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Abstract: The output of the absorption refrigeration system driven by exhaust gas is unstable and
the efficiency is low. Therefore, it is necessary to keep the performance of absorption refrigeration
systems in a stable state. This will help predict the dynamic parameters of the system and thus
control the output of the system. This paper presents a machine-learning algorithm for predicting the
key parameters of an ammonia–water absorption refrigeration system. Three new machine-learning
algorithms, Elman, BP neural network (BPNN), and extreme learning machine (ELM), are tested to
predict the system parameters. The key control parameters of the system are predicted according to
the exhaust gas parameters, and the cooling system is adjusted according to the predicted values to
achieve the goal of stable cooling output. After comparison, the ELM algorithm has a fast learning
speed, good generalization performance, and small test set error sum, so it is selected as the final
optimal prediction algorithm.

Keywords: exhaust gas heat recovery; ammonia–water-based absorption refrigeration; quantitative
control of refrigeration output; machine-learning algorithms; prediction

1. Introduction

As an important energy source, marine diesel engines have been widely used in many
fields, including transportation and construction. Some researchers such as Hossain FM et al. [1],
use microalgae as alternative fuels to reduce fossil fuel consumption, thereby reducing
pollution and carbon emissions. Nour et al. [2] used higher alcohols as diesel fuel. Petranovic
Z et al. [3] achieved the highest engine braking thermal efficiency of 31.86% by using the high-
pressure exhaust gas recirculation loop. Diesel heat loss, as the largest part of fuel energy, has not
been effectively utilized [4]. However, the thermal efficiency of a traditional marine diesel
engine is only 30–45% [5]. With changes in different grades of fuel [6] the utilization of heat
energy is slightly improved [7]. Even for hydrogen engines, the total thermal efficiency
ceiling is above 59% [8]. Di Blasio, G et al. [9] proposed a dual-fuel efficient compression
ignition engine, which is expected to reduce the emissions of harmful gases and has a wide
application prospect. Sebastian Verhelst et al. [10] summarized the performance of methanol
in so-called flex-fuel engines and dedicated engines. Methanol can further improve fuel
efficiency and reduce emissions. G Fontana and E Galloni et al. [11] conducted numerical
simulations of the injection and combustion behavior of a diesel–ethanol–gasoline tetrad
mixture on a diesel engine available on the test bench. The most remarkable results
show that the combustion of oxygenated blended fuels can significantly reduce soot and
NOx production. According to current research, for instance, exhaust gas turbocharging
technology can improve system dynamics and cost-efficiency by reducing pump gas loss
and mechanical loss [12]. S. Kim et al. [13] evaluated the recovery rate of automobile
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waste heat and designed a set of vehicle exhaust waste heat utilization devices based on
the Rankine cycle. J. Fu et al. [14] designed a steam turbocharging device to improve the
performance of engines at low speed. S. Vale et al. [15] designed a thermoelectric generator
with an average thermoelectric material efficiency of about 4.4%. A.T. Hoang et al. [16] point
to a 25% efficiency in heat recovery through organic Rankine cycling. D.C. Wang et al. [17]
proposed the use of adsorption refrigeration for waste-heat recovery. F. Salek et al. [18] use
an ammonia absorption refrigeration cycle to convert part of the waste heat into mechanical
energy. For instance, exhaust gas turbocharging technology can improve system dynamics
and cost-efficiency by reducing pump gas loss and mechanical loss [19]. S. Almostafavi and
M. Mahmoudi [20] made an experimental prototype of the thermoelectric generator and
compared the experimental results with the theoretical ones. The theoretical results were in
good agreement with the actual ones, with a maximum error of 4.6%. E. S. Mohamed [21]
uses a thermoelectric device to recover waste heat from diesel exhausts. The experimental
result of the output power is in good agreement with the theoretical result and is within
5.16% error at 1500 RPM. M. Jimenez-Arreola et al. [22]. designed an evaporator, which can
reduce the weight and volume by 88% and 70%, respectively, compared with the indirect
evaporation structure. The simulation results by F. Mohammadkhani and M. Yari [23]
showed that the system achieved the best performance in the high- and low-temperature
circuits with toluene and R143a as the working fluids, respectively. The above technologies
use exhaust gas waste heat to generate electricity. When direct refrigeration is required,
adsorption or absorption refrigeration technology is applied. Adsorption refrigeration
technology uses low-grade heat energy to provide refrigerating capacity [24]. However,
the limitations of the working medium as well as high-contact thermal resistance in the
adsorption bed result in a low refrigeration coefficient and a low waste-heat-utilization
rate [25,26]. Absorption refrigeration technology uses a pair of absorbent working mediums
that do not require an adsorption bed, and have a higher refrigeration coefficient, lower
operating cost, and environmentally friendly characteristics [27]. Current research on
exhaust-gas-driven absorption refrigeration technology includes cycle design optimization,
research on the refrigerating medium, enhanced heat transfer of system components,
system control strategy optimization, etc. [28,29]. The selection of a working medium is
very important for absorption refrigeration technology. For different circulating working
mediums, common absorption refrigeration technologies can be divided into lithium-
bromide-based absorption refrigeration cycle technology and NH3-H2O-based absorption
refrigeration cycle technology Maryami and A.A. Dehghan [30] used exergy analysis
to calculate the actual operational efficiency of absorption refrigeration systems. Some
researchers, such as J. Cerezo et al. [31], used experimental methods to obtain the operation
data of ammonia absorption refrigeration systems. N.I. Ibrahim et al. [32] studied the
absorption refrigeration system combining solar energy and energy storage devices, and
S.M. Alelyani et al. [33] discussed the feasibility of combining single-stage and double-stage
ammonia–water (NH3-H2O) absorption refrigeration systems with multi-effect distillation
(MED). The refrigeration temperature of a LiBr-based cycle is approximately zero, while that
of an NH3-H2O-based absorption refrigeration cycle can reach below−30 ◦C, which is more
competitive in the cryogenic refrigeration field [34]. Therefore, absorption refrigeration
technology is promising in the field of refrigeration for exhaust gas heat recovery.

However, the development and application of an NH3-H2O-based absorption refriger-
ation cycle is limited by a technical problem: the refrigeration output of the NH3-H2O-based
absorption refrigeration system depended on the exhaust gas heat, while the exhaust gas
parameters are directly related to marine diesel engine working conditions. Therefore,
fluctuations in marine diesel engine operation will lead to fluctuations in refrigeration
output and the failure to meet user demand for continuous and stable refrigeration output.
In comparison, the electric compression refrigeration system is more stable, which is one
of the reasons for its wider application [35]. In order to solve this problem, investigations
on regulation methods for absorption refrigeration systems have been carried out by re-
searchers. X. X. Zhang applied a frequency conversion control method and programmable
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logic controller to a Li-Br-based absorption refrigeration system to control and adjust the
cooling water temperature and cooling load to improve stability [36]. H. Yuan et al. [37]
applied ice thermal storage technology to an NH3-H2O-based absorption refrigeration
system. The method achieved the peak clipping of refrigeration system output through
seawater freezing and storage; it also took seawater desalination into account, which has
a positive effect of energy savings. Nevertheless, existing studies show that efforts to
stabilize the refrigeration output of absorption refrigeration systems have been less than
successful. On/off control, feedforward control, and feedback control have been widely
applied in controlling these two variables. Domab, C et al. [38] applied the fractional
control technology to the concentrated solar collector. B. Kim et al. [39] carried out the
dynamic simulation of lumped parameters for the single-effect ammonia–water absorption
refrigerator and determined the control parameters. Y. Xu et al. [40] adopted two control
strategies: one was to set the outlet temperature of chilled water as the controlled variable
and the other was to set the temperature of power generation fluid as the controlled vari-
able. The control performance of the two control strategies is compared. However, the
problem with on/off control is that the internal thermodynamics and transfer phenomena
of the system are ignored, which usually imply an open-loop control scheme; thus, off-
design working conditions are inaccurate. In feedforward/feedback control, the transfer
function-based model lacks generality as its accuracy is strictly limited within the range of
input parameter variations. Moreover, most feedforward/feedback control strategies select
single or multiple single-input–single-output loops, which neglects the coupled dynamics
of system variables; hence, there is no effective system-wide control. As these proposed
methods cannot achieve precise control of operating parameters in refrigeration systems,
the refrigeration output cannot be quantitatively controlled.

It is worth noting that the basis of precise control is the accurate prediction of system
performance under the main operating parameters. The date-based machine-learning
method is deemed as the advanced intelligent control method and has gained interest. In
machine learning, a computer uses existing data to generate a model used to predict future
data [41]. A large amount of research has been carried out on the application of machine-
learning algorithms in the field of parameter prediction, which has proved to be effective.
L. Palagi et al. used machine learning to predict the dynamic behavior of a small-scale ORC
system in order to maximize its performance over time [42]. S. X. Wang et al. [43] used a
machine-learning-prediction model based on empirical mode decomposition to predict
hourly solar radiation and applied it to a photovoltaic power generation system. Y. H.
Zhang et al. [44] proposed a prediction model based on a long–short-term memory neural
network to predict short-term electricity load in order to explore the value of massive
user-side data and create efficient and reasonable applications.

Castresana, J et al. [45] attempted to combine physical models with neural networks
to predict engine operating conditions. However, the range of engine working condition
change is large and the frequency of change is high. It is difficult to achieve real-time
prediction of the whole working condition. Tan, QY et al. [46] used an engine operating
condition graph and local linear tree learning method to predict engine emissions. Their
work is limited to predicting the running state of the engine, without considering how to
adjust the operating parameters and improve the operation according to the running state.

This work attempts to apply the machine-learning method for the stable output of an
absorption refrigeration system. An experimental platform was constructed for the single-
stage NH3-H2O-based absorption refrigeration system based on exhaust gas waste-heat
recovery, and tests were conducted. In the experiments, the refrigerating capacity output
was stabilized by adjusting the key parameters of the system. Then, the machine-learning
algorithm was used to train the experimental data under stable output conditions, and
the mapping relationship between the exhaust gas parameters of the heat source and
significant control parameters of the system was obtained. As a result, the significant
control parameters of the system can be predicted according to the exhaust gas parameters
of the heat source, and the refrigeration system can be adjusted according to the predicted
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significant control parameters to reach the goal of stable refrigerating capacity output. The
proposed method is a controllable active adjustment method that can adapt to different
user demands for different output targets.

Herein, the basic principle of a single-stage NH3-H2O-based absorption refrigeration
system is introduced. Then, the logical framework and main contents of parameter pre-
diction for the absorption refrigeration system are summarized. The authors establish
the mathematical model and solutions of this system and predict the operation of the system.
Based on the experimental process and experimental data, the two most critical parameters, the
cooling water flow of the absorber and the flow of liquid ammonia into the evaporator, which
play the dominant role in system performance, are selected as the manipulated variables. These
will be predicted with assistance of the machine-learning algorithm. Three different prediction
algorithms (BPNN, ELM, and Elman) are considered in this work and the optimal prediction
algorithm is selected by comparing the prediction results. Finally, the system refrigerating
capacity is calculated according to the predicted system control parameters, and the maximum
relative error between the calculated refrigerating capacity and expected value is obtained.

2. Description of the Ammonia–Water-Based Absorption Refrigeration System

The schematic diagram of the system structure is shown in Figure 1. The generator
uses the heat from the exhaust gas of the diesel engine as a heat source to produce a mixture of
NH3 and H2O at a high temperature and pressure. The mixture passes through the distillation
section and the reflux condenser. This process reduces the temperature by separating the high-
temperature ammonia vapor from the NH3-H2O mixture. Liquid NH3 turns into NH3 vapor in
the evaporator and produces a refrigeration effect. Next, the NH3 vapor enters the absorber.
At the same time, the separated weak ammonia–water solution is cooled down in the solution
heat exchanger, and then passes through the throttle valve to reduce pressure, before flowing
into the absorber to produce a rich solution. The cooling water is used to eliminate the heat
generated in the absorption process and remove the heat of condensation in the condenser and
reflux condenser. Finally, the low-temperature and pressure-concentrated ammonia solution is
heated by the heat exchanger and enters the generator.

Figure 1. Schematic of the absorption refrigeration system. The key state points of the NH3-H2O-based
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refrigeration system operation are as follows: State point 1—rich NH3-H2O solution inlet; state
point 2—weak NH3-H2O solution outlet; state point 3—ammonia vapor outlet; state points 4–6—liquid
ammonia pipeline; state point 7—ammonia vapor return pipeline; state points 8 and 9—weak
ammonia solution pipeline; state points 10 and 11—rich ammonia–water solution pipeline; state
point 12—exhaust gas inlet; state point 13—exhaust gas outlet; state points 14, 16, and 18—cooling
water inlet; state points 15, 17, and 19—cooling water outlet.

3. Basic Procedure of the Control Parameter Prediction

To facilitate understanding, the logical framework and main contents for param-
eter predictions for the absorption refrigeration system are shown in Figure 2. In
the figure, the research content and interrelationships between each part are summa-
rized. In Sections 3.2 and 3.3, the thermodynamic analysis of the refrigeration system
is carried out, including the basic assumptions and mathematical model. Based on
thermodynamic analysis, the parameter prediction principle and solution strategy of
the refrigeration system are provided in Section 3.4. The prediction principle covers
the determination of input variables, controlled variables, and manipulated variables
(prediction variables). The solution strategy includes the compilation of the database,
the combination of the machine-learning algorithm and experimental data, and the
calculation of system output. In Section 4, the experimental investigation of the re-
frigeration system is carried out, including the establishment of the experimental
platform, concrete experimental plan, and record of experimental data. During the
experiment, 200,000 sets of experimental data under stable output conditions were
recorded. Among them, the refrigerating capacity output was basically stable at 4.85
kW, which is the expected output value of the refrigerating capacity. The experimental
process and data also provide a basis for the selection of manipulated variables in
Section 3.4. The main research content of Section 5 is the specific prediction process
of thermodynamic parameters. The 200,000 sets of experimental data recorded in the
previous section include test data and training data. The mapping relationship includ-
ing input parameters and manipulated parameters is obtained through the training
dataset; then, the manipulated variables can be predicted through the input variables
in the test dataset. Three different prediction algorithms are introduced. The relative
error between the predicted and expected values is constantly reduced by adjusting
the algorithm parameters. Finally, the optimal algorithm is selected by comparing
the predicted results, and system outputs such as refrigerating capacity are calculated
according to the predicted values of the optimal algorithm.
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Figure 2. Schematic of the logical framework and main contents for parameter prediction.

3.1. Prediction Principle and Solution Strategy

The selection principle of manipulated variables is discussed as follows. Generally,
an absorption refrigeration system has five degrees of freedom and the controllable vari-
ables are: expansion valve flow rate, solution pump flow rate, generator heat transfer
rate, enthalpy of the working fluid of the working medium at the condenser outlet, and
working fluid enthalpy at the outlet of the evaporator [47]. The expansion valve flow
rate and solution pump flow rate are usually the control variables of on–off control and
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feedforward/feedback control. As the marine diesel engine exhaust gas heat is utilized as
the source of the whole system, the heat transfer rate of the generator is determined using
the exhaust temperature and exhaust gas flow rate, which cannot be controlled. Thus, in
this study, the exhaust temperature and exhaust gas flow rate were designated as input
variables instead of manipulated variables. The mass flow rate of cooling water and the
temperature of cooling water determine the enthalpy of the ammonia working medium at
the condenser outlet. During the operation, under the influence of the pump, the cooling
water passes through the absorber into the condenser. A the inlet of the absorber a mass
flow rate meter is installed; hence, the cooling water mass flow rate into the absorber is
selected as the manipulated variable. It is significant that in the traditional control mode,
the cooling water mass flow rate is hardly selected as the controllable parameter because
the relationship between the working fluid enthalpy at the condenser outlet and the cooling
water mass flow rate is determined using the realistic heat exchange model of the condenser,
which is complex and highly inaccurate. More importantly, each actual heat exchanger has
a different heat-transfer model, which causes this method to lack general applicability. The
data-based machine-learning technique is independent from the heat transfer model of
the condenser, which enables the cooling water mass flow rate to be selected as another
manipulated variable.

Furthermore, the refrigeration capacity of the absorption system is determined using
the controlled variables, and the selection principle of the controlled variables is discussed
as follows. The refrigeration temperature determines the enthalpy of the working medium
at the evaporator outlet. The ammonia evaporation quantity is another key variable that
determines the refrigeration output. Thus, the refrigeration temperature along with the
ammonia evaporation quantity can be selected as the controlled variables.

The exhaust gas temperature and exhaust gas flow rate were used as input values of the
neural network, cooling water flow into the absorber and ammonia flow into the evaporator
were used as control variables, and cooling temperature and ammonia evaporation were
used as output values. The principle behind the procedure is based on the experimental
data. In the subsequent experimental investigation, we found that the two key factors with
the greatest influence on the refrigeration system performance are the flow of cooling water
into the absorber and the flow of liquid ammonia into the evaporator. If these two factors
are adjusted, then the refrigerating capacity output and other performance parameters can
be controlled. According to the experimental and theoretical analysis results, these two
factors were chosen as the manipulated variables. The mapping relationship between them
and the exhaust gas conditions were also determined to predict these variables. Based
on these two key factors and other initial conditions, the thermodynamic calculation and
analysis of the whole system can be carried out, and the refrigerating capacity and other
important output parameters of the system can be obtained.

The system performance was analyzed using a program. The program which was
compiled according to the Sulze equation calculated the thermodynamic variables of NH3-
H2O-water and NH3 vapor [48]. Figure 3 shows the specific calculation strategy for the
refrigeration system.
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Figure 3. Schematic of the solution strategy for prediction and control.

The process is as follows. We ran experiments and obtained experimental data. The
next step was to train the data to obtain the mapping relationship between the input
variables and the operation variables. On the basis of the above results, the operational
variables were predicted and compared with the actual values. We substituted the predicted
values of the manipulated variables into the theoretical model and compared the calculated
output with the expected output. Finally, the system control parameters were adjusted
according to the predicted values to realize the stable output of the cooling capacity.

In this study, the experimental setup for the NH3-H2O-based absorption refrigera-
tion system, with exhaust gas as the heat source, was established to conduct the experi-
ment study.

3.2. Experimental Setup

The composition of NH3-H2O-based absorption refrigeration system is shown in
Figure 4. In the experiment, while the exhaust gas heat input constantly changed, the
refrigerating capacity output was stabilized by adjusting the key parameters of the system.
The temperature of the marine diesel exhaust gas was raised from 250 to 360 in order to
test the performance. Based on the experimental process and experimental data, the flow
of cooling water into the absorber and the flow of liquid ammonia into the evaporator
were determined as the two most critical parameters affecting system performance. The
experimental data under stable output conditions were recorded for subsequent training
and prediction of the machine-learning algorithm.
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Figure 4. Photographs of the system’s experimental platform.

3.3. Experimental Plan

The operational step is summarized as follows:
Step 1: During the experiment, the inlet exhaust gas temperature is randomly changed

from 250 to 360 ◦C every 10 min on average.
Step 2: After the inlet exhaust gas temperature changes, the system refrigerating

capacity remains stable at the same fixed value by adjusting the system control parameters,
such as the flow of cooling water into the absorber, the flow of liquid ammonia into the
evaporator, etc. The target refrigeration capacity is 4.85 kW, which matches the designed
capacity of the experimental platform.

Step 3: After the stable operation of the whole system, the data acquisition system is
used to collect and record experimental data including pressure, temperature, flow, etc. The
datasets are filtered before training, and the filtering criterium is that the corresponding
experimental refrigeration capacity remains between 4.75 and 4.95 kW, so that the fluctua-
tion rate of the refrigeration capacity remains within ±2%. The datasets will be used for
subsequent training and prediction processes.

3.4. Experimental Results and Analyses

The heat input of the exhaust gas can be calculated using the components and temper-
ature at the exhaust gas inlet and outlet in the refrigeration system. The waste analyzer can
measure the volume fraction of the main components in the waste gas. Nitrogen, oxygen,
water, and carbon dioxide constitute 99.7% of the waste gas, so we can obtain the enthalpy
of the exhaust gas. Some operating data of the refrigeration system are shown in Table 1.
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Table 1. Experimental performance of the refrigeration system.

Working Fluid Parameter Value

Exhaust gas
Inlet temperature, ◦C 253
Outlet temperature, ◦C 155
Flow, m3/h 856

Ammonia

Before condenser, ◦C 42.6
After condenser, ◦C 24.7
Generation pressure, MPa 0.99
Absorption pressure, MPa 0.03
Flow, m3/h 18.6
Evaporation temperature, ◦C −22.8
Return gas temperature, ◦C −17.7

Rich solution
After absorber, ◦C 27.8
After heat exchanger, ◦C 116.7

Weak solution
After generator, ◦C 127.9
After heat exchanger, ◦C 43.1

Cooling water

Before absorber, ◦C 25
After absorber, ◦C 26.9
Flow of absorber, m3/h 12
After reflux condenser, ◦C 42.6
Flow of reflux condenser, m3/h 0.24
After condenser, ◦C 27.2

In the experiment, a total of 200,000 datasets were collected. The 200,000 datasets
have different exhaust gas input conditions, but the system refrigerating capacity output
was kept stable at approximately 4.85 kW by adjusting the flow of cooling water into the
absorber and the flow of liquid ammonia into the evaporator. The value of 4.85 kW is the
expected refrigerating capacity output after the prediction and control processes. Parts of
filtered dataset used for training are listed in Table 2.

In the actual prediction process, the mapping relationship between the input and
manipulated variables was preliminarily obtained using the 1–180,000 sets of measured
data, which were taken as training data. Next, the 180,000–200,000 sets of data were used as
the test data to compare the relationship between the predicted manipulated variables and
expected values. The predicted manipulated variables include the flow of cooling water
into the absorber and the flow of liquid ammonia into the evaporator.

Table 2. The selected 10 sets of measured data.

Input Exhaust Gas
Temperature

◦C

Exhaust Gas
Flow
m3/h

Cooling Water
Flow into the

Absorber
m3/h

Liquid Ammonia
Flow into the

Evaporator
L/h

Refrigerating
Capacity

kW

253 856 12.0 18.6 4.75
265 856 12.4 19.1 4.85
276 888 13.1 19.2 4.86
289 902 13.8 19.3 4.87
298 879 14.5 19.1 4.80
311 856 15.1 19.0 4.79
323 881 15.9 19.3 4.87
335 917 16.7 19.5 4.90
356 870 18.1 19.7 4.93
361 881 18.5 19.4 4.88
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4. Combined Prediction Model Based on Machine-Learning Algorithms and
Thermodynamics

In this study, a combined machine learning and thermodynamics algorithm is used to
predict the controlled variables.

Three different machine-learning algorithms are shown below: backpropagation
neural network (BPNN), extreme learning machine (ELM), and Elman are used to predict
the controlled variables.

Manipulation variables are predicted and trained using three different machine-
learning algorithms. The prediction process and results of the three algorithms were
analyzed and compared, and the optimal algorithm was selected. The structure diagrams
of the three algorithms are shown in Figure 5. The software running the algorithms is
MATLAB R2016b.

Figure 5. The structure diagrams of the three algorithms. (a) BPNN algorithm, (b) ELM algorithm,
and (c) Elman algorithm.

4.1. BPNN Algorithm

The algorithm, characterized by forward transmission of signals and reverse propaga-
tion of error, is essentially a multi-layered feedforward neural network. The input layer,
hidden layer, and output layer make up the general three-layer BPNN. The above is shown
in Figure 5a.

In Figure 5a, X1, X2, · · · , Xn are the input values of BPNN; Y1, Y2, · · · , Ym are the
predicted values; and wij, wjk are the weight values. In Figure 5a, the We equivalent BPNN
to a nonlinear function can be seen. The input values are independent variables and the
predicted values are dependent variables. When the input vector has the dimension N, the
output vector has the dimension M. The processing flow of BPNN can be regarded as the
mapping of N-dimensional vectors to M-dimensional vectors.

Before prediction, the BPNN needs a lot of data for training to improve the accuracy
of prediction. BPNN-specific prediction steps are as follows:

Step 1: Initialize the network according to the input and output sequences (X, Y) of the
system and determine the input layer dimension n, hidden layer dimension l, and output
layer dimension m. The connection weights of neurons in the input layer, hidden layer, and
output layer, wij and wjk, are initialized. The thresholds of neurons in hidden layer a and output
layer b are initialized, and the learning rate η and neuron excitation function f are provided.

Step 2: Compute the output of the hidden layer. The initialized input variable X, the
connection weight wij between the input layer and the hidden layer, and the hidden layer
threshold a are used to calculate the hidden layer output H.

Hj = f (∑n
i=1 wijxi − aj) j = 1, 2, · · · , l (1)
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Step 3: Calculate the output layer output. The connection weight wjk, the output of
the hidden layer H, and the threshold b calculate the predictive output O.

Ok = ∑l
j=1 Hjwjk − bk k = 1, 2, · · · , m (2)

Step 4: Calculate the error. The expected output Y and the predicted output O compute
the prediction error e.

ek = Yk −Ok k = 1, 2, · · · , m (3)
Step 5: Update the weights. Prediction error e updates connection weights wij and wjk.

wij = wij + ηHj(1− Hj)x(i)∑m
k=1 wjkek i = 1, 2, · · · , n; j = 1, 2, · · · , l (4)

wjk = wjk + ηHjek j = 1, 2, · · · , l; k = 1, 2, · · · , m (5)

Step 6: The threshold is updated. The prediction error e updates node thresholds a
and b.

aj = aj + ηHj(1− Hj)∑m
k=1 wjkek j = 1, 2, · · · , l (6)

bk = bk + ek k = 1, 2, · · · , m (7)

Step 7: Check the completion of the algorithm iteration. If not finished, return to Step 2.
Two manipulated variables: the cooling water flow into the absorber, and liquid

ammonia flow into the evaporator, will be predicted by the trained BPNN algorithm.

4.2. ELM Algorithm

The ELM algorithm structure diagram is shown in Figure 5b. Assuming that the
number of input layer neurons is d, the number of hidden layer neurons is l, and the
activation function between input layer and hidden layer is f , the sample datasets are
{Xi, yi}n

i=1, and Xi = [x1
i , x2

i , . . . , xd
i ]

T ∈ Rd, where n is the total number of sample datasets.
Wj is the weight vector between the jth hidden layer neurons and input vector Xi. bj is
the threshold of the jth hidden layer neurons. θj is the weight between the jth hidden
layer neurons and output layer nodes and oi is the output of the ith sample. Then, the
mathematical relationship between input and output is

l

∑
j=1

f j
(
Wj, bj, Xi

)
θj = oi, i = 1, 2, . . . , n; j = 1, 2, · · · , l (8)

In the ELM prediction process, the sample consists of a test set, training set, and
prediction set. All input data should be normalized. Then, the optimal number of hidden
layer nodes is determined and the corresponding θ is solved. Finally, according to the
above operations, the optimal parameters are obtained and applied to the prediction data
set. A schematic of the ELM algorithm prediction procedure is shown in Figure 6.

Figure 6. Schematic of the ELM algorithm prediction procedure.
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Two manipulated variables, the cooling water flow into the absorber and liquid
ammonia flow into the evaporator, will be predicted by the trained ELM algorithm.

4.3. Elman Algorithm

The Elman algorithm, proposed by Elman, is a feedforward neural network algorithm.
As shown in Figure 5c, the Elman algorithm consists of four parts: the input layer,

hidden layer, receive layer, and output layer. The relationships between the hidden layer,
input layer, and output layer are consistent with that of the feedforward network. The input
layer neurons play the role of signal transmission, while the hidden layer neurons take
linear or non-linear functions as the transfer function. The receiving layer neurons are used
to remember the output value of the hidden layer neurons in the previous moment and
return it to the network’s input; the output layer neurons play the role of linear weighting.

The non-linear state space expressions of the Elman algorithm are as follows:

y(k) = g
(

w3u(k)
)

(9)

u(k) = f
(

w1uc(k) + w2(x(k− 1))
)

(10)

uc(k) = u(k− 1) (11)

where y is the output node vector, u is the unit vector of the middle layer node, x is the
input vector, uc is the feedback state vector, w3 is the connection weight between the middle
layer and the output layer, w2 is the connection weight between the input layer and the
middle layer, w1 is the connection weight between the receiving layer and the middle layer,
g is the transfer function of the output layer neuron, and f is the transfer function of the
middle layer neurons.

The Elman algorithm mainly adjusts the number of hidden layer neurons to obtain a
unique global optimal solution during the process of adjusting hyperparameters.

4.4. Thermodynamic Model

The performance of the refrigeration system is analyzed using thermodynamics. The
mathematical model is established and the program used to solve the equation is pro-
grammed. The prediction principle and solution strategy of refrigeration system Are
introduced in detail. Basic assumptions.

The following assumptions were made for system modeling:

(1) The initial concentration of rich ammonia–water solution is available.
(2) The inlet temperature of cooling water is available.
(3) The NH3-H2O solution and vapor reaches saturation at the output end of the absorber

and reflux condenser.
(4) The components of the refrigeration system are in a steady state.
(5) All heat exchangers can meet the minimum heat-transfer requirements.

4.5. Mathematical Model for Absorption Refrigeration Cycle

The absorption refrigeration system is analyzed and its performance is evaluated. A
mathematical model of the system is proposed based on the first law of thermodynamics.
The equations are as follows:

∆in
out ∑ mi = 0 (12)

∆in
out ∑ ξi·mi = 0 (13)

QG/E = ∆in
out ∑ mi·hi (14)

QC/A = ∆out
in ∑ mi·hi (15)

QD = UD AD∆TD (16)
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1
UD

=
Ao

Ainho
+

Ao

hw
+

1
hin

+ δ (17)

COP = QE/QG (18)

where mi is the mass flow rate of the working fluid, ξi is the ammonia concentration, and
hi is the enthalpy of the working fluid at each state point in the absorption refrigeration
system. QG is the generation heat input and QE is the refrigerating capacity output. QC/A
is the condensation/absorption heat output. QD is the heat exchange of the components,
UD denotes the overall heat transfer coefficient of the components, AD is the heat exchange
area of the components, and ∆TD is the log mean temperature difference of the components.
Ao and Ain are the external and internal heat exchange areas. ho and hin are the heat transfer
coefficients of the outer side (heating/cooling side) and the heat transfer coefficients of
the inner side (working medium side), respectively, and hw is the conductivity of the heat-
transfer wall. δ is fouling factor of the heat exchange surface. The system coefficient of
performance (COP) was used to evaluate system performance.

The accuracy of the theoretical model mentioned above was verified by the experimental
results. With regard to the selection of theoretical model parameters, please refer to [35].

4.6. Comparison and Optimization of Prediction Algorithms

Two manipulated variables, the cooling water flow into the absorber and liquid
ammonia flow into the evaporator, were predicted by the trained BPNN algorithm, ELM
algorithm, and Elman algorithm. The predicted results and analyses are as follows.

Figures 7 and 8 show the comparison between the BPNN-predicted results and ex-
pected values for two manipulated variables. The predicted values agree with the expected
values. The maximum relative error between the predicted cooling water flow and the
expected value is approximately 5.8%. The maximum relative error between the predicted
liquid ammonia flow and expected value is approximately 7.2%.

Figure 7. Predicted cooling water flow by BPNN.
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Figure 8. Predicted liquid ammonia flow by BPNN.

Figures 9 and 10 show the comparison between the ELM-predicted results and the
expected values for two manipulated variables. The predicted values are very close to the
expected values and the prediction result of cooling water flow is relatively good. The
maximum relative error between the predicted cooling water flow and expected value is
approximately 2.5%. The maximum relative error between the predicted liquid ammonia
flow and expected value is approximately 5.1%.

Figure 9. Predicted cooling water flow by ELM.
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Figure 10. Predicted liquid ammonia flow by ELM.

Figures 11 and 12 show the comparison between the Elman-predicted results and
expected values for two manipulated variables. The changing trends of the predicted
and expected values are basically identical. The prediction result of cooling water flow is
relatively good. The maximum relative error between the predicted cooling water flow and
expected value is approximately 4.1%. The maximum relative error between the predicted
liquid ammonia flow and expected value is approximately 5.6%.

Figure 11. Predicted cooling water flow by Elman.
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Figure 12. Predicted liquid ammonia flow by Elman.

The results of the three different prediction algorithms for two manipulated vari-
ables are shown in Table 3. It can be seen that the maximum relative errors between the
predicted and expected values of the two manipulated variables have little difference.
Therefore, the total error sum of 20 test dataset samples predicted by the ELM algorithm
is relatively small. Moreover, the ELM algorithm has a fast learning speed and good gen-
eralization performance. Therefore, the ELM algorithm was selected as the final optimal
prediction algorithm.

Table 3. The prediction results of three different prediction algorithms.

Algorithm
The Maximum Relative Error (%)

Cooling Water Flow Liquid Ammonia Flow

BPNN 5.8 7.2
ELM 2.5 5.1

Elman 4.1 5.6

4.7. System Performance Based on the Predicted Value of the Optimization Algorithm

In this section, the predictive control variables obtained by the optimization algorithm
are substituted into the theoretical model mentioned above. Then, the system refrigerating
capacity is calculated in combination with other initial conditions. The calculated refrigerat-
ing capacity is compared with the expected value to determine whether the stability control
can be achieved. We reiterate that the theoretical model was verified by experimental
investigation. To illustrate the accuracy of the model, specific data are provided for the
example in Table 4.

Table 4. Comparison between theoretical and experimental results.

Generation
Temperature

(◦C)

Predicted Refrigeration
Output

(kW)

Experimental
Refrigeration Output

(kW)

The Relative
Error
(%)

125 6.2 6.0 3.2
135 9.0 8.9 1.1
145 11.3 10.9 3.5
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As shown in the table, relative error between the theoretical and experimental refriger-
ation output is less than 5%. Therefore, the theoretical model has high reliability and can
be used to test the actual refrigerating capacity control value.

The corresponding relationships between the prediction results of two manipulated
variables using the optimal ELM algorithm and the input parameters of heat source exhaust
gas are shown in Figures 13 and 14.

Figure 13. The relationship between the predicted cooling water flow and exhaust gas.

Figure 14. The relationship between the predicted liquid ammonia flow and exhaust gas.

Figure 13 shows the corresponding relationship between the predicted cooling water
flow and input parameters of the heat source exhaust gas. The exhaust gas temperature
is the main factor affecting the input heat of the system. The system heat input increases
with increasing exhaust gas temperature. Therefore, the predicted cooling water flow of
the system is also increased to maintain the stability of the refrigerating capacity output.

Figure 14 shows the corresponding relationship between the predicted liquid ammonia
flow and input parameters of the heat source exhaust gas. The liquid ammonia flow into
the evaporator is the main factor affecting the refrigerating capacity output. As can be seen
from the figure, when the stable refrigerating capacity output of the system is taken as
the control objective, the predicted liquid ammonia flow is maintained within the range
of 20 ± 2 L/h and is relatively stable under the condition of changing heat input.

According to the solution strategy, an analysis of the thermodynamic parameters of the
refrigeration system was carried out based on the ELM-predicted cooling water flow and
liquid ammonia flow. The calculated refrigerating capacity output is shown in Figure 15.
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Figure 15. Refrigerating capacity output based on predicted parameters.

Figure 15 shows the relationship between system refrigerating capacity output and
predicted cooling water flow and liquid ammonia flow. It can be seen that under the
predicted cooling water flow and liquid ammonia flow conditions, the refrigerating ca-
pacity output obtained by thermodynamic calculation is basically stable within the range
4.8–5.2 kW. The maximum relative error with the expected refrigerating capacity output
value of 4.85 kW is 7.2%, which can be considered as reaching the expected control target
of a stable refrigerating capacity output.

5. Conclusions

In order to solve the problem that the cooling output of ammonia absorption refrigera-
tion systems fluctuates greatly due to the unstable exhaust energy of a diesel engine under
fluctuating operating conditions, an active control method based on the machine-learning
algorithm was proposed. This method combines machine-learning and thermodynamic
models, making the machine-learning method effectively combine with the real physical
scenes behind it. It was successfully applied for the control of an exhaust heat refrig-
eration system. The mathematical model based on the law of thermodynamics and the
solving process to predict its performance were established. A prototype of the system
was established and several experiments were carried out. During the experiment, the
system refrigerating capacity output was maintained at nearly 4.85 kW by adjusting the
key parameters as the inlet exhaust gas temperature increased from 250 to 360 ◦C. Data on
the whole system under stable output conditions were recorded for training and prediction
of the machine-learning algorithm. Three different machine-learning algorithms were used
to predict the key control parameters. By comparing the prediction results of the three
algorithms, the optimal prediction algorithm was selected. The system cooling capacity
was calculated according to the predicted system control parameters. According to the
above experiments and analysis, the following conclusions can be drawn.

• The two most critical parameters affecting the system refrigeration performance, i.e.,
the cooling water flow into the absorber and liquid ammonia flow into the evaporator,
were determined based on the experimental process and experimental data and were
selected as the two manipulated variables.

• The BPNN algorithm results show that the maximum relative error between the
predicted cooling water flow and expected value is approximately 5.8%. The maximum
relative error between the predicted liquid ammonia flow and expected value is
approximately 7.2%. The ELM algorithm results show that the maximum relative
error between the predicted cooling water flow and expected value is approximately
2.5%. The maximum relative error between the predicted liquid ammonia flow and
expected value is approximately 5.1%. The Elman algorithm results show that the
maximum relative error between the predicted cooling water flow and expected value
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is approximately 4.1%. The maximum relative error between the predicted liquid
ammonia flow and the expected value is approximately 5.6%.

• The ELM algorithm was selected as the final optimal prediction algorithm owing to its
relatively fast learning speed, good generalization performance, and small error sum
of the test set.

• The calculated refrigerating capacity output based on the ELM algorithm prediction
ranged from 4.8 to 5.2 kW. The maximum relative error with the expected refrigerating
capacity output of 4.85 kW was 7.2%.

• There is a certain coupling relationship between the exhaust heat of a marine diesel
engine and the absorption refrigeration system. Application scenarios of absorption
refrigeration systems, such as indoor refrigeration and cold-storage refrigeration, will
also affect the performance of the refrigeration system. In addition, the aging of
mechanical systems and sensors can affect the prediction accuracy, so online learning
can be used to enhance the performance.
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Nomenclature

Symbols Greek symbols
A Cross-sectional area, m2 η Learn rate, %
X Sets of input values for the network θ Weight between hidden layer neurons
Y Sets of output values for the network ξ Ammonia concentration
M, N Dimension number δ Fouling factor of the heat exchange surface
a, b Node thresholds Subscript
O Predictive output 1, 2, 3 . . . State points
e Prediction error a, b, c Cross section
d Number of input layer neurons uc Feedback state vector
l Number of hidden layer neurons w3 Connection weight between the middle layer and output layer
f Activation function between the inputr w2 Connection weight between the input layer and middle layer

layer and hidden layer
n Total number of samples w1 Connection weight between the receiving layer and middle layer
w Weight values mi Mass flow rate of the working fluid, L/min
H Hidden layer QG Generation heat input, Kj
y Output node vector QE Refrigerating capacity output
u Unit vector of middle layer node QC/A Condensation/absorption heat output
x Input vector QD Heat exchange of the components
g Transfer function of the output layer neuron UD The overall heat transfer coefficient of the components
h Enthalpy of the working fluid AD Heat exchange area of the components
Acronyms ∆TD Log mean temperature difference of the components
ORC Organic Rankine Cycle Ao External heat exchange areas, m3

ELM Extreme learning machine Ain Internal heat exchange areas, m3

BPNN Back propagation neural network ho Heat transfer coefficients of the outer side (heating/cooling side)
COP Coefficient of performance hin The heat transfer coefficients of the inner side (working medium side)
MED Multi-effect distillation hw The conductivity of the heat transfer wall
MLA Machine-learning algorithms
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