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Abstract: Mahu Oilfield is the largest tight glutenite oilfield in the world, and the upper Wuerhe
formation is an important succeeding exploration horizon. However, the upper Wuerhe formation in
the Mahu 1 zone has a high clay content, which can lead to serious wellbore collapse. Meanwhile,
the horizontal well logging is not corrected. These factors lead to the inconsistency between the
logging interpretation results and the oil test results. The interpretation precision of the clay content,
water saturation, and porosity, which are crucial to reservoir evaluation, is very low. In this paper,
a workflow of logging curve correction using multiple methods is proposed. The multiple linear
fitting is used to correct boreholes, and then histogram frequency distribution matching is used to
standardize multi-well logging curves. Finally, the optimization method is used to build a volume
model based on skeleton analysis, and the results are calibrated with core analysis results. Horizontal
well density logs are corrected using adjacent vertical well logs. The interpretation results of clay
content, water saturation, and porosity with high precision are obtained. The reservoir interpretation
is more in line with the oil test results than the original interpretation. The clay content distribution is
more reasonable.

Keywords: glutenite reservoir; correction for logging curve; borehole enlargement; clay content;
horizontal well

1. Introduction

With the depletion of conventional oil and gas resources, unconventional oil and gas
resources have become an important strategic succeeding direction. Tight oil resources are
abundant, but their development technology is not mature and is still under exploration. Mahu
Sag in Junggar Basin, China, is rich in tight oil resources, and it is currently the largest known
glutenite oil field in the world [1]. The upper Wuerhe formation in the Mahu 1 zone is an
important succeeding exploration horizon for the Mahu tight reservoir. There are a lot of
studies on the reservoir accumulation conditions and the main controlling factors, reservoir ac-
cumulation mode, reservoir characteristics and controlling factors [2–5], development methods,
and development performance of glutenite reservoirs [6–9]. The characteristics of high-quality
glutenite reservoirs and sweet points have been reviewed [10,11], and some understandings
on the efficient development of tight glutenite reservoirs have been formed [12]. However,
the identification of high-quality glutenite reservoirs and the comprehensive evaluation of
productive glutenite reservoirs are some of the difficulties encountered in the development of
the upper Wuerhe reservoir. The porosity and water saturation of logging interpretation are
important indicators for a comprehensive reservoir evaluation. The upper Wuerhe formation
is characterized by a relatively high clay content and a relatively strong water sensitivity. The
clay content has a great impact on the reservoir’s physical properties [13,14]. The existence of
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argillaceous material reduces the permeability and porosity of the reservoir. It also makes the
pore structure complicated and increases the bound water content. The production practice of
the upper Wuerhe formation reservoir shows that better production performance is associated
with lower clay content. Therefore, the accurate interpretation of clay content is of great sig-
nificance for reservoir evaluation. However, the early logging interpretation results are poor,
and the interpretation accuracy of porosity, water saturation, and clay content is bad. There are
many inconsistencies between the logging interpretation results and the oil test results.

The reason why the logging interpretation accuracy of the upper Wuerhe formation
is not high is that the environmental impact has not been well corrected, especially the
wellbore collapse in the upper Wuerhe formation, which is serious. The mud invasion
and formation anisotropy affect the logging results [15–17]. But in the upper Wuerhe
formation, the borehole enlargement caused by borehole collapse is the most important
factor [18,19]. Due to the reservoir of the upper Wuerhe formation being tight, some
horizontal wells are also used for development. For vertical well logging, the axis of the
logging tool is approximately perpendicular to the formation, and the environment can be
approximately regarded as symmetrical. For horizontal logging, the axis of the logging tool
is approximately parallel to the formation, and the environment is asymmetric. Logging
results are affected by rock anisotropy, surrounding rock, instrument eccentricity, and
other factors [20–22]. At present, the method of vertical well logging interpretation is used
for horizontal well logging interpretation. However, due to the different environments
between horizontal wells and vertical wells, the original logging data cannot be directly
used for interpretation.

For vertical well logging, different environmental corrections have been developed by
various companies for their logging instruments through rock physics forward modeling,
including plots and empirical formulas [23–25]. For horizontal well logging, rock physics
forward modeling is also often used to analyze the influence of horizontal well logging and
establish a theoretical correction plot or correction coefficient formula [26,27]. However,
these calibrated plots and empirical formulas are developed for different logging instru-
ments and different simulated environmental conditions and have limited applicability.
Because the actual formation is often very complex, it is difficult for the current plots and
empirical formulas to completely conform to the actual situation, and often good results
cannot be obtained. Figuring out how to do environmental correction is still an important
subject when it comes to logging interpretation. There exist relationships between different
geophysical properties. Therefore, relationships between different logging curves can be
established [28–30]. Environmental factors have different effects on different logging curves.
Therefore, a logging curve less affected by a certain environmental factor can be used to
correct other logging curves [31–33]. For horizontal wells, it is also possible to establish
a relationship with adjacent vertical wells on the same horizon to correct the horizontal
well logging curves. This allows logging correction methods for specific reservoirs to be
established, considering the geological and sedimentary characteristics and complexity
of the reservoir. Of course, whether the result of the environmental correction of logging
curves is appropriate needs the reference standard of evaluation. However, there is no
reference standard for the environmental correction of many logging curves.

In view of the above issues, to improve the interpretation accuracy of logging curves
of Wuerhe formation in the Mahu oilfield, especially the interpretation accuracy of clay
content, this study fully considers the advantages of various methods. A method of com-
bining various methods to correct logging curves is established. Using high-quality logging
curves for multivariate linear fitting, the borehole enlargement is corrected. The logging
curves of multiple wells are normalized to eliminate the errors caused by different logging
instruments. To establish the volume model, the forward modeling of the petrophysical
model is carried out, and the logging interpretation is optimized against corrected logging
curves. Therefore, the logging interpretation of the same reservoir is based on the same
skeleton parameters. Through the calibration of core analysis results, the corrected log-
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ging interpretation results have reference standards. Thus, the accuracy of the logging
interpretation is improved, and the results are consistent with the oil test results.

2. Problems in Current Well Logging Interpretation

The reservoir in this area is tight, the in-situ stress changes greatly, and some boreholes
collapse seriously. These lead to the distortion of the interpretation results of the density
and acoustic logging. Affected by the borehole collapse, most well density curves have
unreasonable responses, and the density value of the enlargement section is significantly
reduced. The porosity and water saturation of the logging interpretation are quite different
from the results of the core analysis, as shown in Figure 1. Another manifestation of
low logging interpretation accuracy is that the clay content distribution of conventional
interpretation is poorly matched (Figure 2), which has a great impact on the clay content
predicted by the well seismic calibration. It brings serious problems to reservoir parameters
and reservoir fine evaluation. As a result, the interpretation of some logging curves is
unreasonable. This leads to the mismatching of the logging interpretation results of some
wells and the conclusion of their oil tests. For example, the P3w1 interval of well XX021
and well XX020 in the original logging interpretation is the oil layer. However, the oil test
results show that the P3w1 interval of XX020 does not produce oil and is not within the
scope of the reservoir. The daily oil production of well XX021 is only 0.08 t/d.
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At present, the methods for horizontal well logging interpretation are lacking, and
they all use vertical well logging interpretation methods. Because the logging environment
of the horizontal well is different from that of the vertical well, when using the vertical well
logging interpretation method to interpret, it is necessary to correct the logging curve. The
original horizontal well logging interpretation of the upper Wuerhe formation reservoir
in the Mahu 1 zone has not been corrected. The production performance of well XX21001
and well XX21012 is very poor. However, nearly 1500 m horizontal sections are interpreted
as reservoirs in the original logging interpretation, and the interpreted oil saturation is
high. This is not consistent with the actual production performance. Figures 3 and 4
respectively show the histogram comparison of the porosity and water saturation for the
logging interpretation of 34 horizontal wells. The distribution characteristics of the original
interpretation are quite different from those of the vertical wells, and their distribution
range and characteristics are inconsistent.
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3. Correction Method of Well Logging Curves

To get proper logging interpretation results, it is necessary to correct the logging curve.
First, the borehole correction is carried out. Then, the multi-well normalization correction
is carried out for curves after borehole correction. After that, based on the skeleton analysis,
the volume model is established through the optimization method. The results of the core
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analysis are used to calibrate the logging interpretation results, to reduce the impact of
individual error of logging curves. Thus, the volume model consistent with the reservoir
and high-precision clay content parameters is obtained, which makes the reservoir results
of the logging interpretation consistent with the oil test conclusions.

3.1. Borehole Correction

Different logging instruments have different requirements for borehole conditions. The
measuring instrument of the acoustic time difference can compensate for the unevenness
and the small collapse of the borehole. The electrode distance of the resistivity instrument
is generally larger than the invasion layer, and deep resistivity logging can detect more than
1.4 m. A cylinder volume with a radius of 50–80 cm along the wellbore is measured by the
compensated neutron. Therefore, these instruments can measure precise data under small
borehole collapse conditions. The density measurement instrument must be attached to
the well wall. So, the uneven well wall and small collapse can cause curve distortion. The
borehole collapse has a great impact on the density logging curve, while the impact on the
logging results of the acoustic time difference, neutrons, and resistivity gradually decreases.
For intervals close to each other with similar lithofacies, lithology, and fluid properties,
multivariate linear fitting is performed for well-quality logging curves. For non-collapsed
intervals, the direct functional response relationship between the benchmark curve and
the calculation curves is established using the relationship between the logging response
of the density, resistivity, compensated neutrons, and acoustic time difference. Then, the
logging response of the density is corrected in poor quality intervals. For the upper Wuerhe
formation, the following correction equation is obtained by using the logging curve fitting
of non-collapsed intervals with similar lithology and sedimentary:

CNLjz= 0.437207 − 0.254117 log Rtn, (1)

DTjz = 88.3037 − 35.1216 log Rtn+55.3088CNLjz, (2)

DENjz= 2.47403 + 0.184985 log Rtn − 0.287586CNLjz, (3)

where CNLjz is the corrected compensated neutron logging, dec; DTjz is the corrected
acoustic time difference logging, µs/m; DENjz is the corrected compensated density logging,
g/cm3; Rtn is the resistivity, Ω·m. Firstly, the resistivity logging, which is least affected by
the borehole collapse, is used to correct the compensation neutron logging, which is also
less affected. Then, the resistivity and compensated neutron logging are used to correct the
third-least affected acoustic time difference logging. Finally, they are used to correct the
compensated density logging that is most affected by the borehole collapse. The sequence of
the correction considers the extent to which different loggings are affected by the borehole
collapse. The well wall collapse in the mudstone section of the upper Wuerhe formation is
remarkable, causing varying degrees of impact on different logging curves. The logging
response is abnormal, and there exist abnormal points of low density. The data points of
the acoustic-neutron, acoustic-density, and neutron-density crossplots are scattered. This is
shown in Figure 5. After correction, the abnormal data points are reasonably and effectively
repositioned, and the acoustic-neutron, acoustic-density, and neutron-density crossplots
have a good relationship.

3.2. Normalization for Logging Curves

In addition to eliminating environmental impacts, logging instruments and operations
can cause systematic errors. To improve the comparability of logging results across multiple
wells, the logging curve normalization is required to eliminate these errors [34–36]. To
normalize logging curves, a layer with basically the same geological deposition is selected
as the standard layer. The curved shape and characteristics of the logging response of such
layers are basically the same. This standard layer can therefore be calibrated consistently
across all wells. Then other layers are corrected according to the correction coefficient of the
standard layer, considering the glutenite and mudstone lithologic strata of Wu 2 are stable in
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the deposition within the scope of the oilfield with large formation thickness. The lithology
and logging response characteristics are obvious. Therefore, it is chosen as a standard
layer for multiple well consistency processing. Using the method of histogram pattern
matching, the consistency check is performed on the curves of the acoustic time difference,
neutron, and density logging of multiple wells. The comparison of the histogram probable
pattern matching before and after multi-well normalization is shown in Figure 6. The
plot pattern matching after normalization is better. Before normalization, the distribution
pattern of the multi-well histogram is scattered, and the sample points of different wells
are not completely consistent. After normalization, the multi-well histogram patterns are
consistent, and the characteristics and standard deviation of the multi-well logging response
of the acoustic, neutron, and density for different lithologies are basically consistent.
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3.3. Mineral Skeleton Parameters

After the borehole correction and normalization processing of multi-well logging
curves for well logging data in the upper Wuerhe formation of the Mahu oilfield, the
neutron-density crossplot, and acoustic-density crossplot analysis are carried out for the
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logging data of Wu 2 and Wu 1 intervals to determine the acoustic, neutron, and density
logging response parameter values of clay and sandstone skeleton points, as shown in
Figures 7 and 8. The vertices A, B, and C of the triangle in the figures are the sandstone
skeleton, water point, and clay point, respectively. From the density-acoustic crossplot,
the sandstone skeleton point and clay point response characteristics of the density and
acoustic logging of the target layer can be determined. From the density-neutron crossplot,
the sandstone skeleton point and clay point response characteristics of the density and
neutron logging in the target layer can be determined. The neutron, acoustic time difference,
and density logging response values of the clay and sandstone skeleton in Wu 1 and Wu
2 intervals obtained from the analysis are listed in Table 1. The logging response values of
water points listed in Table 1 are theoretical results. They are used as unified parameters to
establish the rock volume model of the upper Wuerhe formation and analyze the reservoir
porosity, clay content, and water saturation.
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Table 1. Parameters for the volume model.

Wu 2 Interval Wu 1 Interval

VClay VQua Water VClay VQua Water

Acoustic (us/ft) 107 57 189 100 57 189

Neutron (dec) 0.5 0.1 0.7 0.5 0.1 0.7

Density (g/cm3) 2.5 2.64 1 2.65 2.64 1

3.4. Volume Model Calculation

When establishing rock volume model, it may be found that the number of logging
curves exceeds the unknown number of volume content. Different volume contents may
be calculated using different combinations of logging curves. To avoid this situation and
make full use of logging data, the volume content is obtained under the same set of logging
response parameters, and the optimization method is used to calculate the volume model.
Taking the comprehensive error of all logging curves as the optimization objective and
the weight coefficient and volume content of different logging curves as the optimization
variables, the optimization results are calibrated through the core analysis of clay content
and porosity. Therefore, the skeleton parameters of the same layer are the same. The
volume content obtained in this way is the average result of all logging curves, which can
reduce the influence of the error of individual logging curves on logging interpretation
results. The logging response curve of each component’s volume content and skeleton
parameters are related through the following linear equation:yk1

...
ykn

 =

a11 · · · a1m
...

...
a1n · · · anm


 xk1

...
xkm

, (4)

where xk1, . . . . . . , xkm are the volume contents; a11, . . . . . . , anm are logging response
parameters of the skeleton, clay, fluid, etc; yk1, . . . . . . , ykm, etc. are logging response
curves; n is the number of logging curves; m is the number of volume component; k is
the kth measuring point of the logging curve. The volume content meets the constraints
of normalization:

m

∑
i=1

xki = 1, (5)

The optimization objective function is as follows:

Y = ∑
k

n

∑
i=1

αi(yc
ki − yki)

2a = 1, (6)

where αi is the weight coefficient of the ith logging curve; yc
ki is the corrected measured value

of the ith logging curve. By minimizing Y, the optimal values of the volume content and
weight coefficient are obtained. Table 1 shows the skeleton logging response parameters
used for the optimization.

Figure 9 shows the results of the optimized volume model of well XX206. The logging
curve obtained from the forward modeling of the volume model is very close to the
corrected actual logging curve, and the optimized clay content and porosity are in good
agreement with the results of the core analysis.
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4. Logging Interpretation for Vertical Wells
4.1. Logging Interpretation Results

After the logging data correction, logging interpretation results of the porosity, clay
content, and water saturation with high accuracy are obtained. Figure 10 shows the compar-
isons between the original interpretation of the clay content, porosity, and water saturation
and the current interpretation results, as well as the comparisons between the current inter-
pretation results and the core analysis results. The accuracy of the current interpretation
results has been greatly improved compared with the original interpretation results. The
current logging interpretation results are in good agreement with the core analysis results.
Compared with the results of the core analysis, the clay content interpretation results of
16 wells with 72 data points have an interpretation accuracy of 80% and an average absolute
error of 1.6%. The porosity interpretation results of 23 wells with 998 data points have an
interpretation accuracy of 88% and an average absolute error of 0.4%. The water saturation
logging interpretation results of 3 wells with 22 data points have an interpretation accu-
racy of 92% and an average absolute error of 0.03. The correlation line between logging
interpretation results and core analysis results has a 45◦ slope. This shows that the logging
interpretation result is good. The average absolute error is the average of the absolute
error between the logging interpretation results and the core analysis results. Figure 11
shows the distribution of the clay content after correction. The distribution of the clay
content interpolated between wells after correction is reasonable and the matching is good.
Compared with the distribution of clay content after conventional treatment in Figure 2, it
can be found that the matching has been greatly improved.
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4.2. Reservoir Interpretation

Using typical rock samples in this area, the resistivity R of 100% saturated brine and
resistivity Rt at different water saturation Sw and corresponding porosity φ were measured in
the laboratory. Fitting F-φ and I-Sw curves, the parameters of the Archie equation are obtained as
shown in Table 2. By drawing the density porosity-resistivity crossplot of the log interpretation
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results of the oil test section, the reservoir standard can be drawn. The density porosity-resistivity
crossplot of P3w2 and P3w1 of upper Wuerhe formation in the Mahu 1 zone is shown in Figure 12.
From this, the oil layer standard of P3w2 of upper Wuerhe formation in Mahu 1 zone is obtained:
resistivity ≥ 6.5 Ω·m, porosity ≥ 5.8% and oil saturation ≥ 41%; The oil layer standard of P3w1
layer: resistivity ≥ 9.5 Ω·m, porosity ≥ 6.0% and oil saturation ≥ 40%.

Table 2. Parameters for the Archie equation.

m n a b Rw (Ω·m)

Wu 1 interval 1.564 2.029 1.010 1.067 0.090
Wu 2 interval 1.563 1.912 0.843 1.023 0.090
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The thickness of the oil layer interpreted after correction is quite different from that
of the originally interpretation for some wells. However, the interpretation results after
correction are more consistent with the oil tests and reservoir understanding. The reservoir
interpretation results of 7 out of 27 wells interpreted by the original logging curve are
inconsistent with the oil test results. After correcting the logging curve, the reservoir
interpretation of individual wells is clearer, and the logging interpretation is more consistent
with the oil test results. For example, the production test conclusion of well XX046 shows
that both P3w1 and P3w2 are oil layers. The combined test of the P3w2 layer obtained a
daily oil production of 10.07 t/d and a cumulative oil production of 154.8 t; the combined
test of the P3w1 layer obtained a daily oil production of 0.92 t/d and a cumulative oil
production of 66.14t/d. According to the current interpretation of the oil saturation, P3w1

2
is an oil layer with 1 m thickness, P3w2

2 is an oil layer with 14 m thickness, P3w2
1 is an

oil layer with 5 m thickness, and P3w3
1 is an oil layer with 8 m thickness. The original

logging interpretation interprets these two test intervals as dry layers. Well XX030 has
conducted a combined test for the P3w2 layer, with a daily oil production of 11.11 t/d and
a cumulative oil production of 228.7 t. The combined test of the P3w1 layer obtained a daily
oil production of 1.4 t/d and a cumulative oil production of 37.5 t/d. The oil test results
show that both P3w2 and P3w1 layers are oil layers. According to the current interpretation
of the oil saturation, P3w2

1 and P3w3
1 are oil layers with 5 m thickness, and P3w1

2 and P3w2
2

are oil layers with 9 m thickness. However, the original logging interpretation results
interpreted the P3w1 test interval as a dry layer. After the curve correction, these oil testing
layers can be correctly interpreted as oil layers. The original logging interpretation results
and the current logging interpretation results are shown in Figure 13.
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5. Logging Interpretation for Horizontal Wells

The horizontal well logging instrument is in an approximate horizontal state, and its
logging response must be different from the layered response characteristics of vertical log-
ging. Although logging instrument companies have set up eccentric correction equipment,
systematic errors still exist for tight sandstone reservoirs. Therefore, these errors need to
be considered. It can be found that there is a great contradiction between the porosity
and permeability calculated by the density or acoustic logging and the actual production
performance. It is mainly caused by the anisotropy of the formation and the eccentricity of
the logging tool. The sound propagates along the fastest path, and there is a big difference
between horizontal and vertical states. The density is measured by the response of rocks
in a cylinder, which reduces the influence of the horizontal well instrument eccentricity
and formation anisotropy. Since the thickness of the target layer in this area is more than
6m, the influence of surrounding rock on horizontal well logging can be ignored. Because
horizontal well logging is timely logging, its borehole is basically intact. In the method
proposed here, only the density logging is corrected, and the density logging curve is used
for the porosity calculation.

The density logging curve is the core logging curve for the porosity interpretation.
The reservoir deposition in this area is stable, and the overall change of the sand body
near the horizontal trajectory is small. According to the distribution characteristics of the
sand body density logging curve of the vertical well (the target sand body drilled by the
horizontal well), the sand body density logging curve of the horizontal well is adjusted.
Then, the density distribution profile of the horizontal well is consistent with that of the
vertical wells. After the density response of horizontal wells is corrected to the response
characteristics of vertical wells, the logging interpretation method of vertical wells can
be used to process and interpret the logging curve of horizontal wells, including the clay
content calculation, volume model interpretation, porosity interpretation, oil saturation
interpretation, and reservoir interpretation.

The logging interpretation results of well XX21012 and well XX21001 are shown in
Figures 14 and 15, respectively. The porosity of well XX21001 is significantly smaller
than the original calculation, and the oil saturation and the oil layer thickness are sig-
nificantly reduced. The production performance of this well is extremely poor, with an
average daily output of 3.3 m3 and a cumulative output of 2013 t; the porosity of well
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XX21012 is similar between two calculations, and the thickness of the oil layer is slightly
reduced. But the oil saturation is significantly reduced. With an average daily output of
14.3 m3 and a cumulative output of 2746 t, the production of this well is poor. Compared
with the original interpretation results, this interpretation is in good agreement with the
production performance.
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Figure 16 shows the histogram of the porosity and water saturation for the logging
interpretation of 34 horizontal wells. Compared with Figures 3 and 4, it can be found that
the distribution range and characteristics of the interpreted reservoir porosity and water
saturation are like that of adjacent vertical wells in the same layer, but the value is slightly
larger, which is generally reasonable.
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6. Conclusions

The upper Wuerhe formation in the Mahu 1 zone is tight with a high clay content,
and horizontal wells are adopted by some wells. There exist serious borehole collapses in
vertical wells, which leads to the distortion of density logging curves. The logging curve of
the horizontal wells is not reasonably corrected. The interpretation accuracy of the porosity,
water saturation, and clay content, which are crucial to the comprehensive evaluation of
reservoirs, is low. The logging interpretation results are inconsistent with the oil test results.
To improve logging interpretation accuracy, the borehole correction is carried out through
multivariate linear fitting. Then, the multi-well logging curve normalization is carried out
by using the histogram frequency distribution matching method. After these corrections,
the volume model is established by using the same set of logging response parameters
in the same layer. The calibration is carried out using core analysis results. The density
logging of horizontal wells is corrected using the logging curve of adjacent vertical wells.
The porosity and clay content of the logging interpretation are in good agreement with the
results of the core analysis. The reservoir interpretation results are more in line with the oil
test results. The matching of clay content distribution is greatly improved. The porosity
and water saturation distribution characteristics of horizontal wells and adjacent vertical
wells tend to be consistent. Thus, a workflow for logging curve correction using multiple
methods is established.
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