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Abstract: In this paper, an optimal hybrid (wind and grid)-hydrogen energy system (H-HES) is pro-
posed using multi-objective non-dominated sorting algorithm (NSGA-II) optimization. The H-HES
consists of the main energy system; wind-energy system (W-ES), which supplies a proton exchange
membrane (PEM) electrolyzer via an energy management system (EMS) and a rectifier. In addition,
the grid-energy system (G-ES) is available to support the W-ES to meet the PEM electrolyzer’s energy
demand, and the EMS facilitates control between the W-ES and G-ES. The W-ES is modelled using
wind data from Wind Atlas South Africa (WASA) for six Renewable Energy Development Zones
(REDZs) in South Africa and their appropriate wind turbine models. The selection of appropriate
wind turbine models is guided by the optimal wind turbine variables obtained from NSGA-II corre-
sponding to the optimal H-HES model. The optimal H-HES model is developed using two objective
functions: cost of electricity and efficiency, which are minimized and maximized respectively and
evaluated using NSGA-II available in Pymoo framework. NSGA-II successfully converges to a Pareto
front, and the best solution for the H-HES cost of electricity and efficiency for each wind REDZ is
determined by compromise programming; a multi-criteria decision-making technique available in Py-
moo. From the optimal cost of electricity and efficiency solutions, optimal variables are successfully
obtained for optimal modelling of the H-HES for each wind REDZ.

Keywords: cost of electricity; efficiency; green hydrogen; NSGA-II; optimization; proton exchange
membrane electrolyzer; wind energy modelling

1. Introduction

South Africa remains dependent on coal, hence it is susceptible to climate change
impacts due to unmitigated carbon dioxide (CO2) emissions up to 52% from coal-based
power plants that contribute towards 90% of power generation [1,2]. To reduce CO2 emis-
sions, South Africa established decarbonization objectives for transformation to low-carbon
renewable energy (RE) to align with the Paris Climate Agreement [3,4]. The latter is through
the Integrated Resource Plan (IRP 2010–2030), which targets an adequate RE energy mix
for decarbonization and energy security by 2030 [5,6].

In addition to RE, green hydrogen can be a catalyst to fast-track South Africa’s de-
carbonization objectives and ensure sustainable energy security. Green hydrogen is a
promising energy carrier to achieve zero-carbon emission in power generation and hard-to-
abate sectors, such as transportation and chemical industries, due to its versatile proper-
ties [7,8]. The production of green hydrogen relies on RE sources and electrolysis technology,
such as proton exchange membrane (PEM) electrolyzers, known for high efficiency [9,10].
South Africa has high potential in green hydrogen production based on available RE re-
sources [11–13]. Furthermore, green hydrogen contributes to the country’s economy from
exportation opportunities [14].
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In support of green hydrogen production applications in South Africa, this study
aims to contribute an optimal hybrid (wind and grid)-hydrogen energy system (H-HES)
model with wind-energy system (W-ES) modelled using wind data of Renewable Energy
Development Zones (REDZs) [15,16] obtained from Wind Atlas South Africa (WASA) [17].
The wind speed data for the REDZs is analyzed using Weibull distribution model due
to its good estimation of wind speed characteristics in any given site [18–24]. With the
knowledge of wind characteristics, an appropriate wind turbine model for each REDZ
is selected to maximize the power extracted from wind [18,25,26]. In addition, energy
assessment studies conclude that feasibility of hybrid energy systems such as the H-HES
proposed in this study highly depend on the cost of electricity and efficiency, among other
factors [10,27–29].

Therefore, the study develops an optimal H-HES model using the multi-objective
non-dominated sorting algorithm (NSGA-II) [30–32], with two objective functions, namely:
cost of electricity and efficiency, to be minimized and maximized, respectively. Using
the Pymoo framework [33] and a developed interface model, NSGA-II converges to a
Pareto front, and the best solutions of cost of electricity and efficiency for each REDZ are
determined using multi-criteria decision-making tools in Pymoo. From the optimal cost of
electricity and efficiency solution, the H-HES optimal variables are determined, resulting
in optimal modelling of the H-HES.

The rest of the paper is structured as follows: In Section 2, the H-HES model is
developed, followed by a general optimization problem definition model and procedure in
Section 3 and finally in Sections 4 and 5, the application, results with respect to the REDZs
and conclusions drawn are discussed, with key findings listed.

2. Hybrid-Hydrogen Energy System Modelling

The H-HES is the overall representation of the optimization model definition. The
H-HES presented in Figure 1 consists of the W-ES, grid-energy system (G-ES), energy
management system (EMS), rectifier, PEM electrolyzer and hydrogen (H2) storage.
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Figure 1. Hybrid-hydrogen energy system.

Following Figure 1, the W-ES is the main energy system supplying the PEM elec-
trolyzer. However, due to intermittent challenges with wind resources, the G-ES is used
to support the W-ES to meet the PEM electrolyzer’s energy demand, EL. The decision to
switch between W-ES and G-ES is facilitated by the EMS shown in Figure 1. The rectifier
converts AC energy, Eac from either the W-ES, Ew, or G-ES, Eg, to DC energy, Edc, required
by the PEM electrolyzer for green H2 production, as shown in Figure 1. The produced H2,
MH , from the PEM electrolyzer is assumed to be stored in the H2 storage, which is not a
priority in this study.

In Figure 1, the W-ES is modelled by wind data and wind turbine, EMS, rectifier and
PEM electrolyzer are modelled with efficiency. Using the models developed, the cost of
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electricity and efficiency are derived and adapted in the optimization process to obtain
optimal variables to achieve an optimal H-HES model. In the following sections, the W-ES,
G-ES, EMS, rectifier and PEM are developed to further model the cost of electricity and
efficiency of H-HES.

2.1. Wind-Energy System

The wind data for W-ES (shown in Figure 1) is modelled in three steps: site description
and wind data acquisition, the Weibull distribution model with the aim to derive wind
speed characteristics, and finally with power and energy densities to estimate the energy
potential of the respective sites. Following wind data modelling, the wind turbine operation
is discussed to model the output power that can be harvested by a wind turbine at each site.

2.1.1. Site Description and Data Acquisition

The study focuses on REDZs in South Africa, as shown in Figure 2. The REDZs
are eleven areas identified for large-scale renewable energy development with limited
environmental impact [15,16]. The wind data of the REDZs are acquired from WASA [17],
which has nineteen wind masts across South Africa, as shown in Figure 2. The wind masts
measure 10 min average wind data observed at 62, 60, 40, 20, and 10 meter anemometer
heights from 2010 to the present.
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Figure 2. Renewable energy development zones in South Africa.

From Figure 2, wind masts for the REDZs are chosen to be either within or close
proximity of the REDZs, and the 10 min wind speed data is converted to 1 h average data.
The 1 h average speed data (v) is calculated by averaging every six 10 min wind speed
data (vi) over one year period. For example, in the first hour when time t = 1, the average
hourly speed is determined as:

v(t = 1) =
1
6

i=50

∑
i=0

vi i = 0, 10, 20, . . . (1)
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2.1.2. Weibull Distribution Model

Numerous studies [12,18–21,23] show better results in estimation of wind speed char-
acteristics in any given site using Weibull distribution model compared to other statistical
models such as Rayleigh. Therefore, the knowledge of wind speed frequency distribution
is acquired using a two-parameter Weibull distribution model characterized by probability
density function (PDF), W f , defined by [18]:

W f =
β

α

( v
α

)β−1
exp(−

( v
α

)
)β, (2)

where α and β are the Weibull scale (m/s) and shape (dimensionless) parameters which
determine the peak and uniformity of wind speed at any given site, respectively. The α and
β parameters can be determined as [23,34]:

β =
(σ

v̄

)−1.086
, α =

v̄

Γ
(

1 + 1
β

) . (3)

In (3), v̄ and σ are mean wind speed and standard deviation, respectively. Γ(.) is the
gamma function (defined in [34]) by:

v̄ =
1
N

N

∑
t=1

v(t), σ =

[
1

N − 1

N

∑
i=1

(v(t)− v̄)2

] 1
2

, Γ(x) =
∫ ∞

0
tx−1e−tdt, (4)

where N is the number of time intervals per year.

2.1.3. Wind Power and Energy Density

Power, Pk, and energy, Ek, in the wind (shown in Figure 1) are defined as [34]:

Pk =
1
2

ρAv3, Ek = Pk∆t, (5)

where ρ is the air density, typically 1.225 kg/m3, and A is the wind turbine swept area.
With a per unit area, A, the power, Pd, and energy, Ed, densities are [34,35]:

Pd =
P
A

=
1
2

ρv3, Ed = Pd∆t. (6)

Using the wind speed characteristics in (2)–(4), Pd and Ed in (6) becomes:

Pd =
1
2

ρ
∫ ∞

0
W f v3dv =

1
2

ρv3
Γ
(

1 + 3
β

)

[
Γ
(

1 + 1
β

)]3 =
1
2

ρα3Γ
(

1 +
3
β

)
, (7)

Ed =
1
2

ρα3Γ
(

1 +
3
β

)
∆t. (8)

With the wind data modelling concluded, the W-ES wind turbine in Figure 1 is
discussed in the next section to conclude W-ES modelling.

2.1.4. Wind Turbine

The wind speed distribution characteristics can be used with the wind turbine to
determine the output power and energy of any given site. Following the W-ES in Figure 1,
the wind turbine comprises a rotor, which converts energy in the wind (Ek) to mechanical
energy (Em), and a gearbox to match low-wind speed in the wind to the high-wind speed
required by the generator to convert mechanical to electrical energy (Ew) [34].
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The operation of a wind turbine is best described from the ideal power curve model in
Figure 3 [35].
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As shown in Figure 3, the wind turbine operates in four modes of the output power
Pw [20,34,36]:

i. idle (v < vci):

- wind turbine barely produces useful power Pw = Pn = 0,

ii. startup (vci < vr):

- wind turbine starts generating useful power at low speeds. Pw = Ps,

iii. power generation (vr ≤ v < vco):

- wind turbine produces rated power, i.e., maximum output power, Pw = Pr,

iv. shutdown (v ≥ vco):

- wind turbine shuts down and ceases to produce any power at maximum speed,
Pw = Pn = 0.

The above-described wind turbine operating modes are mathematically expressed as:

Pw =





Pn : vh < vci or vh > vco
Ps : vci ≤ vh ≤ vr
Pr : vr ≤ vh ≤ vco

(9)

where vh is the recalculated wind speed at the wind turbine (shown in Figure 1) hub height
(hh) from v at anemometer height (h) as [20,36]:

vh = v
(

hh
h

)s
. (10)

In (10), s is the surface roughness coefficient determined using wind speeds at two
different anemometer heights, given by [12,34]:

s = log
(

va

vb

)
/log

(
ha

hb

)
, (11)
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where va and vb are the observed wind speeds at the two chosen ha and hb anemometer
heights, respectively. Thus, following (9) [19]:

Pn = 0, Pr =
1
2

ρηrηgbηge Av3
r , Ps = Pr

(
v2

h − v2
ci

v2
r − v2

co

)
. (12)

and A is defined in (5) expressed as:

A =
1
4

πr2
d, (13)

where rd is wind turbine rotor diameter.
In (12), ηr is the rotor efficiency with a maximum value of 0.593, known as the Betz

limit [34]. Furthermore, ηgb and ηge in (12) are wind turbine gearbox and generator effi-
ciencies, respectively. The typical practical efficiency ranges of ηr, ηgb and ηge are given in
Table 1 [34,35].

Table 1. Typical ranges of rotor, gearbox and generator efficiencies.

Variable Range

ηr 0.45–0.50
ηgb 0.85–0.95
ηge 0.90–0.95

This concludes the W-ES model of the H-HES shown in Figure 1 and in the next
sections the G-ES, EMS, rectifier and PEM electrolyzer are discussed.

2.2. Grid-Energy System

The G-ES represents the South African grid operator, Eskom, supplying the required
PEM electrolyzer energy via a substation modelled by the voltage transformation shown
in Figure 1. The latter assumes there is a grid connection near the REDZs since the PEM
electrolyzer is located on-site. The G-ES supplies deficient energy modelled in (14) to
meet the PEM electrolyzer nominal energy, EL, when energy from the W-ES, Ew, in (15) is
insufficient.

Eg = |(Ew − EL)|, Eg 6 0. (14)

Ew = Pw∆t, (15)

where Pw is the output power from the W-ES in (9). Since there is no power purchase
agreement with Eskom and no energy storage system, the excess energy (when Eg > 0
in (14)) from the W-ES is redundant.

2.3. Energy Management System

The EMS is a systematic process for managing PEM electrolyzer energy demand by
alternating between the W-ES and G-ES of the H-HES model in Figure 1. In addition, the
EMS ensures that cost savings are achieved by using the G-ES only when necessary. EMS is
modelled by an efficiency of 0.9–0.98 to account for potential losses.

2.4. Proton Exchange Membrane Electrolyzer

The PEM electrolyzer in Figure 1 is supplied via a rectifier, which converts AC electrical
energy from either the W-ES or G-ES via EMS to DC electrical energy, Edc, required by the
PEM electrolyzer. Edc is defined as:

Edc =





ηc
(
Ew + Eg

)
: Ew < EL

ηcEw : Ew = EL
ηcEL : Ew > EL

(16)
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where Eg is modelled in (14) and ηc is the rectifier efficiency, which typically ranges between
0.9 and 0.96 [34].

As shown in Figure 1, the PEM electrolyzer consists of a DC source, membrane, anode,
cathode, and catalyst. Edc in (16) is supplied via the DC source, which connects PEM anode
and cathode electrodes in water, H2O, to allow the flow of electric current for decomposition
of H2O molecules into H2 and oxygen, O2, on the cathode and anode, respectively, as [37]:

H2O(liquid) + Edc = H2(g) + 1/2 O2(g). (17)

The electrodes are also separated by the membrane, and with both the anode and
cathode coated with a catalyst, as shown in Figure 1 to raise the rate of reaction of H2
production in (17). The typical PEM electrolyzer efficiency range is 0.70–0.90 [10,34]. The
green H2 produced, MH , by the PEM electrolyzer is assumed to be stored in the H2 storage
shown in Figure 1.

This section concludes the H-HES model in Figure 1 to be adapted for optimization
based on the cost of electricity and efficiency. In the next section, the cost of electricity and
efficiency models are derived using the developed H-HES model in Sections 2.1–2.4.

2.5. Cost of Electricity Model

The H-HES cost of electricity model (Ce) depends on the cost of electricity to produce
green H2 based on the applicable Eskom tariff structure dependent on transmission zones
in Figure 4 [38].
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In addition, the tariff structure depends on the voltage level at the point of connection
for the load, thus the PEM electrolyzer. In Figure 4, transmission zones are defined as the
distance measured from Johannesburg in the central province, Gauteng of South Africa.
Using the distances defined in Figure 4, the transmission zones for each wind REDZs
(shown in green) in Figure 2 can be concluded. The Eskom tariff structure calculates the
cost of deficient energy, Eg, in (14) as:

Ce = Egτ. (18)
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In (14), τ is the time-of-use (TOU) tariff for the whole year. τ depends on TOU periods
(day, peak, standard, off-peak) and demand season (high season: June–August, low season:
September–May) shown in Figure 5 [38].
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2.6. Efficiency Model141

Using the input power from wind, Pk in (5) and output power supplied by the W-ES converted to
DC for the production of green H2, Pdc. The overall efficiency, η, is calculated as:

η =
Pdcηe

Pk
=

Pwηemηcηe

Pk
, (19)

where ηem and ηc and ηe are EMS, rectifier and electrolyzer efficiencies respectively. ηc and ηe are142

included in the model to account for the losses that incur throughout the H-HES in Figure 1 until the143

production of H2.144

145

In the next section, to apply the developed cost of electricity, (18) and efficiency, (19) models in146

Sections 2.5 and 2.6 respectively, a general optimization problem definition model and procedure to be147

followed in H-HES optimization application is defined.148

3. Optimization Problem Definition Model149

The optimization problem function for H-HES model in Section 2 consists of three mathematically150

formulated functions:151

• objective functions;152

• constraint functions; and153

• design variables.154

The objective and constraints functions are the required operational performance candidates to be155

either maximized or minimized, and they depend on design variables. In general, a multi-objective156

constrained optimization problem function definition can be mathematically defined as:157

find the design variables:
xi, x(i+1), . . . , iϵ N, i ≤ I, (20)

Figure 5. Low- and high-demand seasons’ TOU periods [38].

2.6. Efficiency Model

Using the input power from wind, Pk, in (5) and output power supplied by the
W-ES converted to DC for the production of green H2, Pdc. The overall efficiency, η, is
calculated as:

η =
Pdcηe

Pk
=

Pwηemηcηe

Pk
, (19)

where ηem, ηc and ηe are EMS, rectifier and electrolyzer efficiencies, respectively. ηc and
ηe are included in the model to account for the losses that incur throughout the H-HES in
Figure 1 until the production of H2.

In the next section, to apply the developed cost of electricity, (18) and efficiency, (19)
models in Sections 2.5 and 2.6, respectively, a general optimization problem definition
model and procedure to be followed in the H-HES optimization application is defined.

3. Optimization Problem Definition Model

The optimization problem function for the H-HES model in Section 2 consists of three
mathematically formulated functions:

• objective functions;
• constraint functions;
• design variables.

The objective and constraints functions are the required operational performance
candidates to be either maximized or minimized, and they depend on design variables.
In general, a multi-objective constrained optimization problem function definition can be
mathematically defined as:

find the design variables:

xi, x(i+1), . . . , i ε N, i ≤ I, (20)

where I is the number of design variables such that the objective functions:

f j(xi, x(i+1),...), f(j+1)(xi, x(i+1), . . .), . . . , j ε N, j ≤ J, (21)

where J is the number of objective functions to be minimized (maximized) subject to
constraint functions:
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gk(xi, x(i+1),...), g(k+1)(xi, x(i+1), . . .), . . . , k ε N, k ≤ K, (22)

where K is the number of objective functions. Furthermore, lower xl
i and upper xu

k
constraint conditions are defined by:

xl
i ≤ xi ≤ xu

i . (23)

The general optimization problem defined in (20)–(23) is solved using the optimization
process shown in Figure 6. The illustrated procedure includes the H-HES model discussed
in Section 2, an interface model vital to the performance of NSGA-II. The interface model
ensures improved utilization of the H-HES model by NSGA-II to determine the global
optimal solution for the objective and constraint functions.
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In Figure 6, initial design variables are passed to the H-HES model through the
interface model. The H-HES model evaluates the initial objective and constraint functions
and passes them to NSGA-II via the interface model. NSGA-II repeats the process with
new design variables generated until the convergence criteria are met. Upon convergence,
a Pareto front is formulated on which the best solution is selected.

The design variables, objective and constraint functions from (20)–(22), respectively,
are defined in matrix form as:

[x] = [x1 x2 . . . xI ]
T , [ f ] = [ f1 f2 . . . f J ]

T , [g] = [g1 g2 . . . gK]
T . (24)

The interface model is modelled using design variables [x], objective and constraint
functions [ f , g] in (24). Furthermore, the interface model ensures the optimization process,
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as illustrated in Figure 6 gives a satisfactory global optimal solution by giving equal
dominance to all design variables. The design variables defined in (24) are given the same
dominance using lower and upper bounds defined by (23) as:

x′i =
(

xi + xl
i

)
/
(

xu
i − xl

i

)
, (25)

where x′i is the scaled variable between 0 and 1 boundaries, xi is the actual variable to
be scaled and xl

i and xu
i are the actual lower and upper bounds of xi, respectively. The

objective and constraint functions [ f , g] in (24) are scaled using (25) to ensure equal scale
for the optimization process [30–32].

With the conclusion of H-HES modelling and a definition of the optimization problem
model, the following section focuses on the application, results, and discussion of findings.

4. Application, Results and Discussion

In this section, the H-HES model developed in Section 2, the optimization problem
definition model and procedure in Section 3 are applied respectively, and the results
are discussed.

4.1. Hybrid-Hydrogen Energy System Application and Results

Among the eleven REDZs discussed in Section 2.1.1, six REDZs (presented by green
in Figure 2) were chosen for the application and their respective wind data were obtained
from WASA wind masts, as shown in Table 2.

Table 2. Wind REDZs with corresponding wind masts.

Wind REDZs Overberg Komsberg Cookhouse Stormberg Springbok Beaufort West

Wind Masts Napier Sutherland Humansdrop Butterworth Pofadder Beaufort West

The latest 10 min wind speed data observed at anemometer height of 60 m for 2021
from wind masts are acquired and converted to 1 h average wind speed data by (1) with
monthly and annual mean speed in (4) presented by Figure 7.
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Figure 7. Monthly mean speed (left) and annual mean speed (right) of wind REDZs.

In Figure 7, Overberg has the highest annual mean speed, thus an expected high
energy potential. Furthermore, Stormberg has the lowest annual speed, so the least energy
production is expected. The wind speed frequency distribution of wind speed data using
PDF in (2), with scale and shape parameters in (3) is obtained, as shown in Figures 8–10 for
all the six REDZs.
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In Figures 8–10, the occurrence frequency of different wind speeds for each wind
REDZs is presented. Overberg, Komsberg and Springbok show the occurrence of high
wind speeds, which is in agreement with the high annual mean speed in Figure 7 compared
to Cookhouse, Stormberg and Beaufort West. Using the wind speed characteristics, the
monthly energy density in (8) is determined in Figure 11.

In Figure 11, the highest energy density is noticed in Overberg, Komsberg and Spring-
bok, and the lowest energy density in Cookhouse, Stormberg and Beaufort West, which is
in accordance with their respective annual mean speeds in Figure 7.
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In Figure 11, the highest energy density is noticed in {Overberg, Komsberg and Springbok }, and193
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N50 800 2.5 15.0 25.0 50.0 46.0, 50.0, 60.0, 70.0
G52 800 4.0 13.0 25.0 52.0 44.0, 55.0, 65.0
V54 850 4.0 14.0 25.0 52.0 60.0, 65.0, 70.0, 75.0, 85.0
G58 850 3.0 12.5 25.0 58.0 44.0, 55.0, 65.0
N54 1000 3.5 14.0 25.0 54.0 60.0, 70.0
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Figure 11. Monthly energy density of the wind REDZs.

Table 3 concludes that Overberg has the highest energy potential, and Beaufort West
has the lowest energy potential of all wind REDZs as expected from their wind speed
characteristics. For accuracy in energy assessment, the annual energy production of the
REDZs is obtained using wind speed frequency characteristics in conjunction with an
appropriate wind turbine model for the respective wind REDZs. Therefore, the optimal
wind turbine variables, cut-in speed, vci, rated speed, vr, cut-out speed, vco, rotor diameter,
rd, and the hub height, hh, are required.

Table 3. Annual energy density for the wind REDZs.

Wind REDZs

Overberg Komsberg Cookhouse Stormberg Springbok Beaufort West

Ed (kJ) 5028.10 3411.02 3367.70 2623.00 3004.42 2593.17

A scope of wind turbine models from Nordex (N), DeWind (D), Vestas (V) and
Gamesa (G) manufactures are shown in Table 4 to give an idea of the wind turbine variable
ranges [21,22,26,39].

Table 4. Wind turbine models.

Wind Turbine Model Pr (kW) vci (m/s) vr (m/s) vco (m/s) rd (m) hh (m)

N43 600 2.5 15.0 25.0 43.0 60.0, 78.0
D4/48 600 2.5 11.5 22.0 48.0 60.0, 70.0

N50 800 2.5 15.0 25.0 50.0 46.0, 50.0, 60.0, 70.0
G52 800 4.0 13.0 25.0 52.0 44.0, 55.0, 65.0
V54 850 4.0 14.0 25.0 52.0 60.0, 65.0, 70.0, 75.0, 85.0
G58 850 3.0 12.5 25.0 58.0 44.0, 55.0, 65.0
N54 1000 3.5 14.0 25.0 54.0 60.0, 70.0

In cases where hh in Table 4 is different from the anemometer height, the wind speed
at hh, vh, is calculated using (10) and (11) at anemometer heights of 62 m and 60 m, as
discussed in Section 2.1.4. The calculated surface roughness coefficient, s (11) for each wind
REDZ, is given in Table 5 with expected values as discussed in [12].

Table 5. Surface roughness coefficient for the wind REDZs.

Wind REDZs

Overberg Komsberg Cookhouse Stormberg Springbok Beaufort West

s (-) 0.16 0.13 0.22 0.11 0.15 0.11



Energies 2022, 15, 7079 13 of 18

The appropriate wind turbine model for each wind REDZ is selected by application
of the optimization problem definition and procedure in Section 3 to ensure an optimal
H-HES model in the next section.

4.2. Optimization Application and Results

To implement the optimization procedure shown in Figure 6, the Pymoo framework,
which offers NSGA-II, is utilized. Pymoo is chosen because it enables visualization of lower
and upper-dimensional data, and can implement performance indicators to evaluate the
quality of solutions from NSGA-II [33]. In addition, Pymoo provides a variety of multi-
criteria decision-making tools that can be implemented after the NSGA-II has converged to
a Pareto front to select the best solution in Figure 6.

The Pymoo framework only considers pure minimization of optimization problems.
Therefore, objective functions to be maximized are multiplied by −1 to be minimized [33].
In addition, all constraint functions should be formulated as less than or equal to (6) zero.
From (24), the design variables required to solve the objective and constraint functions
are the variables on which the H-HES model depends. The chosen design variables
include wind turbine variables (listed in Table 4) and H-HES model efficiencies: rotor (ηr),
gearbox (ηgb), generator (ηge), EMS (ηem) and rectifier (ηc) and electrolyzer (ηe) presented as:

[x] = [x1 x2 x3 x4 x5 x6 x7 x8, x9, x10, x11]
T = [rd hh vci vr vcoηr ηgb ηge ηem ηc ηe]

T (26)

where the lower and upper bounds in (23) of each design variable are listed in Table 6.

Table 6. Actual design variable boundaries.

Actual Design Variables
40.0 ≤ rd ≤ 60.0
60.0 ≤ hh ≤ 90.0
2.5 ≤ vci ≤ 4.0
12 ≤ vr ≤ 15.0

23.0 ≤ vco ≤ 25.0
0.40 ≤ ηr ≤ 0.50
0.85 ≤ ηgb ≤ 0.95
0.90 ≤ ηge ≤ 0.96
0.90 ≤ ηem ≤ 0.98
0.90 ≤ ηc ≤ 0.95
0.70 ≤ ηe ≤ 0.90

In Table 6, the design variable bounds are according to Table 1, Sections 2.3 and 2.4
and Table 4. Using design variables in (26), the cost of electricity, Ce, in (18) and efficiency,
η, in (19) are minimized as:

[ f ] = [ f1 f2]
T = [Ce η]T =




Egτ

−
(

Pwηemηcηe
Pk

)


. (27)

Ce in (27) is calculated by Eskom tariff structure as discussed in Section 2.5. The
Eskom tariff structure selected for 2022/2023 based on Urban, Megaflex and non-local
authority tariff charges, because the PEM electrolyzer in Figure 1 is connected directly
to the substation, has a notified maximum demand greater than 1 MW and is within the
Eskom supply area, respectively [38].

Using Figure 4, the transmission zones of the six wind REDZs in Table 2 and shown
Figure 2 (in green) are concluded as >600 km and ≤900 km: Cookhouse, Stormberg and
Beaufort West and >900 km: Overberg, Komsberg and Springbok. The transmission zones
are listed in Table 7 including the assumed voltage level of the PEM electrolyzer.
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Table 7. Urban Megaflex non-authority tariff charges (excluding VAT) [38].

Active Energy Charges (South African Rand (ZAR)/kWh)

High Demand Season (Jun–Aug) Low Demand Season (Sep–May)

Transmission Zone Voltage Peak Standard Off Peak Peak Standard Off Peak

>600 km and ≤900 km ≥500 V and ≤66 kV 4.5935 1.3917 0.7557 1.4984 1.0314 0.6543

>900 km ≥500 V and ≤66 kV 4.6392 1.4052 0.7628 1.5131 1.0412 0.6607

In addition, Table 7 gives active energy costs for TOU periods and demand seasons in
Figure 5. The objective functions Ce and η in (27) are constrained by the nominal power
or energy of the PEM electrolyzer. The PEM electrolyzer chosen for application is the
H-TEC SYSTEMS because it offers mobility and reliability and can be scaled up for large-
scale plants [40]. In Table 8, 2 MW H-TEC PEM electrolyzer specifications are listed. The
electrolyzer’s nominal power is the load, PL, on which a load factor of 0.85 is used. To
give flexibility for NSGA-II to obtain the optimal solution, a constraint output range of
2.0–2.5 MW is applied to get the nominal power of the electrolyzer.

Table 8. Specifications of a 2 MW H-TEC PEM system [40].

Specification Value

Electrical nominal power (PL) 2 MW
H2 production 900 kg/day (420 Nm3/h)
H2 purity 99.9%
Energy consumption 4.8 kWh/Nm3 H2
System efficiency 74%

Since the energy required by the electrolyzer (i.e., nominal energy, EL) is known. Ce
for green H2 production assuming only the G-ES (shown in Figure 1) used is calculated
using (18), with respect to the tariff charges for respective transmission zones in Table 7 of
the REDZs, and given in Table 9.

Table 9. Annual cost of electricity (only G-ES considered).

Wind REDZs Cost of Electricity (ZAR million)

Overberg, Komsberg and Springbok 22.8
Cookhouse, Stormberg and Beaufort West 22.6

From Table 9, it can be concluded that the tariff charge increases with the transmission
zone distance, as discussed in Section 2.5. With the design variables, objective and constraint
functions are defined, NSGA-II is initialized with the operating parameters in Table 10 to
carry out the optimization procedure in Figure 6.

Table 10. NSGA-II operating parameters.

Optimization Parameters

Population size: 500
Number of offspring: 1000
Number of generations: 500
Sampling: Random
Mutation: Polynomial (Probability= 0.5, index = 20)
Crossover: Simulated binary (Probability = 0.9, index = 15)

The number of generations in Table 10 is used for the convergence in optimization pro-
cedure shown in Figure 6 to obtain the scaled Pareto front solutions of objective functions,
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[C′e η′] in Figure 12. The execution time that NSGA-II takes to obtain solutions during
the optimization process illustrated in Figure 6 is fast due to simple analytical equations
used to model the H-HES in Section 2. Therefore, large population sizes and the number of
generations can be adopted for improved accuracy.
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The best solution selection is conducted only after the search for solution sets ends,
thus NSGA-II has converged to a Pareto front. With the Pareto front (presented in Figure 12)
known, the best solution is selected using multi-criteria decision-making techniques. How-
ever, before implementing the chosen technique, normalization of the objective functions is
necessary due to different scales, as indicated by their different upper and lower bounds.
Therefore, normalization ensures both objective functions equally dominate any distance
evaluation in the objective space during the decision-making process [33].

After normalization, the compromise programming multi-criteria decision-making
technique available in Pymoo is adopted due to its flexibility, as it employs any type of
decomposition function. The augmented scalarization decomposition function is applied
with an equal weight of both objective functions, resulting in the best solution (presented
by X in Figure 12) for each wind REDZ.

The actual best solution of [Ce η] passed to the H-HES model by interface model (as
shown in Figure 6) for each REDZ is given in Table 11.

Table 11. Actual best solutions of cost of electricity and efficiency from NSGA-II for wind REDZ.

Wind REDZs

Overberg Komsberg Cookhouse Stormberg Springbok Beaufort West

Ce (ZAR million) 1.423 1.081 1.824 1.714 0.813 1.675
η (-) 0.393 0.475 0.452 0.510 0.540 0.526

It can be concluded that an optimal H-HES ensures cost savings when optimal design
variables are utilized, as noted in Tables 9 and 11. The cost of electricity in Table 9 is
reduced by up to 90% with the optimal H-HES model as given in Table 11 at maximum
efficiency. Furthermore, from the optimal solutions of Ce and η in Table 11, the optimal
design variables in (26) for each wind REDZ are given in Table 12.
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Table 12. Actual optimal design variables from NSGA-II.

Design Variables
Wind REDZs

Overberg Komsberg Cookhouse Stormberg Springbok Beaufort West
rd (m) 40.0 40.8 40.0 45.0 40.6 42.0
hh (m) 60.3 65.4 85.0 89.0 79.0 68.8

vci (m/s) 2.5 2.5 2.5 2.5 2.5 2.5
vr (m/s) 15.0 15.0 15.0 15.0 15.0 15.0
vco (m/s) 24.0 25.0 25.0 25.0 24.0 24.0

ηr (-) 0.50 0.50 0.50 0.50 0.50 0.50
ηgb (-) 0.95 0.95 0.95 0.95 0.95 0.95
ηge (-) 0.92 0.96 0.96 0.96 0.95 0.96
ηem (-) 0.93 0.98 0.97 0.98 0.98 0.98
ηc (-) 0.95 0.95 0.95 0.95 0.95 0.95
ηe (-) 0.90 0.90 0.90 0.90 0.90 0.90

For application purposes, the appropriate wind turbine model selected for all the wind
REDZs is Nordex (N43) in Table 4, guided by the optimal variables in Table 12. Furthermore,
using the PEM electrolyzer efficiency, ηe, in Table 8 and the optimal ηr, ηge, ηgb, ηem and ηc
efficiencies in Table 12, the recalculated Ce and η is given in Table 13.

Table 13. Cost of electricity and efficiency using N43 wind turbine model for wind REDZs.

Wind REDZs

Overberg Komsberg Cookhouse Stormberg Springbok Beaufort West

Ce (ZAR million) 1.442 1.212 1.9028 1.824 0.8211 2.088
η (-) 0.325 0.40 0.38 0.42 0.445 0.47

In Table 13, the calculated [Ce η] using appropriate wind turbine and optimal efficien-
cies is in close agreement with the best solutions from NSGA-II in Table 11. The calculated
efficiency is slightly lower than the optimal efficiency, which is influenced by the efficiency
(74%) of the chosen PEM electrolyzer. It can be concluded that the optimal design variables
have a great influence on the choice of wind turbine for each REDZ, hence an optimal
H-HES model is successfully developed.

5. Conclusions

In the paper, a multi-objective optimization using a constrained optimization problem
is employed to optimize H-HES model variables. The implementation and application of
the optimization procedure with the cost of electricity and efficiency as objective functions
are successfully demonstrated. The optimal costs of electricity and efficiency are achieved
using the proposed optimization procedure, the optimal H-HES variables are derived
and the appropriate wind turbine model for the wind REDZs is chosen for optimal H-
HES modelling.

The following conclusions can be drawn from the results:

- The wind REDZs have a high average wind speed (above 6 m/s), therefore, this is an
indication of the high potential for green H2 production.

- The knowledge of wind speed characteristics in conjunction with the appropriate wind
turbine model successfully present the energy production potential of the wind REDZs.

- The developed H-HES model is successfully demonstrated.
- The open-source Pymoo module is a powerful tool that can be used in conjunction

with NSGA-II to obtain optimal solutions free of charge.
- The proposed H-HES interface models ensured that NSGA-II successfully converged

to a Pareto front of the cost of electricity and efficiency for all the wind REDZs.
- The optimal cost of electricity and efficiency successfully determine the required

optimal variables to model the H-HES.
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- The derived optimal variables found for each wind REDZs greatly influence the choice
of an appropriate wind turbine model for the W-ES and efficiencies of the H-HES,
resulting in an optimal H-HES model.

- The proposed optimal H-HES model can be adapted for green hydrogen production
to ensure minimum cost (from the G-ES) at maximized efficiency with appropriate
wind turbine model selection.
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