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can improve the accuracy of the model in a targeted manner. On the other hand, using
the loop statement to find the values of mtry and ntree with the best model fit makes
the fault location scheme more accurate. Combining the improved ReliefF with the
RF, the features are no longer selected randomly, but the optimal feature subset is
selected for the dataset in advance. This improvement reduces the dimensionality
of the features in its input RF and eliminates redundant features, thereby greatly
reducing the computation time and improving the accuracy.

4. The simulation validation shows that the improved WRF algorithm has high accuracy
under various conditions when applied to fault location in a DC distribution network.
It has strong anti-fault resistance and anti-noise capability within a certain time
window and has strong adaptability. The principle of the method is simple; only local
measurement is required, no need to send and synchronize information at both ends,
which greatly reduces the management and investment costs of sampling equipment
and has strong engineering practicability.

2. Multiple Fault Characteristics and Optimal Feature Selection Algorithm
2.1. Monopolar Grounding Fault in a DC Distribution Network

The topologies of DC distribution systems mainly include radial, hand-in-hand and
ring. A ring DC network has multiple terminals, so the topology and fault protection
strategies are relatively complex. Moreover, the new energy sources such as photovoltaic
and wind power increase its diversity [4]. At the same time, the ring DC network not only
has the advantages of short restoration time and high reliability of power supply, but also
can be widely used in the new power system. Therefore, this paper develops a six-terminal
ring DC distribution network model as shown in Figure 1, which can be used to study the
proposed fault location method. Where A-F are the DC buses.
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Figure 1. Topology of a six-terminal DC distribution network. 
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Figure 1. Topology of a six-terminal DC distribution network.

The equivalent circuit of the DC line when monopolar grounding occurs is shown in
Figure 2.

The fault feature of the positive pole-to-ground and negative pole-to-ground are sym-
metrical, so this paper takes the former as an example to study the monopolar grounding
fault location method in the DC distribution system.
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Figure 2. Equivalent circuit for monopolar grounding.

Unlike the pole-to-pole, the short-circuit fault must be eliminated before the voltage of
capacitance crosses the zero-point. The monopolar grounding fault eventually enters the
voltage recovery phase. The DC voltage gradually returns to normal, and the nonfaulty
pole undertakes the short-term unipolar operation of the DC system to gain time for fault
elimination. However, because the fault characteristics are not obvious, it is more difficult
to accurately locate the fault.

In the bipolar DC distribution system, due to the coupling of the positive and negative
parameters, the currents are first converted into aerial mode current and zero mode current
components according to the Karenbauer transformation [18]:[

i1
i0

]
= S−1

[
ip
in

]
=

√
2

2

[
1 −1
1 1

][
ip
in

]
(1)

where ip and in represent the positive and negative current of the DC line, respectively,
and i1 and i0 represent the aerial mode and zero mode current of the DC line, respectively.
The positive direction of the aerial mode component is the same as the specified positive
direction of the current, and the positive direction of the zero mode component is specified
to flow from the DC bus to the DC line.

The Karenbauer transformation matrix is:

S =

√
2

2

[
1 1
−1 1

]
(2)

2.2. Multiple Fault Characteristics

For Line 1 of the six-terminal DC distribution system shown in Figure 1, the positive
pole-to-ground fault occurs at different positions from the left-end converter. The aerial
mode current measured at bus A is shown in Figure 3.

When a fault occurs in a DC cable, the system gradually recovers to a stable state
through a transient process. The fault transient signals are generated from the fault point
to both terminals of the cable during the system transient. The normal operation of the
system contains almost exclusively only the DC components, but the fault transient process
contains signals of various frequencies. Moreover, the transient signal contains a lot of fault
information, from which effective fault characteristics can be obtained [19].
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It can be inferred from Figure 3 that the oscillation and frequency content of the aerial
mode current will change with the fault location. There is a certain correspondence between
them, which is difficult to express by a specific mathematical formula. From the theoretical
research and simulation verification, it is known that the aerial mode current measured
for a period of time after the fault occurs is a vibration signal. The original statistical
characteristics of the vibration signal can be divided into two categories: time-domain
statistical characteristics and frequency-domain statistical characteristics.

In order to ensure the rationality of the characteristics indicators and the credibility of
the results, this manuscript extracts 11 time-domain features (T1–T11) and 13 frequency-
domain features (T12–T24) of the aerial mode fault current, a total of 24 common indicators
of vibration signal in statistics as the fault features as shown in Table 1.

Table 1. Multi-domain feature parameters.

No. Formula No. Formula No. Formula No. Formula

1
T1 =

N
∑

n=1
x(n)

N
7

T7 =

N
∑

n=1
(x(n) − T1)

4

(N − 1)T4
2

13
T13 =

K
∑

k=1
(s(k) − T12)

2

K − 1
19

T19 =

√√√√√ K
∑

k=1
f 4
k s(k)

K
∑

k=1
f 2
k s(k)

2
T2 =

√
N
∑

n=1
(x(n) − T1)

2

N − 1
8 T8 = T5

T4
14

T14 =

K
∑

k=1
(s(k) − T12)

3

K(
√

T13)
3

20
T20 =

K
∑

k=1
f 2
k s(k)√

K
∑

k=1
s(k)

K
∑

k=1
f 4
k s(k)

3
T3 = (

N
∑

n=1

√
|x(n)|

N )

2
9 T9 = T5

T3
15

T15 =

K
∑

k=1
(s(k) − T12)

4

KT2
13

21 T21 = T17
T16

4
T4 =

√
N
∑

n=1
x(n)2

N
10 T10 = T4

1
N

N
∑

n=1
|x(n)|

16
T16 =

K
∑

k=1
fks(k)

K
∑

k=1
s(k)

22
T22 =

K
∑

k=1
( f k − T16)

3s(k)

KT3
17

5 T5 = max|x(n)| 11 T11 = T5

1
N

N
∑

n=1
|x(n)|

17
T17 =√

K
∑

k=1
( f k − T16)

2s(k)

K

23
T23 =

K
∑

k=1
( fk − T16)

4s(k)

KT4
17

6
T6 =

N
∑

n=1
(x(n) − T1)

3

(N − 1)T3
2

12
T12 =

K
∑

k=1
s(k)

K
18

T18 =

√√√√√ K
∑

k=1
f 2
k s(k)

K
∑

k=1
s(k)

24
T24 =

K
∑
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( fk − T16)2s(k)

K 4√T17

Where x(n) is the time-domain signal sequence, n = 1, 2, . . . , N; N is the number of sample points; s(k) is the
spectrum obtained by discrete Fourier transform (DFT) of the time-domain signal x(n), k = 1, 2, . . . , K; K is the
number of spectral lines; fk is the frequency value of the kth spectral line.

The statistical significance of each feature quantity is as follows:

1. Time-domain: T1: average value; T2: standard deviation; T3: square root amplitude;
T4: root mean square; T5: peak value; T6: skewness; T7: kurtosis; T8: crest factor; T9:
clearance indicator; T10: shape indicator; T11: impulse indicator.

2. Frequency-domain: T12: central frequency; T13: variance frequency; T14: skewness
frequency; T15: peak value frequency; T16: gravity frequency; T17: standard devia-
tion frequency; T18: root mean square frequency; T19: mean square frequency; T20:
waveform stability factor; T21: coefficient of variation; T22: skewness frequency; T23:
kurtosis frequency; T24: square root ratio.

Through the comprehensive representation of these 24 features, the fault aerial mode
current can be fully described. Thereby, subtle differences between different fault current
vibration signals corresponding to different fault locations can be distinguished.
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Figure 3. Aerial mode current for monopolar grounding in different positions. 
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Figure 3. Aerial mode current for monopolar grounding in different positions.

2.3. Optimal Feature Subset Selection
2.3.1. ReliefF Algorithm

In an intelligent algorithm, feature pre-selection is one of the preprocessing stages
to improve the accuracy and performance of artificial intelligence. Relief is a classic filter
feature selection algorithm, but it is limited to binary problems and cannot deal with noise
and missing values in the data.

Kononeill proposed the ReliefF algorithm for multi-classification problems based on
the Relief idea and expressed the importance of features by setting a “correlation statistic”.
The essence of correlation statistics is to measure the ability of the feature to perform
“intra-class aggregation and inter-class divergence”, and it is an important measure of the
degree of feature importance [20]. According to the correlation of each feature and category,
the features are assigned weights of different sizes, and the features are sorted according
to the size of the weight. The larger the feature weight, the higher the correlation of the
feature will be. During feature selection, features with smaller weights can be removed
according to the set threshold to form the optimal feature subset.

The specific method for selecting multiple fault features in the time and frequency-
domain of aerial mode current based on the ReliefF algorithm is as follows:

1. Randomly select a sample Ri from the feature ensemble training set.
2. Find the K nearest neighbor samples Hj and Mj (j = 1, 2, . . . , K) from the set of samples

of both the same and different classes as sample Ri, respectively.
3. Use the K-nearest neighbors (KNN) idea to iterate repeatedly on each feature dimen-

sion and update the weight W(Tp) of each feature Tp (p = 1, 2, . . . ,24) according to
Formula (3).
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W(Tp) = W(Tp)−
1

mK

K

∑
j=1

d(Tp, X, Hj) +
1

mK
P(c)

1− P(c)

K

∑
j=1

d(Tp, X, Mj) (3)

where m is the number of algorithm iterations. P(c) is the probability of class c samples
in the training set, d(Tp, X, Hj) presents the distance between sample X and sample Hj on
multiple features Tp, and d(Tp, X, Mj) presents the distance between sample X and sample
Mj on multiple features Tp, which is calculated by Formulas (4) and (5).

d(Tp, X, Hj) =

∣∣V(Tp, X)−V(Tp, Hj)
∣∣

max(Tp)−min(Tp)
(4)

d(Tp, X, Mj) =

∣∣V(Tp, X)−V(Tp, Mj)
∣∣

max(Tp)−min(Tp)
(5)

where V(Tp, A) denotes the value of the characteristic Tp of sample A. A denotes X, Hj
or Mj.

4. Repeat the above process m times, and calculate the average weight as the final
assignment result of the feature.

5. After the iterations are completed, the weights W(Tp) of the features are ranked from
largest to smallest, and the top-ranked features are extracted according to the set
weight threshold α to form the feature subset.

2.3.2. Deficiency and Improvement Strategy

The ReliefF algorithm has the advantages of high operational efficiency, no restriction
on data types, strong anti-noise ability and suitability for multi-feature classification, but
there are still the following shortcomings in practice:

1. The random selection of samples may lead to the selection of edge samples or interfer-
ence samples with wild values, which may cause errors when updating the feature
weights. At the same time, random selection does not guarantee every small category
sample is selected, and the number of samples selected is uneven. These factors will
affect the stability and accuracy of feature selection.

2. The algorithm is sensitive to the number of iterations m and the number of nearest
neighbor samples K. Different combinations of parameters may lead to different
assignment results. It is necessary to consider the actual classification situation and
assign values determined by m and K.

3. Only the contribution of different features to the classification can be calculated, and
the subset of features formed does not exclude the possible redundant features.

To address the first two shortcomings, this paper adds a limiting coefficient q and
proposes an improved ReliefF optimal feature subset selection method. On the premise
that the total number of samplings remains unchanged, the number of repeated samplings
of a single sample is limited by the limitation coefficient q. The value of q represents the
maximum number of times a single sample can be selected, which needs to be decided
according to the number of input features. If the value of q is too large, it may lead to the
repeated sampling of a single sample, and the probability of small class samples being
selected is low. If the value of q is too small, it may lead to insufficient iteration, the optimal
solution is not obtained, and the result is unreliable. For the 24 time and frequency-domain
multiple features constructed in Section 2.2, q = 3 is taken here. This measure can ensure
the equality of each sample under the limited number of sampling times and improve the
reliability of the results. The total sampling time m is determined by the product of q and
the number of features.

For redundant features that may exist in feature subsets, the most common processing
method at present is to pre-eliminate some features with high similarity by calculating
the cosine similarity between features, and then select the optimal subset to calculate the
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weight. The cosine similarity calculation formula of the vectors X = (X1, X2, . . . , Xn) and
Y = (Y1, Y2, . . . , Yn) is given by (6).

cos(X, Y) =

n
∑

i=1
Xi ·Yi√

n
∑

i=1
X2

i ·
√

n
∑

i=1
Y2

i

(6)

As can be seen in (6), the cosine similarity uses the cosine value of the angle between
two vectors in the vector space to measure the difference between two vectors, so it only
evaluates the spatial correlation, while ignoring the numerical correlation of features. In
order to improve the reliability of correlation evaluation, this paper uses the Pearson
correlation coefficient (PCC) to calculate the correlation between features. The Pearson
correlation coefficient calculates the cosine similarity based on the centralized processing
of the two groups of data, which can better measure the similarity of the details rather than
the correlation of the symbols. The value range of PCC(X, Y) is (−1, 1), and the closer to
1, the higher the positive correlation between the two groups of data. The PCC between
vectors X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) is given by (7).

PCC(X, Y) =

n
∑

i=1
(X i − X

)
·(Y i −Y

)
√

n
∑

i=1
(X i − X)2 ·

√
n
∑

i=1
(Yi −Y)2

(7)

where X and Y correspond to the average value of features X and Y, respectively. After
calculating PCC(X, Y), the hypothesis test is used to judge whether the correlation between
features is significant, and the result is presented as the p-value.

The p-value is a numerical standard to measure whether the correlation coefficient
result is significant. If the p-value between two features is greater than a certain value, it
means that the PCC result between them is not significant. Even if the PCC is close to 0,
these two features may be redundant features of each other. If the p-value is less than a
certain value, it means that the calculated correlation coefficient result is significant, and
PCC can be used to characterize the degree of correlation between them.

2.3.3. Process of Improved ReliefF Algorithm

The steps of the improved ReliefF algorithm to select the optimal feature subset are
shown in Figure 4.

1. The process of feature subset selection mainly includes the following three steps:
Calculate the PCC between each feature in the training set and select features based
on whether the p-value is greater than 0.05. If the p-value ≥ 0.05, it means that there is
no significant correlation between them, even if the PCC is close to 0, the two features
cannot be selected together. Otherwise, if the p-value < 0.05, the calculated correlation
coefficient result is significant.

2. Determine the limit coefficient q according to the number of feature elements of the
remaining feature subsets, and then use the product of q and the number of features as
the sampling times. Then input it into the ReliefF model for feature weight calculation

3. The average of the feature weights are taken as the final weight value, and the feature
values in the feature subset are multiplied by the corresponding final weights to obtain
the optimal feature subset containing the weight coefficients. The weight coefficient
can continue to be used to improve the performance and fault location accuracy of
the subsequent RF algorithm [21].
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3. Weighted Random Forest
3.1. Random Forest Algorithm

Random forest (RF) is a classical ensemble learning algorithm. By combining multiple
decision trees through bootstrap aggregating (bagging), this algorithm can effectively solve
the problem of low accuracy of a single model in dealing with classification and regression
problems and greatly improve the generalization ability of the model. It has been widely
used in various fields.

RF is mainly divided into the following steps when dealing with classification and
regression problems:

1. Use bootstrap resampling to extract an equal number of samples with replacement
from the training set and use them as the training set for a single decision tree.

2. The decision tree starts to split from the top to the bottom of the node. When splitting,
a portion of the features m (m is a positive integer less than M) from the M explanatory
variables in the sample is extracted as a sub-feature. Then, select an optimal feature
from the sub-feature m for node splitting.

3. Each decision tree is repeatedly split according to step 2 until the node cannot be split.
4. A total of N decision trees are generated through steps 2 and 3. Each decision tree is

fitted with a weak learner, and the optimal fitting result is finally selected by voting
and output as the result.
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The RF algorithm uses bagging to integrate decision trees, which improves the accu-
racy and stability of decision tree classification and regression. However, the algorithm
takes a long time to process high-latitude datasets, and the model may overfit. Therefore,
the algorithm needs to be optimized accordingly.

3.2. Weighted Random Forest

The improved ReliefF algorithm proposed in Section 2 is used to replace the random
selection of features in the RF algorithm, and the optimal feature subset is selected in
advance. This improvement can eliminate redundant features and reduce the dimension-
ality of the features, thereby greatly reducing the computation time and improving the
model accuracy.

The optimization and improvement of the RF algorithm in this paper mainly include
two aspects. On the one hand, the improved ReliefF can obtain the specific weight of the
features, which can be combined with the RF algorithm to form the WRF algorithm. The
prediction accuracy of the model improved. On the other hand, the computational accuracy
of the WRF depends to a large extent on two parameters: e and ntree. The former is the
number of attributes pre-selected when the decision tree nodes are divided, and the latter
is the total number of decision trees.

To determine the optimal model of WRF, loop statements were used to find the
values of mtry and ntree with the best model fit, so that the fault location scheme has
higher accuracy.

The process of the combined WRF algorithm is as follows:

1. Use the improved ReliefF algorithm to filter out the optimal subset of features in the
original training set and generate the corresponding weights for the features.

2. Build the WRF fault location model, then find and set the optimal mtry and ntree
values by using a loop statement.

3. Multiply the calculated weights with the feature values and input them into the WRF
model for fitting. Calculate the error rate of out of bag (OOB) data and evaluate the
goodness of fit of the model.

The WRF combined with the improved ReliefF can effectively improve the fit accuracy
of features and achieve higher computational efficiency.

4. Monopolar Grounding Fault Location Method Based on Improved ReliefF and WRF

Based on the above analysis, this paper proposes an improved ReliefF and WRF
algorithm for a multi-feature fault location method for monopolar grounding in the DC
distribution network. The overall process is shown in Figure 5, and the specific steps are
as follows:

1. Start to record the current and voltage data at the observation point for 100 ms when
the relay protection device detects the monopolar grounding in the DC distribution
line. The Karenbauer transform was performed on the recorded data to calculate the
aerial mode currents.

2. According to the aerial mode current, 11 time-domain features and 13 frequency-
domain features are calculated to form the original multi-feature parameter table.

3. The PPC is used to eliminate the redundant features in the original multi-feature
parameter table.

4. The de-redundant features are input into the improved ReliefF model for weight
iterative calculation. We take the average value of the weight as the weight of the
feature. ReliefF automatically selects the feature with the highest weight to form the
optimal feature subset.

5. Calculate the product of the weights and the value of the feature as the weight for
the input WRF. Establish the fault location model based on WRF, where the optimal
parameters of the algorithm are determined by loop statements.

6. Use the WRF algorithm to solve for the location of monopolar grounding on a DC
distribution line and output the fault location results. The WRF algorithm is used to
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solve the monopolar grounding fault location of the DC distribution network and
output the fault location result.
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5. Simulation and Discussions

This section analyzes the performance of the proposed monopolar grounding fault
location method. The MATLAB/Simulink and the R Programming Language (R) are used
to simulate a six-terminal DC distribution system as shown in Figure 1 and to implement
the proposed new fault location method.

The converters are two-level voltage source converters. The VSC connected to terminal
A uses double closed-loop control method, with voltage droop control for the outer loop
and constant DC current control for the inner loop. The VSC connected to terminal B
operates in the maximum power control mode, and in some cases, it needs to operate
with reduced power. The battery module is in charging or discharging state. At the same
time, to ensure the power balance and stable operation of the system, the battery unit
plays the role of a balancing bus for the DC distribution network, and it should come into
islanded operation mode if necessary. The photovoltaic module is connected to the DC
distribution network through the DC–DC converter, with maximum power tracking control
for the outer loop and constant DC voltage control for the inner loop. The wind power unit
consists of permanent magnet wind turbines. Some of the key simulation parameters are
shown in Table 2.
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Table 2. Partial parameters of six-terminal DC distribution network system.

Parameters Value

DC bus voltage/V 500
DC capacitance/mF 20

Line resistance value per unit length/Ω·km−1 0.0139
Line inductance value per unit length/mH·km−1 0.159

Length/km 10
Sampling frequency/kHz 100
Rated wind speed/m·s−1 12

Wind power rated speed/r·min−1 75
VSC rated power/kW 20

Battery rated power/kW 20
Load unit rated power/kW 20

R is a GNU open-access software that has been widely used in research and analysis
in a variety of disciplines. The “random forest” package in R can quickly realize the
establishment and analysis of RF models and is easy to modify, which is conducive to
algorithm improvement. The algorithm part of fault location in this paper is based on the R
and MATLAB programming environment.

5.1. Model Construction and Simulation Analysis

Set a positive-to-ground fault point every 500 m on the 10 km DC distribution Line
1 of the six-terminal DC distribution network in Figure 1, and the data window is 100 ms
after the fault.

Before feature selection, the feature values are linearly adjusted to [−1, 1], and PCC is
calculated in pairs in each groups. The PCC calculation result is shown in Figure 6, where
the dark blue indicates a strong positive correlation between the two, the yellow indicates
a strong negative correlation between the two, both of which are redundant features that
need to be eliminated. The dark green indicates that the correlation coefficient is around 0.
Combine the PCC and the corresponding p-value of the features, take nine features to form
the optimal feature subset T as:

T = {T1, T7, T8, T14, T15, T20, T21, T22, T23} (8)
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The improved ReliefF is used to calculate the feature weights of the remaining feature
sets. Use the typical cross-validation theory to unify the training set and test set of each
fault aerial mode current. The results of the feature optimal subset weight calculation are
shown in Appendix A.

According to the data in Appendix A, take the average of the 27 calculation results of
the weight of 9 kinds of features, and obtain the weight value as shown in Table 3.

Table 3. Weight coefficient of the optimal features.

Optimal Features
Tp

Weight Coefficient
W(Tp)

Optimal Features
Tp

Weight Coefficient
W(Tp)

T1 0.621978 T20 0.126173
T7 0.029730 T21 0.258922
T8 0.592293 T22 0.321860
T14 0.147733 T23 0.177813
T15 0.131527 - -

For the RF regression model, the fitting superiority of the model can be judged by R2.
The calculation formula of R2 is:

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(9)

Use loop statements while building the RF model to find the optimal parameter that
maximizes R2. From the results of the multiple loops, R2 was taken to the maximum value
of 98.88 when mtry = 4 and ntree = 500. The traditional RF and improved WRF are used
as fitters to evaluate the feature selection results. The corresponding OOB error rates are
shown in Figure 7. After improving the feature preprocessing of the ReliefF algorithm,
when the number of decision trees is large, the OOB error can be maintained at a low level
of around 2.2%. However, the performance of this algorithm cannot meet some higher
requirements and needs to be further processed.
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As shown in Figure 7, after using the WRF to replace the traditional RF as the estimator,
the accuracy and performance of the model are greatly improved. The OOB error can reach
about 0.4%, the corresponding ntree when the iteration convergence is reduced, and the
convergence speed is improved.

After establishing the fault location model, the cross-validation theory is cyclically
used for simulation verification. Randomly assume 19 fault locations fn (n = 1, 2, . . . , 19)
on Line 1, and the results are shown in Table 4. The formula of the absolute value of the
locating error percentage Perror is:

Perror =

∣∣∣∣ x(measure) − x(actual)

Lline

∣∣∣∣× 100% (10)

where x(measure) and x(actual) are the distance between the fault location calculated by the
algorithm and the actual fault location from bus A, respectively. Lline is the length of the
DC line.

Table 4. Fault location results and errors.

x(actual)/km
Random Forest Weighted Random Forest

x(measure)/km Perror/% x(measure)/km Perror/%

0.3 0.2301 0.699 0.2957 0.043
0.8 0.8036 0.036 0.8027 0.027
1.0 1.0077 0.077 1.0055 0.055
1.5 1.5224 0.224 1.5030 0.030
2.0 2.0139 0.139 2.0017 0.017
2.7 2.7427 0.427 2.7029 0.029
3.0 3.0350 0.350 3.0084 0.084
3.1 3.1227 0.227 3.1027 0.027
4.0 4.0383 0.383 4.0073 0.073
4.4 4.4523 0.523 4.4083 0.083
5.0 5.0339 0.339 5.0009 0.009
5.6 5.5220 0.780 5.6014 0.014
6.0 6.0921 0.921 6.0113 0.113
7.0 7.0801 0.801 7.0101 0.101
7.3 7.3007 0.007 7.3007 0.007
8.0 8.0088 0.088 8.0068 0.068
8.8 8.8311 0.311 8.8086 0.086
9.0 9.0628 0.628 9.0091 0.091
9.8 9.8825 0.825 9.8095 0.095

It can be seen from Table 4 that the fault location method of the DC distribution
network proposed in this paper has a high accuracy. The absolute value of the error rate
can basically be maintained below 0.1%, and the average value has dropped about 10 times
to 0.055%.

Due to the randomness of intelligent algorithm fitting, the results of each simulation
verification may be slightly different, but they can meet the requirements of accuracy and
rapidity in general. Only when the parameters or the topology of the system change, does
the algorithm model need to be re-established for the system. Under normal circumstances,
we extract the aerial mode current of port A and input the constructed model to complete
the monopolar grounding fault location of the system.

5.2. Effect of Fault Resistances

When the monopolar grounding fault occurs in the actual DC distribution network,
the fault resistance is generally small. The maximum value of fault resistance does not
exceed 100 Ω. In order to reflect the general validity of the algorithm, this paper simulates
the monopolar grounding fault under Rf = 10 Ω and Rf = 100 Ω on the basis of Section 5.1.

There are large quantities of fault current data under different fault resistances, which
is difficult to be shown in total. Here, taking the fault of Line 1 at a distance of 5 km from the
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head of the line (midpoint of the line) as an example, the fault current and corresponding
fault characteristics are shown with different fault resistance.

As can be seen from Figure 8, when the fault resistance increases, the amplitude of the
aerial mode current will decrease, and the hazard will be reduced. However, the difficulty
of fault location increases, and the conventional fault location method may cause the failure
of the location accuracy to meet the requirements.
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Figure 8. Aerial mode current with fault resistance.

The 24 fault features and values under different fault resistances are shown in Table 5,
and as can be seen from Figure 8, when the fault resistance increases, the amplitude of the
aerial mode current will decrease, and the hazard will be reduced. However, the difficulty
of fault location increases, and the conventional fault location method may cause the failure
of the location accuracy to meet the requirements.

The 24 fault features and values under different fault resistances are shown in Table 5
and Figure 9.
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Table 5. Fault features and values with fault resistance.

Fault Resistances Fault Features and Values

Rf = 0 Ω

T1 T2 T3 T4 T5 T6 T7 T8

−22.4555345 24.5180054 26.4290631 24.5192314 95.1385402 1.11573634 6.26347973 3.88015997

T9 T10 T11 T12 T13 T14 T15 T16

3.59976969 0.84705480 3.28670813 0.03603943 0.34007241 27.6020470 899.678554 0.00167930

T17 T18 T19 T20 T21 T22 T23 T24

6.17048228 0.03906557 0.03603943 0.00261003 3674.42539 2.13959375 5.89237887 24.1578590

Rf = 10 Ω

T1 T2 T3 T4 T5 T6 T7 T8

−23.7409934 6.69391958 23.1461072 6.69425430 38.1291214 0.71045427 3.42611937 5.69579817

T9 T10 T11 T12 T13 T14 T15 T16

1.64732329 0.28197027 1.60604574 0.01798488 0.13035299 57.9065772 3739.96752 0.00208018

T17 T18 T19 T20 T21 T22 T23 T24

2.18045779 0.01394780 0.01798488 0.00584912 1048.20842 0.90658752 1.21975124 3.91253691

Rf = 100 Ω

T1 T2 T3 T4 T5 T6 T7 T8

−24.4414665 5.61344182 24.0988859 5.61372252 37.5885683 0.12268724 2.56588102 6.69583653

T9 T10 T11 T12 T13 T14 T15 T16

1.55976373 0.22968027 1.53790151 0.01211139 0.13196106 61.8340625 4103.87198 0.00093823

T17 T18 T19 T20 T21 T22 T23 T24

1.49022602 0.00947254 0.01211139 0.00256927 1588.33645 1.98663941 6.17647147 2.00997774

After the features selection and weight calculation, the features and weights are input
into the WRF model for fault location estimation. The simulation results are shown in
Figure 10 and Appendix B Table A1.
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It is obvious that the transition resistance has little effect on the fault location accuracy,
which is determined by the properties of the algorithm itself. Even if the fault resistance is
100 Ω, the locating error rate of the proposed method can still be kept within 0.85%, and
the absolute value of the maximum positioning error rate is 0.8100%, which corresponds to
only 0.081 km on a 10 km distribution line. It shows that the fault location method proposed
in this paper has a certain ability to resist fault resistances and has strong robustness.

5.3. Effect of Noise

In order to test the anti-noise ability of the method proposed in this paper, Gaussian
white noise with signal-to-noise ratios of 60 dB, 40 dB and 20 dB is added to the monopolar
grounding fault model. The simulation results are shown in Figure 11 and Appendix B
Table A2.
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It can be seen that the fault location method has a strong anti-noise ability. In the case
of strong noise interference in the collected aerial mode current, it still has an excellent fault
location capability.

5.4. Effect of Time Window Length

Compared with the pole-to-pole short-circuit of the DC line, the monopolar grounding
does not have an impulse current, which provides the possibility to obtain fault information
within a relatively long time window after the fault. Although the training of the model
takes a certain amount of time, once the model is finished, the transient aerial mode current
signal can be propagated and calculated to obtain the fault location within milliseconds.
The method proposed in this paper can quickly achieve fault location.

In the proposed method, the complete period DFT is applied within the 100 ms time
window of the fault aerial mode current. At a constant sampling frequency, the longer the
data time window, the greater the frequency resolution and harmonic content and vice
versa. All stages of algorithm construction and testing are repeated in a DC distribution
system by setting different time window lengths. Figure 12 and Appendix B Table A3 show
the average fault location error rate for the test set with different time windows.
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It can be seen from Figure 12 that changing the length of the time window has a certain
impact on the accuracy of the fault location method, but the overall location deviation
remains within the allowable range. This means that the accuracy of the improved WRF
model no longer depends too much on the size of the sample data but more on the optimal
features selected by pre-processing. Considering the cost and the actual requirements for
location accuracy, the method proposed in this paper can shorten the data window to
between 50 ms and 80 ms depending on the specific situation.

5.5. Comparison with Other Estimators and Intelligent Fault Location Methods

The WRF estimator is utilized in this fault location method. To compare and illustrate
the superiority of the WRF estimator, the same fault location experiments were performed
in the six-terminal DC distribution system of Figure 1 using the MLPNN and ε-SVR
estimators. The proper structure of each MLPNN estimator was determined through a
trial-and-error process. The best parameters values for the ε-SVR estimator were selected
through a 10-fold cross-validation procedure.

The results of MLPNN, ε-SVR, RF and WRF estimators applied to fault location are
shown in Table 6.

Table 6. Comparison with other estimators.

Estimators
Positive Pole-to-Ground Negative Pole-to-Ground

Perror/% Perror/%

MLPNN 0.2093 0.2188
E-SVR 0.8280 0.0791

RF 0.4097 0.4311
WRF 0.0554 0.0592

As shown in Table 6, the location accuracy of WRF is higher than the other three
estimators. The accuracy of the MLPNN estimator in fault location is acceptable compared
to the ε-SVR. However, the WRF estimator has easier parameter selection and better overall
test performance when dealing with high-dimensional input feature vectors.
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The weighted random forest algorithm proposed in this paper belongs to the cate-
gory of machine-learning-based fault location methods. Therefore, Table 7 compares the
performance of this method with the existing intelligent fault location methods.

Table 7. Comparison with other intelligent fault location methods.

Fault Location Method Required Current Data Sampling Frequency Perror/%

continuous wavelet
transform and Pearson
correlation coefficient

based on pattern
matching [22]

current data for multiple
points across the line 5 kHz 0.2079

current frequency spectra
based on MLPNN

method [23]

two-terminal current data
of the line 10 kHz 0.5370

Hilbert–Huang transform
and bat algorithm based

on SVR method [24]

one-terminal current data
of the line 1000 kHz 0.3104

Improved ReliefF and
WRF fault location

method in this paper

one-terminal current data
of the line 100 kHz 0.0554

As can be seen from Table 7, the method proposed in this paper requires less informa-
tion, lower sampling frequency, and has higher accuracy compared to other intelligent fault
location methods. Although the method proposed in the literature [22] has high accuracy
and requires lower sampling frequency, it requires many current sensors to be installed
along the DC line to collect current data from multiple points, which may increase the
complexity and cost. The method in the literature [23] requires the current data at both
terminals of the line and has insufficient location accuracy. The method in the literature [24]
requires a very high sampling frequency, and if the sampling rate is reduced to 250 kHz, its
Perror may increase by about 12 times. This requirement would significantly increase the
cost and reduce the practicality of fault location.

5.6. Application to Fault Line Identification

The fault location method proposed in this paper is realized by constructing a fault
location model through a machine learning technique and fitting the specific fault location.
This idea can also be applied to the identification of fault line in asymmetric ring DC
distribution networks.

The cross-validation method was also used to set positive pole-to-ground short-circuit
at multiple positions in Line 1~Line 6 in Figure 1. The method proposed in this paper was
used to construct the improved ReliefF and WRF algorithm for simulation verification. The
results show that the identification accuracy can reach 100%. That is to say, the method
proposed in this paper can also be used to identify the fault line of the DC ring network.
However, it should be noted that there may be problems such as a dead band near the
bus of the DC line, and it is not suitable for a symmetrical ring network. It is necessary to
combine other fault criteria to realize the fault line of the ring DC distribution system with
high accuracy.

6. Conclusions

This paper proposes a fault location method based on improved ReliefF and weighted
random forest. Combined with multiple time and frequency-domain features, the fault
location of the DC distribution network was estimated. A six-terminal ring DC distribution
system was established for simulation verification, considering various factors affecting
the positioning results and comparing with existing works in many aspects. The result
shows that the method proposed in this paper has high accuracy under various conditions,
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and the average error is within 0.1%. It has strong anti-transition resistance and anti-noise
ability within a certain time window, and has strong adaptability. The method is simple
in principle, only needs to be measured locally, and does not need to synchronize the
information at both terminals, which greatly reduces the management and investment
costs of sampling equipment. In view of the above advantages, the method proposed in
this paper is beneficial to the reliable and stable operation of the DC distribution network
and has certain engineering practicability.
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Figure A1. Results of the weight coefficients of optimal features. 
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Appendix B

Table A1. Fault location results and errors with transition resistors.

x(actual)/km
Rf = 10 Ω Rf = 100 Ω

x(measure)/km Perror/% x(measure)/km Perror/%

0.3 0.2870 0.130 0.2672 0.328
0.8 0.7997 0.003 0.7894 0.106
1.0 1.0320 0.320 1.0425 0.425
1.5 1.5009 0.009 1.5107 0.107
2.0 1.9963 0.037 1.9866 0.134
2.7 2.7222 0.222 2.7528 0.528
3.0 3.0323 0.323 3.0423 0.423
3.1 3.1043 0.043 3.1140 0.140
4.0 4.0072 0.072 4.0179 0.179
4.4 4.4024 0.024 4.4121 0.121
5.0 5.0097 0.097 5.0192 0.192
5.6 5.6299 0.299 5.6390 0.390
6.0 6.0390 0.390 6.0491 0.491
7.0 7.0014 0.014 7.0417 0.417
7.3 7.3001 0.001 7.3105 0.105
8.0 8.0029 0.029 8.0126 0.126
8.8 8.8189 0.189 8.8284 0.284
9.0 8.9877 0.123 8.9778 0.222
9.8 9.8318 0.318 9.8319 0.319

Table A2. Fault location results and errors with white noise.

x(actual)/km
SNR = 60 dB SNR = 40 dB SNR = 20 dB

x(measure)/km Perror/% x(measure)/km Perror/% x(measure)/km Perror/%

0.3 0.2670 0.330 0.2660 0.340 0.2654 0.346
0.8 0.7790 0.210 0.7784 0.216 0.7777 0.223
1.0 1.0354 0.354 1.0427 0.427 1.0508 0.508
1.5 1.5093 0.093 1.5170 0.170 1.5245 0.245
2.0 1.9878 0.122 1.9875 0.125 1.9876 0.124
2.7 2.7273 0.273 2.7317 0.317 2.7363 0.363
3.0 3.0256 0.256 3.0251 0.251 3.0241 0.241
3.1 3.1220 0.220 3.1250 0.250 3.1282 0.282
4.0 4.0041 0.041 4.0042 0.042 4.0034 0.034
4.4 4.4089 0.089 4.4171 0.171 4.4253 0.253
5.0 5.0096 0.096 5.0143 0.143 5.0195 0.195
5.6 5.6202 0.202 5.6307 0.307 5.6414 0.414
6.0 6.0291 0.291 6.0338 0.338 6.0386 0.386
7.0 7.0163 0.163 7.0174 0.174 7.0187 0.187
7.3 7.3121 0.121 7.3262 0.262 7.3400 0.400
8.0 8.0059 0.059 8.0151 0.151 8.0243 0.243
8.8 8.8148 0.148 8.8283 0.283 8.8411 0.411
9.0 8.9876 0.124 8.9727 0.273 8.9572 0.428
9.8 9.8302 0.302 9.8471 0.471 9.8638 0.638

Table A3. Fault location results and errors with data window length.

x(actual)/km
80 ms Data Window Length 50 ms Data Window Length

x(measure)/km Perror/% x(measure)/km Perror/%

0.3 0.2741 0.259 0.2619 0.381
0.8 0.8673 0.673 0.8565 0.565
1.0 1.0455 0.455 1.0651 0.651
1.5 1.5789 0.789 1.5885 0.885
2.0 2.0407 0.407 2.0512 0.512
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Table A3. Cont.

x(actual)/km
80 ms Data Window Length 50 ms Data Window Length

x(measure)/km Perror/% x(measure)/km Perror/%

2.7 2.6699 0.301 2.6582 0.418
3.0 3.0409 0.409 3.0518 0.518
3.1 3.1014 0.014 3.1118 0.118
4.0 4.0103 0.103 4.0211 0.211
4.4 4.4116 0.116 4.4270 0.270
5.0 5.0476 0.476 5.0567 0.567
5.6 5.5516 0.484 5.6416 0.416
6.0 6.0141 0.141 6.0214 0.214
7.0 7.0761 0.761 7.0828 0.828
7.3 7.3052 0.052 7.3158 0.158
8.0 8.0052 0.052 8.0195 0.195
8.8 8.8271 0.271 8.8399 0.399
9.0 9.0712 0.712 9.0801 0.845
9.8 9.8473 0.473 9.8586 0.457
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