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Abstract: This paper proposes a novel regional carbon emission inequality (RCI) index based on a
special kind of general distribution. Using the proposed RCI index and based on China’s county-
level panel data over the time span of 1997–2017, the regional carbon emission inequality of China
is evaluated at intra-provincial, sub-national, and national levels. Based on that, the dependence
between regional carbon inequality and carbon efficiency is studied by using copula functions and
nonlinear dependence measures. The empirical results show that: (1) Shanghai, Tianjin, and Inner
Mongolia have the worst carbon inequalities; while Hainan, Qinghai, and Jiangxi are the three
most carbon-equal provinces; (2) there is a divergence phenomenon in RCI values of municipalities
over the past decade; (3) from the national-level perspective, the inter-provincial carbon emission
inequality is much greater than that at the intra-provincial level; (4) from the sub-national-level
perspective, the east region has the highest RCI value, followed by the northeast, west, and the central
regions; (5) there is a so-called "efficiency-equality (E-E) trade-off" in each provincial administrative
unit, meaning that the higher carbon efficiency generally comes with higher carbon inequality, i.e.,
carbon efficiency comes at a price of carbon inequality; and (6) by re-grouping provincial units via
the efficiency-equality cost and industrial structure, respectively, both carbon equality and carbon
efficiency can be achieved in some regions simultaneously, thereby getting out of the “E-E trade-off”
dilemma. The empirical evidence may provide valuable insight regarding the topic of “equality and
efficiency” in environmental economics, and offer policy implications for regional economic planning
and coordination.

Keywords: carbon emission; regional carbon inequality; carbon efficiency; carbon neutrality; asymmetric
distribution; nonlinear dependence

1. Introduction

To date, more and more countries have actively participated in climate change inten-
sification actions such as carbon neutrality. For example, in 2017, 29 countries signed the
“Carbon Neutrality Alliance Statement”, promising to achieve zero carbon emissions in the
mid-21st century; at the UN summit in September 2019, 66 countries pledged to achieve
carbon neutrality goals and formed a climate ambition Alliance; in May 2020, 449 cities
around the world participated in the zero-carbon race proposed by UN climate experts;
as of February 2021, 127 countries have committed to carbon neutrality by the middle of
the 21st century (Zhao et al., 2022) [1]. At present, countries such as Bhutan and Suriname
have achieved carbon neutrality goals, and countries such as the United Kingdom, Sweden,
France, and New Zealand have written carbon neutrality into their laws. In November
2020, 19 countries that account for 50% of global greenhouse gas emissions submitted
long-term low-emission development strategies (LTS) to the United Nations Framework
Convention on Climate Change (UNFCCC), of which 11 countries’ LTS included carbon
neutrality goals and committed to achieve carbon neutrality (Demirkhanyan, 2020) [2].
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At the general debate of the 75 th United Nations General Assembly in September
2020, China pledged to “increase the nationally determined contribution, adopt more
powerful policies and measures, strive to peak carbon dioxide emissions before 2030, and
strive to achieve a peak in carbon dioxide emissions by 2060 to achieve carbon neutral-
ity.” (Dong et al., 2021) [3]. This commitment brings new opportunities as well as new
challenges to China’s economic development under the “new normal.”

In fact, carbon neutrality is providing favorable foundations and conditions for system-
atical change in economies around the world. Carbon neutrality provides opportunities for
international cooperation in related fields, such as guiding international green capital flow,
talent employment, green industry and renewable energy venture capital and financing, etc.
(Tian et al., 2022) [4]. Countries are actively developing green finance to promote economic
recovery after the COVID-19 epidemic; countries have introduced incentives to provide
financial support and tax incentives to enterprises, increase investment in technology re-
search and development and industrialization, develop green industry funds, and guide
social funds to invest, to promote the comprehensive transformation and upgrading of
industries oriented to sustainable development (Vaka et al., 2020) [5]. The development of
green finance has become the consensus of all countries, and the green finance market has
gradually matured (Sadiq et al., 2021) [6].

Despite the opportunity, however, it must be admitted that achieving carbon neutrality
rapidly is still challenging for lots of economies, especially the world’s second-largest one
(Liu et al., 2022) [7]. In fact, there is a precondition for carbon neutrality, that is, carbon
peaking (Zhao et al., 2022) [8]. The time and level of carbon peaking directly affect the time
and difficulty of achieving carbon neutrality. The earlier the peak time, the less pressure
to achieve carbon neutrality; the higher the peak, the more technological advance and
social costs are required to achieve carbon neutrality (Zhang, 2021) [9]. Thus, in order to
achieve carbon peaking as soon as possible and then achieve carbon neutrality, what the
government, enterprises, and other economic entities can do is to realize the improvement
of technical efficiency and carbon efficiency as soon as possible (Jia and Lin, 2021) [10].

Meanwhile, one of the possible risks in the process of carbon peaking and carbon
neutrality is that regional economic inequality may increase (Liu et al., 2022) [7]. In terms
of China, Shandong, Jiangsu, Hebei, Inner Mongolia, and Henan, which rank in the top 5 in
China in terms of total carbon emissions, are facing greater pressures for carbon emission
reduction and green and low-carbon transformation (Zhang et al., 2022) [11]. The existing
carbon peak and carbon neutral paths and scenarios in large cities are difficult to adapt to
the low-carbon development of small and medium-sized cities (Pan et al., 2022) [12]. With
the comprehensive green transformation of economic and social development, the central
and west regions will face many challenges, such as the decline of regional ecological
environment carrying capacity, the weak competitiveness of resource-based enterprises,
the lack of corporate innovation capabilities, the shortage of scientific and technological
talents, and the lack of sound systems and mechanisms for green development. If these
problems are not handled properly, there will be a “lose–lose” of resources and economic
development in some regions (Liu et al., 2022; Pan et al., 2022) [7,12].

Therefore, in the current context, for China’s long-term goal of “achieving carbon
neutrality”, its connotation is that China’s economic development must firstly achieve
carbon peaking, which requires the reduction of regional carbon emission inequality
and the improvement of carbon emission efficiency simultaneously (Chi et al., 2021;
Liu et al., 2022) [7,13].

In the literature, lots of related topics have been discussed by researchers, such as
carbon inequality, carbon efficiency, and their relationship with carbon neutrality, which
lay a valuable basis for our study (see Section 2). Nevertheless, there are still some gaps
in the existing study. First, whereas many studies have proposed the carbon inequality
measures with respect to other variables, the research working on measuring the regional
carbon inequality is scarce. As a matter of fact, most of the existing carbon inequality
indexes proposed are “relative” measures rather than “absolute” measures. A relative
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measure means that it considers the relative inequality of carbon emissions with respect
to other economic variables such as individual income or household wealth. Technically,
this can be done by calculating the percentile of carbon emission corresponding to the
percentile of a given economic variable. Examples of the relative inequality measures
include Gini Index (Heil and Wodon, 1997; Teixido-Figueras et al., 2016) [14,15], Theil
Index (Padilla and Duro, 2013) [16,17], and the Lorenz curve (Zhang et al., 2021) [18], etc.
In contrast, to measure carbon inequality at the spatial level, one does not need to cal-
culate any relative weight, but needs to characterize how asymmetrical the distribution
of carbon emissions can be, spatially. This is a so-call “absolute” measure, because it is
a “pure” measure of the inequality and asymmetry of carbon emission per se. Second,
even though the dependence between many environmental variables has been studied,
such as wind energy yield (Schindler and Jung, 2018) [19], heating energy consumption
(Niemierko et al., 2019) [20], and the relationship between carbon emission and industrial
production (Gozgor et al., 2020) [21], the research working on the dependence between
regional carbon inequality and regional carbon efficiency is very few. Third, few of the exist-
ing literature discussed the possible policy for coordinating the “equality” and “efficiency”
issues of carbon emission under the carbon neutrality background. Finally, in the literature,
the economic dependence of carbon emission has been found in governmental expendi-
tures, energy consumption (Fan et al., 2020) [22], energy inequality (Zhong et al., 2020) [23],
and regional income inequality (Cui et al., 2021) [24]. Nevertheless, very few of the cur-
rent works discussed the “trade-off” between carbon efficiency and carbon inequality. In
welfare economics, efficiency and fairness (and a similar connotation, equality) and their
relationship are important issues. However, efficiency and equality may not always be
achieved simultaneously. Sometimes efficiency gains come at the cost of equality reductions.
This is the so-called “trade-off.” For the environmental economic study, it would be of
both academic and practical significance to investigate if the trade-off also exists in the
relationship between carbon efficiency and carbon inequality.

To fill the current gaps, this paper applies contemporary statistical methodologies such
as general distribution, copula function, and tail dependence measure. We contribute to
the literature from the following four aspects. First, based on a kind of general distribution
which includes both symmetrical and asymmetrical distributions as special cases, this
paper proposes a novel regional carbon inequality index (RCI), which can be an ideal
measure to evaluate the “pure” degree of carbon inequality at the spatial (regional) level.
Different from the conventional carbon inequality evaluation tools which are “relative”
measures, the proposed RCI index is a direct and “absolute” measure of the degree of
inequality in regional carbon emission per se. Second, overall dependence and tail depen-
dence between regional carbon inequality and regional carbon efficiency is investigated by
using the copula functions and tail dependence measure, which may be an increment to
the existing nonlinear dependence evidence in the environmental area (see Section 2 for
detailed review). Third, by grouping and comparing the dependence between grouped and
ungrouped results, possible implications for regional planning and coordination policies
can be offered, which would be conducive to the carbon neutrality goal. Last but not
least, our empirical results may provide valuable evidence for the topic of “efficiency and
equality” in economics, as it addresses issues of resource allocation and economic efficiency.
It is worth noting that the reason why we want to figure out the “pure” degree of carbon
inequality at the spatial (regional) level is that excessive carbon emission inequality may
imply an excessive concentration of economic resources in some regions, thereby leading
to economic inefficiency. In this sense, discussing the “pure” degree of regional carbon
inequality, i.e., investigating the “absolute” inequality rather than “relative” inequality,
is the precondition to study the relationship between equality and efficiency from an
environmental economic perspective.

The rest of this paper is organized as follows. Section 2 reviews the literature. Data
and variables utilized in this paper are introduced in Section 3. In Section 4, we explain
the statistical approachesadopted in the study. Section 5 displays the empirical results.
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Section 6 concludes the paper, offers policy implications, and points out possible future
study directions.

2. Literature Review
2.1. Literature regarding Carbon Inequality

In the literature, carbon emission inequality and its possible causes are hotly debated
topics. Fang et al. (2019) [25] utilize a multi-regional input-output model to explore the
regional mismatch of economic benefits, air pollutants (primary PM2.5), and carbon emis-
sions, as well as the environmental and economic inequality between urban and rural
consumption. Wang et al. (2019) [26] estimate disparities in carbon intensity in China
using a multi-scalar and multi-mechanism analysis. Pan et al. (2019) [27] propose a new
indicator—the carbon Palma ratio, which provides a new perspective to inform the interna-
tional community and the public of the distribution inequality of carbon emissions among
individuals. Du et al. (2019) [28] use the Gini index and Theil index to examine carbon
inequality in the transport sector in China and decompose the per capital carbon inequality
using Kaya factors. Mushtaq et al. (2020) [29] aim to investigate the impact of income
inequality and economic growth on carbon dioxide (CO2) emission through the moderating
role of innovation in China at national and regional levels. Using the Theil index and the
logarithmic mean Divisia index decomposition approach, Fan et al. (2020) [22] integrate
government expenditure into an analysis framework, investigating the driving factors of
emission inequality and the status and changes of China’s CO2 emission inequality from
2007 to 2015, attributing emission inequality to disparities in governmental expenditures,
energy consumption, and other socioeconomic factors. Han et al. (2020) [30] compare the
carbon emissions driven by final demand among countries in and outside the Belt and Road
area from 1990 to 2015. Zhong et al. (2020) [23] focus on carbon and energy inequality be-
tween and within ten Latin American and Caribbean (LAC) countries. Cui et al. (2021) [24]
analyze the relationship between carbon emission efficiency and the regional income in-
equality, and find that when the carbon emission reduction efficiency increases by one
unit, the income inequality gap of 25 provinces increases by 0.0202 units; provinces with
high carbon emission reduction efficiency increases by 0.107 units, and provinces with
medium carbon emission reduction efficiency increases by 0.026 units. Using the provincial
panel data of the Chinese residential sector from 2005 to 2017, Wang et al. (2021) [31]
examine residential CO2 emission inequality (carbon inequality) and its driving factors
from the static and dynamic perspectives to provide empirical support for the formulation
of emission reduction policies and the allocation of regional emission reduction quotas.
Based on the provincial panel data and industrial enterprise panel data in China from 1998
to 2017, Zhang et al. (2021) [32] explore if China’s emission trading scheme (ETS) pilot
policy brings the double dividends of green development efficiency and regional carbon
equality by using the DID model and Malmquist-Luenberger (ML) index. For measuring
carbon inequality, the most commonly used methods in the existing literature are the Gini
Index (Heil and Wodon, 1997; Teixido-Figueras et al. 2016) [14,15], variation coefficient
(Duro, 2012) [33], the Theil Index (Padilla and Duro, 2013) [16], multi-regional input–output
(MRIO) method (Hubacek et al., 2017) [17], and the Lorenz curve (Zhang et al., 2021) [18].
It is worth noting that the above indexes are based on the carbon inequalities related to
individual income and household consumption, which are relative measures. The study
proposing an absolute measure of carbon inequality is scarce.

2.2. Literature Regarding Carbon Efficiency

Parallel to the above work, many studies in the literature also involve the measurement
and cause analysis of carbon emission efficiency. On the ond hand, lots of the existing
studies have used the latest statistics and optimization techniques to measure carbon
emission efficiency. Zhang et al. (2018) [34] propose a modified data envelopment analysis
(DEA) to analyze the carbon efficiency decomposition and potential material reduction
for regional construction industries. Zhou et al. (2021) [35] evaluate the carbon dioxide
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emission from China’s regional construction industry by the three-stage DEA method, and
evidence that climate change is an important starting point for promoting the high-quality
development of China’s economy and the construction of ecological civilization, as well as
an important area for participating in global governance and adhering to multilateralism.
Based on China’s Jiangsu Province’s data, Tan and Wang (2021) [36] utilize the super-
efficiency DEA model and the Tobit model to verify the main factors affecting regional
ecological efficiency and find that the regional eco-efficiency in Jiangsu shows a trend of
decreasing from south to north, with the obvious phenomenon of “club convergence”, with
significant spatial correlation and agglomeration.

On the other hand, kinds of literature also look for the driving factors of carbon
emission efficiency from the perspectives of industry or space. Liu et al. (2019) [37]
propose a multi-region multi-sector decomposition and attribution approach to analyze
the driving forces of ACI from both sectoral and regional perspectives, and the result
shows that the ACI declined by 33% from 2000 to 2015. From the sectoral perspective,
the decline can be mainly attributed to the significant energy efficiency improvement
in six high energy-intensive industries. Regarding the spatial effect of carbon efficiency,
Wang et al. (2021) [38] explore the spatial distribution of industrial resource allocation
efficiency and carbon emissions using the panel data of 30 provinces from 2007 to 2016,
which evidence that the improvement of industrial resource allocation can reduce carbon
emissions on the national level and industrial resource allocation can significantly reduce
carbon emissions in the east region. Similar research using spatial econometrics can be
found in Zhang et al., 2021 [18], Yang et al., 2021 [39], and Ma et al., 2022 [40].

2.3. Literature Regarding Dependence under Carbon Neutrality Background

Scholars have also explored the possible relationship between inequality and the
achievement of carbon neutrality goals and have drawn many instructive conclusions
from their empirical evidence. Zhu et al. (2018) [41] examine the effects of urbanization
and income inequality on CO2 emissions in the BRICS (i.e., Brazil, Russia, India, China,
and South Africa) economies during the period 1994–2013. Dahal et al. (2018) [42] use
multilevel perspective (MLP) and renewable energy frameworks to examine the role of
renewable energy policies in carbon neutrality in the Helsinki Metropolitan area and base
the analysis on various policy documents and semi-structured interviews. Considering
the short- and long-term impacts of income inequality on carbon emissions, as well as the
heterogeneity of the emission distribution, Liu et al. (2019) [43] employ panel ARDL and
quantile regression models to analyze the effect of income inequality on carbon emissions
across US states. Mi et al. (2020) [44] apply an environmentally extended multiregional
input–output approach to estimate household carbon footprints for 12 different income
groups of China’s 30 regions. Han et al. (2020) [30] compare the carbon emissions driven
by final demand among countries in and outside the Belt and Road area from 1990 to 2015.
The relationship among income inequality, renewable energy technological innovation
(RETI), and CO emissions has not received sufficient attention in the current literature.
Based on Chinese provincial panel data from 2000 to 2015, Bai et al. (2020) [45] adopt a
panel fixed effect regression model and a panel threshold model to perform an analysis of
the nonlinear relationship among these factors. Tan et al. (2021) [46] employ a nonlinear
panel autoregressive distributed lag (ARDL) model, and find that reduction in income
inequality is necessary to increase carbon neutrality potential.

Regarding the asymmetric features and non-linear dependence among environmental
and economic variables, various statistical methods are utilized in the literature, such as
general distributions, asymmetric distributions, dynamic time series models, and nonlinear
dependence measure. Deng and Zhang (2018) [47] fit a generalized extreme value (GEV)
distribution to exceedances over a station-specific extreme smog level of hourly PM2.5 data
from 2014 to 2016 obtained from monitoring stations across China. Deng et al. (2020) [48]
develop a dynamic model of conditional exponentiated Weibull distribution modeling and
analysis of regional smog extremes and provide useful information for the central/local
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government to conduct coordinated PM2.5 control and treatment. A variety of studies
apply nonlinear dependence (for example, copula) to examine co-movement between two
or more inter-connected variables of interest in a range of research areas, such as energy,
environment, and forestry. Schindler and Jung (2018) [19] use the mixed Burr-Generalized
extreme value distribution (BGEV) and Gaussian copulas in a two-step procedure to
estimate the directional wind energy yield at 100 m above ground level in Germany.
Niemierko et al. (2019) [20] develop a D-vine copula-based quantile regression to predict
quantiles of heating energy consumption and reveal cyclical rebound effect dependent
on retrofit level. Gozgor et al. (2020) [21] employ the time-varying Markov-switching
copula models to examine the inter-dependence relations between CO2 emissions and the
industrial production index as a measure of business cycles at the monthly frequency in the
United States. As an inheritance of methods commonly used in the related literature, this
paper also uses general distributions and dependence measures in our study. Based on that,
a novel regional carbon inequality can be proposed and the dependence between regional
carbon inequality and regional carbon efficiency can be studied, which is an increment to
the literature.

3. Data and Variables
3.1. Sample and Data Sources

There are two research purposes of this study: (1) to propose a “pure” measure of
regional carbon inequality (RCI); and (2) to investigate the dependence between regional
carbon inequality and regional carbon efficiency. The output of the first step, i.e., the
regional carbon inequality estimation, is the input of our second step. Consequently,
policy implications for carbon neutralization can be offered based on the empirical results.
Therefore, this study needs to use kinds of panel data: (1) regional carbon emission; and
(2) regional carbon emission efficiency.

The carbon emission data used in this paper is mainly the county-level annual data
of China from 1997 to 2017, which is computed and offered by Chen et al., (2020) [49]
and can be downloaded from the Carbon Emission Accounts & Datasets (CEADs) (https:
//www.ceads.net/user/index.php?id=1057&lang=en, accessed on 12 November 2020).
This dataset is a panel data that includes 2735 counties in 325 cities of 30 provinces in China
over 21 years. Taiwan, Hong Kong, Macao, and Tibet are excluded due to the lack of CO2
emission observations. In addition, we estimate the national-level RCI in Section 5.1.2 using
the provincial-level carbon emission panel data, so as to investigate the inter-provincial
carbon inequality. We note that this is the only place in this paper that uses the provincial
panel dataset. Except for the national-level RCI estimation, all other research in this paper
are based on the county-level panel data which is introduced above. The provincial-level
carbon emission panel data is generated and offered by Shan et al. (2016) [50], Shan et al.
(2018) [51], Shan et al. (2020) [52], and Guan et al. (2021) [53], which can be downloaded
from https://www.ceads.net/data/province/, (accessed on 21 October 2021). It contains
30 provinces in China over 23 years from 1997 to 2019. All carbon emission data are
measured in metric ton (mt).

The carbon emission efficiency data used in this paper is the one generated and offered
by Ning et al. (2021) [54] using the super-efficiency SBM model. This dataset includes the
carbon emission efficiency of 30 provincial-level administrative regions in China (excluding
Taiwan, Hong Kong, Macao, and Tibet) from 2007 to 2016, which is reported in Table A1 in
Appendix A.

According to the computation results in Ning et al. (2021) [54] (see Table A1 in
Appendix A), the distribution of carbon emission efficiency among provinces in China is
highly uneven. Beijing, Shanghai, and Guangdong are all at an effective level, while other
provinces are not at an effective level. There are as many as 24 provinces with ineffective
carbon emission efficiency, among which the three provinces with the lowest carbon
emission efficiency are all located in the southwest of China, namely Ningxia, Qinghai, and

https://www.ceads.net/user/index.php?id=1057&lang=en
https://www.ceads.net/user/index.php?id=1057&lang=en
https://www.ceads.net/data/province/
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Guizhou, and the lowest is Ningxia. The carbon emission efficiency of Yunnan province
fluctuates the most during the sample periods.

Table 1 reports the descriptive statistics for the county-level carbon emission data
by year. The mean and standard deviation of carbon emission basically increase over
time. The maximum value of carbon emission increased year by year from 1997 to 2012,
and decreased year by year from 2012 to 2017. For each year’s carbon emission data,
the skewness is greater than 0, and the kurtosis is greater than 3. Both skewness and
kurtosis increased year by year from 1997 to 2000 and decreased year by year from 2000 to
2017. These facts strongly imply that the annual carbon emission is highly asymmetrically
distributed. Besides, the Jarque-Bera (J-B) tests (Jarque and Bera, 1987) [55] are conducted
for the carbon emission data annually (see Table 1). All the resulting J-B statistics are larger
than 50,000 with p-values equal to 0, which strongly reject all null hypotheses of normality
at the 0.01 level. The J-B testing result means that the carbon emission may not be normally
and symmetrically distributed, and thus one has to utilize a more general and flexible
distribution for its fitting. In this paper, we utilize the exponential generalized beta of the
second kind (EGB2) distribution to fit the carbon emission data as this distribution can
perfectly capture the abnormal and asymmetric features of carbon emission (see Section 4.1)
and is of great economic interpretability in measuring carbon inequality (see Section 4.1.2).

Table 1. The descriptive statistics of the county-level annual carbon emission data.

Year Obs Mean S.D. Skewness Kurtosis Min Max J-B Stat J-B p-Value

1997 2735 1.132 1.292 5.469 72.95 0.000 25.75 571,188.85 0
1998 2735 0.998 1.179 6.497 94.76 0.000 25.13 978,850.97 0
1999 2735 1.094 1.259 6.595 99.77 0.000 27.08 1,087,000.49 0
2000 2735 1.154 1.330 6.715 102.1 0.000 28.69 1,139,495.23 0
2001 2735 1.162 1.305 6.229 91.17 0.000 27.17 903,685.42 0
2002 2735 1.257 1.416 6.330 92.59 0.000 29.49 932,928.62 0
2003 2735 1.481 1.660 6.073 85.65 0.000 33.58 795,299.82 0
2004 2735 1.650 1.839 5.861 80.87 0.000 36.70 706,645.71 0
2005 2735 1.965 2.153 5.287 68.35 0.000 41.31 499,366.95 0
2006 2735 2.208 2.424 5.254 67.85 0.000 46.82 491,890.47 0
2007 2735 2.362 2.568 4.903 59.43 0.000 47.52 373,815.41 0
2008 2735 2.531 2.719 4.637 53.49 0.000 48.77 300,317.69 0
2009 2735 2.729 2.922 4.748 56.04 0.000 53.48 330,880.89 0
2010 2735 2.988 3.156 4.554 51.67 0.000 56.43 7,279,382.16 0
2011 2735 3.335 3.398 3.949 38.38 0.000 54.14 149,786.90 0
2012 2735 3.403 3.462 3.998 39.11 0.000 55.56 155,843.31 0
2013 2735 3.422 3.369 3.689 32.83 0.000 49.25 107,608.38 0
2014 2735 3.494 3.430 3.594 31.11 0.000 49.42 95,951.52 0
2015 2735 3.302 3.257 3.468 28.63 0.000 45.05 80,345.16 0
2016 2735 3.404 3.360 3.428 27.92 0.000 46.08 76,117.43 0
2017 2735 3.467 3.392 3.255 24.74 0.000 44.03 58,696.73 0

Table 2 reports the descriptive statistics for the annual carbon emission efficiency data.
As shown, the mean, variance, annual minimum, and annual maximum of carbon emission
efficiency basically do not change with time. The Skewness and kurtosis are greater than 0 and 3
each year, respectively, indicating that the carbon emission efficiency data is highly asymmetric.
J-B tests are conducted by year as well, and all the resulting J-B statistics are larger than 10 with
p-values less than 10−3, suggesting that all the null hypotheses of normality are rejected at 0.01
level and the carbon emission efficiency is not normally distributed.

Table 2. The descriptive statistics of the annual carbon emission efficiency data.

Year Obs Mean S.D. Skewness Kurtosis Min Max J-B Stat J-B p-Value

2007 30 0.499 0.229 1.738 5.241 0.251 1.126 21.38 2.274× 10−5

2008 30 0.497 0.229 1.805 5.432 0.255 1.140 23.68 7.204× 10−6

2009 30 0.492 0.230 1.820 5.498 0.245 1.147 24.36 5.121× 10−6

2010 30 0.495 0.230 1.827 5.543 0.244 1.159 24.77 4.180× 10−6

2011 30 0.490 0.236 1.962 6.056 0.237 1.217 30.93 1.924× 10−7

2012 30 0.493 0.235 1.863 5.707 0.233 1.190 26.51 1.755× 10−6

2013 30 0.486 0.233 1.827 5.624 0.235 1.201 25.29 3.218× 10−6

2014 30 0.480 0.235 1.803 5.584 0.226 1.199 24.60 4.553× 10−6

2015 30 0.481 0.237 1.744 5.391 0.214 1.199 22.35 1.400× 10−5

2016 30 0.508 0.259 1.427 4.037 0.209 1.216 11.52 3.145× 10−3
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In Sections 5.2 and 5.3, we study the dependence between regional carbon inequality
and carbon emission efficiency. It is worth noting that the carbon emission efficiency data is
calculated by the super-efficiency method by Ning et al., (2021) [54], and the regional carbon
inequality is measured using the RCI index proposed in this paper (see Section 4.1.2).

Regarding our proposed variable and the resulting annual RCI values, Table 3 reports
the descriptive statistics of the intra-provincial RCI measure. According to the table,
the mean, variance, and annual maximum value of regional carbon emission inequality
increased year by year from 1997 to 2012 and decreased year by year from 2012 to 2017. For
each year’s RCI index, the skewness is greater than 0, and the kurtosis is greater than 3.
The skewness and kurtosis are relatively stable from 1997 to 2007, and show a downward
trend from 2007 to 2017, with a slight increase in 2015 and 2016.

Table 3. The descriptive statistics of the intra-provincial carbon inequality measure.

Year Obs Mean S.D. Skewness Kurtosis Min Max J-B Stat J-B p-Value

1997 30 17.63 76.84 5.092 27.27 0.071 421.7 866.1 0
1998 30 15.31 66.18 5.065 27.08 0.057 362.7 853.0 0
1999 30 18.29 81.59 5.111 27.41 0.060 447.8 875.3 0
2000 30 20.25 88.29 5.080 27.19 3.383 484.1 860.3 0
2001 30 16.61 70.28 5.043 26.91 −0.126 384.9 842.0 0
2002 30 22.91 99.50 5.086 27.23 −0.201 545.9 863.0 0
2003 30 35.88 155.5 5.078 27.17 −0.525 852.8 859.2 0
2004 30 46.61 200.6 5.077 27.17 −0.714 1100 859.0 0
2005 30 64.99 271.5 5.048 26.95 0.163 1488 844.2 0
2006 30 94.76 396.8 5.057 27.02 0.245 2176 849.0 0
2007 30 113.0 472.9 5.059 27.03 0.298 2594 849.9 0
2008 30 110.8 432.2 4.966 26.34 0.371 2364 804.2 0
2009 30 150.3 598.0 4.983 26.46 0.516 3271 812.4 0
2010 30 170.7 647.8 4.902 25.84 0.528 3531 772.5 0
2011 30 188.4 642.3 4.517 22.69 1.626 3407 586.5 0
2012 30 205.1 733.4 4.725 24.42 1.620 3954 684.9 0
2013 30 158.1 501.4 4.328 21.09 3.063 2620 502.6 0
2014 30 174.6 537.1 3.982 17.99 3.775 2684 360.3 0
2015 30 138.7 434.0 4.302 20.88 2.874 2264 492.0 0
2016 30 162.7 518.3 4.341 21.20 3.215 2711 508.0 0
2017 30 152.6 442.8 3.871 17.04 5.543 2182.6 321.2 0

3.2. Variables

The empirical study of this paper includes four variables, where three of them are re-
gional carbon inequality (RCI) indexes from different scopes (intra-provincial, sub-national-
level, and national-level) and the other one is the carbon efficiency measure (at the provin-
cial level). The descriptions of variables and data sources are detailed in Table 4. The
three RCI variables are based on the calculation processes introduced in Section 4.1. The
provincial carbon efficiency variable is the carbon efficiency in 30 provinces of China
from 2007 to 2016, as constructed by Ning et al., (2021) [54] and introduced in Section 3.1.
Based on the carbon emission efficiency measurement index system established by the
input indicators (including capital variables, labor variables, and energy consumption
variables) and output indicators (including expected output GDP and undesired output
carbon emissions), combined with the relevant data of 30 provincial-level administrative
regions in mainland China from 2007 to 2016, the carbon emission efficiency dataset is
calculated by the super-efficiency SBM model. For detailed data generating process, please
see Tone (2001) [56].

Table 4. Descriptions of the variables used in this study.

Variable Definition Calculation Process Scope Original Data
Structure Reference

Intra-procinvial RCI
Index

The intra-provincial
regional carbon

inequality

Fitting the data by
Equation (1) and
computing the

provincial level RCI
by Equation (2)

Provincial County-level panel
data

Method in
Section 4.1, and the

results in
Section 5.1.1
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Table 4. Cont.

Variable Definition Calculation Process Scope Original Data
Structure Reference

Sub-national-level
RCI Index

The
sub-national-level

regional carbon
inequality

Fitting the data by
Equation (1) and
computing the

sub-national-level
RCI by Equation (2)

Sub-national level County-level panel
data

Method in
Section 4.1, and the

results in
Section 5.1.2

National-level RCI
Index

The national-level
regional carbon

inequality

Fitting the data by
Equation (1) and
computing the

national-level RCI by
Equation (2)

National level Provincial panel data
Method in

Section 4.1, and the
results in

Section 5.1.2

Provincial Carbon
Efficiency

The annual
provincial carbon
efficiency for 30

provinces

Super-efficiency SBM
model Provincial Provincial panel data Ning et al.,

(2021) [54]

4. Statistical Approach
4.1. Regional Carbon Emission Fitting and the Regional Carbon Inequality (RCI) Index

In this paper, we utilize two steps to evaluate carbon inequality: (1) we fit the carbon
emission variables with the exponential generalized beta of the second kind (EGB2) dis-
tribution and obtain the estimated parameters; (2) based on the parameter estimates, we
calculate the skewness of the EGB2 distribution. We note that the EGB2-based skewness
value for each regional carbon emission is exactly the Regional Carbon Inequality (RCI)
index in the corresponding area.

4.1.1. Fitting the Carbon Emission Data: The Exponential Generalized Beta of the Second
Kind (EGB2) Distribution

Considering the abnormal and asymmetrical features of carbon emission data found
in Section 3, we use the exponential generalized beta of the second kind (EGB2) distribution
proposed by Mcdonald and Xu (1995) [57] to fit the carbon emission data. In this study,
the fitting is conducted at both the intra-provincial and inter-provincial levels or each
year. (See the website of the National Bureau of Statistics for China regional classification
criteria: details in http://www.stats.gov.cn/tjfw/tjzx/tjzxbd/201811/t20181110_1632622.
html, (accessed on 10 November 2018)). The resulting estimated EGB2 parameters a, b, p, q
can be used as the input for the calculation of the RCI index in Section 4.1.2.

The generalized beta distribution of the second kind (GB2) has drawn much attention
to providing an excellent description of long-tailed and highly skewed data. Mcdonald and
Xu (1995) [57] study the properties and applications of the generalized beta distribution.
The GB2 distribution is a rich and flexible family with four parameters: one scale parameter
b, and three shape parameters a, p, and q, (where a controls both tails, p controls the left
tail, and q controls the right tail), allowing the distribution to form many different shapes
including J-shaped, bell-shaped, long-tailed, light-tailed, right-skewed, and left-skewed.

One main reason that GB2 has been drawing attention is modeling long-tailed and
highly skewed data. Mcdonald and Xu (1995) [57] summarize the relationship between
GB2 family distributions in the form of distribution trees, in which common distributions
such as gamma, generalized gamma (GG), Weibull, chi-square, log-normal, log-logistic, F,
exponential, Burr type 3, and Burr type 12 are included. When dealing with a dataset that
is not highly skewed, the GB2 model, which can provide sufficient flexibility while fitting a
large variety of datasets, would outperform other distributions.

There are different special cases of exponential generalized beta (EGB) distribution,
including the first and second kind (EGB1 and EGB2) and the exponential generalized
gamma (EGG). In this article, we use the EGB2 distribution.

http://www.stats.gov.cn/tjfw/tjzx/tjzxbd/201811/t20181110_1632622.html
http://www.stats.gov.cn/tjfw/tjzx/tjzxbd/201811/t20181110_1632622.html
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The EGB2 density function is given by

fEGB2(z | a, b, p, q) =
e

p(z−a)
b

|b|B(p, q)
(

1 + e
z−a

b

)p+q , for −∞ < z < ∞. (1)

The parameter a is an unrestricted location parameter, b is a non-zero scale parameter,
and p and q are both positive shape parameters. The parameter a controls both tails, p
controls the left tail, and q controls the right tail. The EGB2 parameters are estimated using
the maximum likelihood estimation (MLE) method in this article.

4.1.2. The Construction of Regional Carbon Inequality (RCI) Index

In this subsection, we propose our distribution-based regional carbon inequality (RCI)
index using the parameter-estimated skewness of the EGB2 distribution (Skewness is a
statistic describing the shape of the data distribution, which describes the characteristic
statistic of the symmetry of the population distribution. For a unimodal distribution,
negative skewness commonly indicates that the tail is on the left side of the distribution,
while positive skewness indicates that the tail is on the right).

According to Mcdonald and Xu (1995) [57] and Kerman and Mcdonald (2015) [58],
we present the following skewness of EGB2 distribution without showing the calculation
details which can be seen in the literature,

RCI = SkewEGB2 = b3[ψ′′(p)− ψ′′(q)
]
, (2)

where ψ is the digamma function.
It is worth noting that the EGB2-skewness value in Equation (2) is a natural measure of

the regional carbon inequality, which is termed as the regional carbon inequality (RCI) index,
for its interpretability and simplicity. On the ond hand, using skewness as a measure of
inequality is interpretability. The economic intuition behind this treatment is that the higher
the skewness of the EGB2 distribution, the greater the likelihood of “a small probability of
very large carbon emissions” in a region, that is, the more unbalanced carbon emissions.
Consequently, in empirical study, one may look for the values of EGB2-skewness within
given regions and given times to investigate the carbon emission inequality, respectively.
On the other hand, this measure is of almost no computational burden. By inserting the
estimated parameters a, b, p, and q from Equation (1) into Equation (2), one can easily obtain
the carbon inequality for each area in each year and this process may almost take no time.
Therefore, we directly utilize the resulting EGB2 skewness in Equation (2) as the carbon
inequality (imbalance) index in this paper.

Utilizing the proposed RCI index, this study evaluates on the regional carbon in-
equality at three different levels: the intra-provincial level, sub-national level region (See
classification criteria for the sub-national-level regions on the National Bureau of Statistics
of China’s website: http://www.stats.gov.cn/tjfw/tjzx/tjzxbd/201811/t20181110_1632622.
html, (accessed on 10 November 2018)). and national level. The corresponding empirical
results are shown in Sections 5.1.1 and 5.1.2, respectively.

4.2. Measures of Dependence

In economic and financial studies, dependent structures can be found in two dimen-
sions. One is the overall dependence which generally focuses on the issue that “how
variables inter-react with each other at the mean value level”. The other is the so-called tail
dependence, which specifically pays attention to the dependence in “extreme level” or “tail
regions”. It is worth noting that these two dimensions provide different levels of depen-
dence information, as the mean and extreme values can be shown to be asymptotically
independent (Coles et al., 2001) [59]. Therefore, in empirical study, one needs to adopt
different approaches regarding the above two types of dependence information, respec-
tively. In this paper, we first use the copula functions (Related introduction can be found in

http://www.stats.gov.cn/tjfw/tjzx/tjzxbd/201811/t20181110_1632622.html
http://www.stats.gov.cn/tjfw/tjzx/tjzxbd/201811/t20181110_1632622.html
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Nelsen (2007) [60], Cherubini (2004) [61], Sklar (1959) [62] and so on.) to fit all observations
in order to obtain the overall dependence, and then utilize the tail quotient correlation
coefficient (TQCC) (Zhang, 2008; Zhang et al., 2017) [63,64] to fit observations in the tail
regions so as to illustrate tail dependence. Copula method and TQCC are introduced in
Sections 4.2.1 and 4.2.2, respectively.

4.2.1. Overall Dependence Estimation: Copula Functions

The concept of copula function was first proposed by Sklar (1959) [62]. It can be
used to study the correlation between random variables. It is an important way to study
nonlinear correlation and asymmetry. Sklar’s theorem states that multivariate dependence
can be separated into individual marginal distributions and a copula which describes the
dependence structure between the variables. According to Sklar (1959) [62], we present the
following Theorem 1 without showing the proof which can be seen in the literature.

Theorem 1 (Sklar’s theorem). For a random vector X with cumulative distribution function
(CDF) F and univariate marginal CDFs F1, · · · , Fd. There exists a copula C such that

F(x1, · · · , xd) = C(F1(x1), · · · , Fd(xd)). (3)

If X is continuous, then such a copula C is unique.

In this paper, we use copula functions to model two variables the annual regional
carbon inequality and the annual regional carbon emission efficiency, thus the dimension
d = 2. The variable annual regional carbon inequality is derived through the estimation
in Section 4.1, which contains annual carbon inequality indexes for 30 provincial-level
administrative regions in China from 2007 to 2016. The variable annual regional carbon
emission efficiency is the one discussed in Ning et al. (2021) [54], which involves annual
regional carbon emission efficiency for 30 provincial-level administrative regions in China
from 2007 to 2016.

For bivariate condition, let (X, Y) be a random vector with density function fXY(x, y),
distribution function FXY(x, y) and marginals FX(x) and FY(y). The copula function C(u, v)
is a bivariate distribution function with uniform marginals on [0, 1], such that

FXY(x, y) = CF(FX(x), FY(y)). (4)

By Sklar’s Theorem (Sklar, 1959) [62], this copula exists and is unique if FX and FY are
continuous. Furthermore, the copula CF is given by

C(u, v) = F
(

F−1
X (u), F−1

Y (v)
)

, ∀u, vs. ∈ [0, 1],

where F−1
X and F−1

Y are quasi-inverses of FX and FY, respectively, (Nelsen, 2007) [60].
Kendall rank correlation coefficient, commonly referred to as Kendall’s τ coefficient,

is a non-parametric measure of the strength and direction of the association that exists
between two variables measured on at least an ordinal scale.

The Kendall’s τ correlation between two variables will be high when the observations
have a similar (or identical for a correlation of 1) rank between the two variables, and
low when observations have a dissimilar (or fully different for a correlation of −1) rank
between the two variables. The Kendall’s τ coefficient is defined as follows.

Let (x1, y1), (x2, y2) be the two observations of a two-dimensional random vector
(X, Y), If (x1 − x2)(y1 − y2) > 0, say (x1, y1) and (x2, y2) is concordant, if
(x1 − x2)(y1 − y2) > 0, say (x1, y1) and (x2, y2) is discordant.
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Definition 1. Assume (X1, Y1), (X2, Y2) are a two-dimensional random vector independent of
each other and with the same distribution as (X, Y), let P[(X1 − X2)(Y1 − Y2) > 0] denote the
probability of concordant, and P[(X1 − X2)(Y1 − Y2) > 0] denote the probability of discordant.
The difference between these two probabilities is called Kendall’s τ rank correlation coefficient,

τ = P[(X1 − X2)(Y1 −Y2) > 0]− P[(X1 − X2)(Y1 −Y2) < 0]. (5)

The copula functions can be used to measure the correlation between the continuous
random variables. According to Genest and Rivest (1993) [65], for the continuous random
vector (X, Y) with marginals FX(x) and FY(y), the Kendall’s τ rank correlation coefficient
of the corresponding copula function C(u, v) is

τ = 4E[C(u, v)]− 1 = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1. (6)

In this paper, we use the AIC criterion to select the copula that best fits each pair of vari-
ables. Kendall’s τ of the selected copula is the overall dependence measure of two variables
carbon inequality and carbon efficiency. Here we mainly introduce Kendall’s τ of the copu-
las that we selected for each pair of variables in Section 5. Table 5 presents the theoretical
value of Kendall’s τ corresponding to the bivariate copula for given parameter values.

Table 5. The theoretical value of Kendall’s τ corresponding to the bivariate copula for given parameter
values θ or (θ, δ).

Copula Kendall’s τ

Survival BB7 1+ 4
∫ 1

0

((
1− (1− t)θ

)−δ − 1
)

/
(
−θδ(1− t)θ−1(1− (1− t)θ

)−δ−1
)

dt
Survival
Clayton

θ
θ+2

Joe 1 + 4
θ2

∫ 1
0 t log(t)(1− x)2(1−θ)/θdt

4.2.2. Tail Dependence Measure: Tail Quotient Correlation Coefficient

In this article, we use the tail quotient correlation coefficient (TQCC), proposed
by Zhang (2008) [63], and theoretically studied by Zhang et al., (2017) [64], to mea-
sure the tail dependence between two variables carbon inequality and carbon efficiency.
In the literature, this novel tail dependence measure is widely used to analyze issues
in multi-discipline realms, such as daily precipitation (Zhang et al., 2017) [64], carbon
markets portfolio management (Zhang and Zhang, 2020) [66], digital finance develop-
ment (Lin and Zhang, 2022a) [67], and financial risk contagion (Lin and Zhang, 2022b) [68].
In this paper, we use a more economically interpretable form of TQCC proposed in
Lin and Zhang (2022b) [68], which is defined as follows.

Definition 2. If {(Xi, Yi)}n
i=1 is a random sample of random variables being tail equivalent to unit

Fréchet random variables (X, Y),

qun =
max1≤i≤n

(
max(Xi ,un)
max(Yi ,un)

− 1
)
+ max1≤i≤n

(
max(Yi ,un)
max(Xi ,un)

− 1
)

max1≤i≤n
max(Xi ,un)
max(Yi ,un)

×max1≤i≤n
max(Yi ,un)
max(Xi ,un)

− 1
(7)

is the tail quotient correlation coefficient (TQCC) where un is the varying threshold that tends
to infinity.

Specifically, one can set
un = min

(
Xuq, Yuq

)
,

where uq is a quantile level, and Xuq and Yuq are upper uq quantiles of X and Y, respectively.
The TQCC estimation results are sensitive to the threshold. In order to illustrate the
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robustness of the empirical results, in this article, uq is selected to be 0.9, 0.8, and 0.7, without
loss of generality, so as to prevent the contingency of the results caused by computational
issues. In a sense, this is a robustness test.

Note that the numerator of the right-hand side in Equation (7) is equivalent to the orig-
inal form defined in Zhang et al., (2017) [64]. These two new forms clearly reveal that the
TQCC studies maximum relative errors at tails, while many other existing measures, e.g.,
linear correlation coefficients, are defined based on absolute errors. Moreover, the expres-
sion form in Equation (7) makes economic interpretations rather easy and straightforward.

Intuitively, TQCC is a measure of tail dependence between two random variables.
The TQCC returns a value between 0 and 1, where 0 indicates tail independent and 1
indicates completely dependent. The value of TQCC shows the chance of one variable
reaching its extreme value (exceeding the threshold), given that the other variable has
reached its extreme value, i.e., it approximates P(Xi > u | Yi > u ) as u → ∞; see
Zhang et al. (2017) [64]. For example, if the TQCC between X and Y is 0.2022, this means
that given that Y has reached its extreme value, the chance that X also reaches its extreme
value is 20.22%.

The TQCC measure and Kendall’s τ measure of copula are not substitutes for each
other because thesetwo methods focus on different issues. First of all, TQCC estimation only
focuses on tail dependence among variables, rather than overall dependence, while copula
estimation focuses on overall dependence. Second, the two methods use different types of
data, copula estimation uses the whole data in the sample, while the TQCC estimation only
uses the tail region (i.e., exceeding the threshold) data in the sample.

Considering the fact that the TQCC estimations may vary with the random threshold
un, in this paper, we conduct syudies under different values of uq = 0.9, 0.8, and 0.7 (see
Section 5.2.2), so as to highlight the robustness of the empirical results. In a sense, this
treatment is similar to the robustness test in regression models.

5. Empirical Results

This section reports the empirical results. The EGB2 estimation and the resulting
regional carbon emission inequality indexes are displaced in Section 5.1. For the depen-
dence study, we conduct the research under situations without and with grouping by some
important variables. In Section 5.2, we provide both the overall dependence (copula-based)
and tail dependence (TQCC-based) results between the regional carbon inequality and
regional carbon efficiency before grouping; and the corresponding grouped results are
shown in Section 5.3. We note that the difference between the grouped and ungrouped
results may imply important policy implications, which would be discussed in Section 6.

5.1. The Regional Carbon Inequality (RCI) Estimation Results

In this section, we fit the carbon emission data using the EGB2 distribution and
obtain the resulting RCI indexes via Equation (2) at three levels: (1) intra-provincial level;
(2) national level; and (3) sub-national level.

5.1.1. The Intra-Provincial RCI Estimation Results

We fit the county-level annual carbon emission panel data of 30 provincial admin-
istrative units with the EGB2 distribution. (For example, Anhui province contains 105
county-level regions, and Beijing contains 16 county-level regions for each fitting). Then,
we compute the proposed RCI index by Equation (2) for each province year by year.

Tables 6, A2 and A3 present the intra-provincial RCI results of original carbon emission
data for 30 provinces in China from 1997 to 2017. From Tables 6, A2 and A3, as a whole,
the RCI indexes for the 30 provinces show a consistent trend over he sample period: It
decreased from 1997 to 1998, increased from 1998 to 2000, decreased slowly from 2000 to
2001, and increased continuously from 2001 to 2012, decreased slowly from 2012 to 2015,
increased slightly from 2015 to 2016, and decreased slightly from 2016 to 2017.
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Table 6. The intra-provincial carbon inequality estimation results of original carbon emission data
for 30 provinces in China from 2011 to 2017. The results are presented in descending order of
carbon inequality in the latest year (2017). Due to space limitations, the results from 1997 to 2010 are
in the Appendix A.

Province 2011 2012 2013 2014 2015 2016 2017

Shanghai 3407.318 3953.908 2619.998 2684.081 2263.728 2711.463 2182.630
Tianjin 1148.335 1059.048 1043.118 1406.543 916.288 1068.201 1234.927
Inner Mongolia 179.524 178.149 180.615 189.700 172.134 183.146 188.474
Jiangsu 122.624 127.076 124.271 127.833 113.493 120.155 115.891
Liaoning 95.383 104.509 98.588 103.309 86.777 95.954 95.882
Zhejiang 77.939 81.923 65.354 67.178 62.572 82.966 91.534
Guangdong 74.042 78.480 71.537 81.131 75.610 85.691 82.772
Beijing 145.054 155.536 83.510 87.863 71.728 90.449 73.677
Xinjiang 31.944 30.249 50.439 55.492 43.568 46.268 64.634
Guizhou 35.588 38.251 40.812 44.724 35.880 39.391 47.523
Chongqing 40.058 41.370 38.697 43.399 33.961 38.926 44.971
Hebei 37.920 38.875 37.914 40.725 36.658 39.850 39.823
Hubei 35.663 37.579 33.807 36.968 30.687 34.416 36.289
Ningxia 16.439 14.740 24.002 24.261 18.794 20.584 34.607
Shaanxi 27.823 29.018 28.937 30.942 22.979 27.229 30.584
Fujian 24.409 23.892 28.645 28.896 25.255 26.074 30.045
Shanxi 33.483 34.396 31.704 32.073 25.985 27.786 27.988
Hunan 13.556 14.595 16.892 18.923 15.474 17.100 21.024
Jilin 15.143 16.377 14.681 16.339 14.380 16.565 20.513
Shandong 18.458 19.105 15.855 15.592 15.400 16.840 15.779
Guangxi 8.643 9.054 11.013 12.263 9.833 10.775 14.395
Gansu 10.916 11.222 11.926 12.662 9.656 10.275 11.582
Anhui 7.878 8.575 9.035 10.049 8.547 10.719 11.365
Henan 11.962 12.547 12.416 12.375 10.080 11.671 11.091
Sichuan 10.416 11.062 10.737 11.535 9.324 10.263 11.074
Yunnan 6.922 7.811 8.728 9.220 7.445 8.011 10.277
Heilongjiang 5.713 6.504 12.837 13.921 12.080 14.406 9.324
Jiangxi 4.280 4.515 5.883 6.618 5.326 5.924 8.227
Qinghai 1.626 1.620 3.064 3.775 3.080 3.215 5.852
Hainan 4.393 4.200 7.220 9.690 2.874 7.996 5.543

According to the resulting RCI indexes in the most recent decade, carbon emissions are
most spatially unequal in the following provincial administrative regions (in descending
order of carbon inequality from large to small): Shanghai, Tianjin, Inner Mongolia, Jiangsu,
Liaoning, Zhejiang, Guangdong, and Beijing. Among them, the RCI values in Shanghai,
Tianjin, Inner Mongolia, and Jiangsu all exceeded 100 during the time span of 2011–2017.
These values kept rising from 2010 to 2014, and then displaced fluctuations from 2015 to
2017. Another interesting empirical finding in the intra-provincial RCI index is that the
inequality of carbon emissions in municipalities has diverged rather than converged over
time. For example, after the year 2006, all RCI values in Shanghai are higher than 2000.
Tianjin, which is the second spatially unequal municipality during our sample period,
witnessed its RCI values being almost greater than 1000 in the past decade. However, the
RCI values in Beijing had been continually declining from the level of 150 in 2011 to values
below 80 in 2017 using only 6 years. We believe that this interesting divergence result in
municipalities may have something to do with the differences in the functional positioning
of municipalities and the differences in industrial structure in recent years, which can be
left for future study.

By contrast, carbon emissions are relatively balanced in the following regions (in
ascending order of carbon inequality from small to large): Hainan, Qinghai, Jiangxi, Hei-
longjiang, Yunnan, Sichuan, Henan, Anhui, and Gansu. Among them, Hainan, Qinghai,
and Jiangxi have relatively higher carbon emission balances, which do not exceed 10. In the
other six provinces, the inequality did not exceed 10 before 2011 and stabilized at around
10 from 2011 to 2017. The ranking of the regional distribution of carbon emission inequality
displays no obvious relationship with the geographical distribution of each province.

To demonstrate the robustness of the above empirical results, we also estimate the
intra-provincial RCI indexes with the same sample using the rolling window method with
window periods equaling 3, 4, and 5 years, respectively. Due to space limitation, we report
the rolling window RCI indexes in Tables A4–A12 in Appendix A. We find that the rolling
window RCI results share consistent structures with the non-rolling ones, meaning that
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our empirical results are robust. We note that this step is similar to the “robustness test”
procedure in conventional regression models.

5.1.2. The National and Sub-National Levels RCI Estimation Results

In this section, we try to answer two research questions. First, from the national-level
perspective, what are the characteristics of carbon inequality among provinces? Second,
from the sub-national-level perspective, what are the characteristics of carbon inequality
among counties? (At the sub-national level, there are four “great sub-national-regions”
(east, central, west, and northwest) in China. The division of four sub-national-level re-
gions in this paper is according to regional classification criteria of the National Bureau
of Statistics of China (NBSC, see details in http://www.stats.gov.cn/tjfw/tjzx/tjzxbd/20
1811/t20181110_1632622.html, accessed on 10 November 2018)). The first question is the
inter-provincial RCI evaluation, while the second one is the intra-sub-national-regions
RCI evaluation. To explore the first question, we need the provincial emission panel data
which is offered by Shan et al. (2016) [50], Shan et al. (2018) [51], Shan et al. (2020) [52],
and Guan et al. (2021) [53], and is introduced in Section 3. To investigate the second ques-
tion, we need to classify all county-level administrative units based on the sub-national-
regions according to the classification standard of NBSC, and then all counties in the
same sub-national-region are formed into a new sub-sample for further study. Both of
the observations are fitted with the EGB2 distribution and the corresponding RCI indexes
are computed.

The national-level carbon inequality results are shown in the second column of Table 7.
The national RCI value decreased slightly from 1997 to 1999, but was relatively stable during
this period. From 1999 to 2017, except for a slight decrease in 2015, it maintained an upward
trend and peaked in 2017. It is worth noting that compared with the intra-provincial RCI
values reported in Section 5.1.1, the magnitude of the national RCI index is extremely large
(the order of magnitude reached 107). This means that, nationally, the inter-provincial
carbon emission inequality is much greater than that at intra-provincial level.

Table 7. The inter-provincial carbon inequality estimation results of original carbon emission data for
the nation and the east, central, west and northeast four regions in China from 1997 to 2017. For the
division criteria of China’s four regions, please refer to NBSC, see details in http://www.stats.gov.
cn/tjfw/tjzx/tjzxbd/201811/t20181110_1632622.html, accessed on 10 November 2018).

Year National East Central West Northeast

1997 647,982.509 5.626 1.316 0.800 3.293
1998 568747.568 2.546 1.228 0.593 3.057
1999 498,678.736 3.688 1.377 0.757 3.408
2000 621,820.460 4.117 1.594 0.876 4.371
2001 690,551.642 4.926 1.413 0.848 3.898
2002 983,689.255 6.093 1.829 1.051 5.097
2003 1957210.067 10.890 2.776 1.685 6.465
2004 296,8701.161 16.084 3.581 2.350 7.944
2005 527,8385.658 30.060 5.348 4.264 11.562
2006 5601725.844 43.438 7.529 6.187 15.791
2007 664,6945.263 54.866 8.624 7.706 18.084
2008 1092,2095.713 66.015 10.286 10.181 20.732
2009 13712173.278 79.048 12.893 13.005 26.387
2010 18802871.775 99.347 16.435 18.487 34.666
2011 27144148.391 114.616 22.426 31.024 48.752
2012 3078,8302.103 121.153 23.723 32.655 53.300
2013 4659,6107.642 104.930 22.211 37.224 41.868
2014 5636,2173.278 118.145 24.248 39.820 43.792
2015 4843,4659.060 106.846 20.834 32.534 35.569
2016 6088,3347.545 121.666 23.764 35.146 39.508
2017 6914,8049.601 121.807 24.500 42.477 42.758

The sub-national-level RCI results are listed in columns 3 to 6 of Table 7. From the
perspective of time, the trends of RCI indexes in the four sub-national regions are consistent.
The RCI indexes decreased from 1997 to 1998, and maintained an upward trend from 1998
to 2012. From 2012 to 2017, the RCI indexes kept stable or fluctuated slightly. From the
perspective of region, during the sample period 1997–2017, the RCI index of the east region

http://www.stats.gov.cn/tjfw/tjzx/tjzxbd/201811/t20181110_1632622.html
http://www.stats.gov.cn/tjfw/tjzx/tjzxbd/201811/t20181110_1632622.html
http://www.stats.gov.cn/tjfw/tjzx/tjzxbd/201811/t20181110_1632622.html
http://www.stats.gov.cn/tjfw/tjzx/tjzxbd/201811/t20181110_1632622.html
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remained the highest among the four sub-national regions, followed by the northeast, then
the west, and the central region. The RCI index of the east region was relatively stable from
1997 to 2002, continuously rising from 2002 to 2012, and slightly fluctuating after 2012. The
RCI index of the northeast region kept increasing in 1997–2012, and declined slightly in
2012–2017. The RCI index of the central and west regions were always lower than that of
the east and northeast regions from 1997 to 2017. Before 2008, the RCI index of the central
region was slightly higher than that of the west region; after 2008, the RCI index of the
central region was relatively flat, while that of the west is always higher than the center
and kept rising to the same level as the northeast region in 2017.

The resulting RCI indexes from both national and sub-national levels are plotted
in Figure 1 with line curves. As can be seen from the figure, in general, the east region
has the largest regional carbon inequality, while the central region is the most spatially
carbon-equal region. The trend of the national RCI index is relatively similar to that of the
eastern region. All RCI indexes are relatively stable from 1997 to 2002, and then kept rising
from 2002 to 2012. After that, despite a slight drop in 2015, the national RCI index kept
rising until 2017. The RCI index of the east region exceeded 100 and was much higher than
the other three sub-national regions. The RCI index of the northeast and west were close,
both around 40, with a slightly decreasing trend in the northeast and a slightly increasing
trend in the west. The RCI index in the central was the lowest, at around 20, and the change
was relatively flat.
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Figure 1. The national and sub-national levels RCI indexes estimation results of original carbon
emission data for the nation and the east, central, west, and northeast four regions in China from
1997 to 2017. Refer to the primary axis (left side) for the sub-national level RCI scales. Refer to the
secondary axis (right side) for the national level RCI scale.

5.2. Ungrouped Dependence Estimation Results

In this section, we present the ungrouped dependence estimation results for: (1) the
overall dependence using copula functions and Kendall’s τ; and (2) the tail dependence
using TQCC.

5.2.1. Overall Dependence Estimation Results: Copula Functions

To detect whether or not there exists nonlinear dependence between the regional
carbon inequality and the corresponding carbon efficiency, we utilize Kendall’s τ which is a
copula-based correlation coefficient to measure the overall dependence. In this subsection,
the resulting RCI indexes results in Section 5.1.1 are used as the measure of regional carbon
inequality, and the regional carbon efficiency data generated by Ning et al. (2021) [54] is
used as the measure of carbon efficiency. Both of the data are panel data for 30 provinces in
China over the time span of 2007–2016.
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In this paper, we obtain the selected copula by calling the BiCopSelect function and
compute the corresponding value of Kendall’s τ of the selected copula by calling the Bi-
CopPar2Tau function. These two functions are both available in the R package VineCopula.
Table 8 lists the selected optimal copula estimation between carbon inequality and carbon
efficiency for each year from 2007 to 2016. The corresponding Kendall’s τ estimation results
and the p-values between carbon inequality and carbon efficiency for each year from 2007
to 2016 are reported in Table 9. We also plot the Kendall’s τ estimation results in Figure 2.

Table 8. The selected optimal copula estimation between RCI and carbon efficiency for each year
from 2007 to 2016.

Original 3-Year 4-Year 5-Year

2007 Survival BB7 Survival BB7 Survival BB7 Survival BB7
2008 Survival BB7 Survival BB7 Survival BB7 Survival BB7
2009 Survival BB7 Survival BB7 Survival BB7 Survival BB7
2010 Survival BB7 Survival BB7 Survival BB7 Survival Clayton
2011 Survival Clayton Survival Clayton Survival BB7 Joe
2012 Joe Joe Joe Joe
2013 Survival Clayton Survival Clayton Survival BB7 Survival Clayton
2014 Survival Clayton Survival Clayton Survival Clayton Survival Clayton
2015 Joe Joe Joe Joe
2016 Joe Joe Joe Joe

Table 9. The Kendall’s τ estimation between RCI and carbon efficiency for each year from
2007 to 2016.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

original τ 0.437 0.444 0.437 0.431 0.327 0.339 0.317 0.320 0.333 0.276
p-value 0.014 0.014 0.012 0.009 0.054 0.044 0.033 0.037 0.019 0.090

3-year τ 0.436 0.470 0.447 0.441 0.363 0.368 0.346 0.333 0.333 0.279
p-value 0.014 0.008 0.009 0.006 0.029 0.031 0.021 0.028 0.023 0.084

4-year τ 0.446 0.455 0.444 0.441 0.375 0.368 0.360 0.338 0.347 0.277
p-value 0.011 0.010 0.009 0.006 0.035 0.031 0.017 0.028 0.019 0.104

5-year τ 0.422 0.443 0.446 0.389 0.360 0.378 0.364 0.346 0.353 0.293
p-value 0.010 0.010 0.009 0.009 0.020 0.021 0.019 0.023 0.017 0.090
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Figure 2. The Kendall’s τ estimation between RCI and carbon efficiency based on the original
intra-provincial RCI estimation results and the 3-, 4-, 5-year rolling windows from 2007 to 2016.

As can be seen from Table 9 and Figure 2, the overall dependence (Kendall’s τ)
structures share a lot in common and have similar patterns under the 3-, 4-, 5-year rolling
windows and the non-rolling case, which demonstrates the robustness of our results. The
main findings of the overall dependence estimations are summarized as follows. On the
ond hand, according to Table 9, all Kendall’s τ are significantly positive, which means that
as the carbon efficiency goes up, the carbon emission tends to be more unequal within
a given area. From the economic perspective, this result is particularly worthy of our
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attention, because it evidences that there is a very strong (statistically significant) “trade-off”
between carbon efficiency and carbon inequality. Nevertheless, to achieve the economic
sustainability and contribute to carbon neutrality, we must deal with this “trade-off”, and
try to maintain carbon efficiency and regional carbon equality at the same time. Ideally, in
terms of carbon neutral aim, it is supposed that an increase in carbon efficiency comes with
less regional carbon inequality, that is, a negative value in Kendall’s τ. In this sense, regional
“grouping” and regional coordination might need to be discussed (see Section 5.3.2), based
on which possible policy implications can be offered (see Section 6). On the other hand,
however, as can be seen from Figure 2, almost all of Kendall’s τ values are decreasing
over time, suggesting that the positive correlation between the RCI values and regional
carbon efficiency generally weakens over time. This evidence may indicate that the above
“trade-off” between carbon efficiency and carbon equality, though does exist, is becoming
less “obtrusive” over time. In this regard, possible reasons are the utilization of clean
energy, the development of green innovations, and their implementation in both green and
non-green industries (Calza et al., 2017; Yuan et al., 2020; Lin et al., 2022) [69–71].

5.2.2. Tail Dependence Estimation: The TQCC Results

Based on the resulting RCI indexes and the carbon efficiency data, we compute the
TQCC of each pair by Equation (7) for further studying tail dependence relationships
between two variables. Theoretically, the larger the TQCC, the more severe the tail depen-
dence (Zhang et al., 2017) [64]. In this study, the random threshold is taken as the larger
one of each sequence’s upper 10%, 20%, and 30% quantiles.

Table 10 presents the TQCC estimation between regional carbon inequality and carbon
efficiency and the corresponding p-values when uq is equal to 0.9, 0.8, and 0.7, respectively.
Tables 11–13 report the TQCC results based on the rolling window period of 3, 4 and
5 years, respectively.

Table 10. The TQCC estimation between RCI (non-rolling window) and regional carbon efficiency
from 2007 to 2016 with uq = 0.9, 0.8 and 0.7.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

0.9 qun 0.334 0.365 0.346 0.328 0.251 0.276 0.283 0.239 0.304 0.315
p-value 0.000 0.000 0.000 0.001 0.005 0.002 0.002 0.006 0.001 0.001

0.8 qun 0.328 0.347 0.328 0.290 0.238 0.257 0.256 0.211 0.278 0.288
p-value 0.001 0.000 0.001 0.002 0.006 0.004 0.004 0.013 0.002 0.002

0.7 qun 0.328 0.344 0.328 0.289 0.238 0.257 0.256 0.211 0.276 0.265
p-value 0.001 0.000 0.001 0.002 0.006 0.004 0.004 0.013 0.002 0.003

Table 11. The TQCC estimation between RCI (based on a 3-year rolling window) and regional carbon
efficiency from 2007 to 2016 with uq = 0.9, 0.8 and 0.7.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

0.9 qun 0.338 0.363 0.367 0.341 0.323 0.306 0.308 0.271 0.277 0.311
p-value 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.003 0.002 0.001

0.8 qun 0.337 0.356 0.352 0.314 0.279 0.269 0.300 0.263 0.252 0.279
p-value 0.000 0.000 0.000 0.001 0.002 0.003 0.001 0.003 0.004 0.002

0.7 qun 0.337 0.355 0.352 0.313 0.279 0.269 0.300 0.263 0.252 0.257
p-value 0.000 0.000 0.000 0.001 0.002 0.003 0.001 0.003 0.004 0.004

Table 12. The TQCC estimation between carbon inequality (based on a 4-year rolling window) and
regional carbon efficiency from 2007 to 2016 with uq = 0.9, 0.8 and 0.7.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

0.9 qun 0.350 0.370 0.369 0.360 0.322 0.315 0.345 0.276 0.265 0.294
p-value 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.002 0.003 0.001

0.8 qun 0.350 0.366 0.358 0.338 0.276 0.274 0.327 0.274 0.253 0.259
p-value 0.000 0.000 0.000 0.000 0.002 0.002 0.001 0.002 0.004 0.004

0.7 qun 0.350 0.365 0.358 0.338 0.276 0.274 0.327 0.274 0.253 0.239
p-value 0.000 0.000 0.000 0.000 0.002 0.002 0.001 0.002 0.004 0.006
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Table 13. The TQCC estimation between RCI (based on a 5-year rolling window) and carbon efficiency
from 2007 to 2016 with uq = 0.9, 0.8 and 0.7.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

0.9 qun 0.341 0.363 0.357 0.354 0.315 0.334 0.340 0.310 0.294 0.312
p-value 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.001

0.8 qun 0.341 0.357 0.348 0.336 0.277 0.291 0.312 0.300 0.288 0.293
p-value 0.000 0.000 0.000 0.000 0.002 0.002 0.001 0.001 0.002 0.001

0.7 qun 0.341 0.357 0.348 0.336 0.277 0.291 0.312 0.300 0.288 0.262
p-value 0.000 0.000 0.000 0.000 0.002 0.002 0.001 0.001 0.002 0.003

Using 0.334 (the TQCC value for original data in 2007 at 0.9 quantile) as an example, it
means there is a 33.4% chance that given the carbon efficiency reaches an extremely high
level, the RCI index reaches its extremely high level at the same time. Other TQCC values
are interpreted similarly.

As can be seen from Tables 10–13, all the p-values of TQCC results are far less than
0.05, which suggests all the TQCC results are highly significant. It illustrates that extremely
spatially unequal carbon emissions also typically occur in areas with extremely high
carbon efficiency.

We also plot the TQCC measures in Figure 3, which provides evidence of the dynamic
tail dependence patterns between the RCI index and carbon efficiency. As can be seen
from panel (a) of Figure 3, the TQCC was relatively stable from 2007 to 2009. From 2009
to 2015, except for a slight increase in 2013, TQCC decreased as a whole. From 2015 to
2016, the TQCC increased slightly again. It indicates that the change of the tail dependence
probably reached empirical lower bounds which are approximately 0.28 (uq = 0.9) and
0.25 (uq = 0.8 and 0.7) in 2015.
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Figure 3. The TQCC estimation between RCI and regional carbon efficiency from 2007 to 2016 with
uq = 0.9, 0.8 and 0.7 based on: (a) TQCC for each year; (b) TQCC based on 3-year rolling window;
(c) TQCC based on 4-year rolling window; (d) TQCC based on 5-year rolling window. Note: The
figure displays the TQCC results based on the annual original data in panel (a) and the rolling
window of 3, 4, and 5 years in panels (b–d), respectively. In each panel, we use uq with 0.9, 0.8, and
0.7 quantiles to calculate the TQCC. The TQCC patterns are almost the same in all panels regardless
of the thresholds, which demonstrates the robustness of the results.

The robustness of the dynamic tail dependence results can be demonstrated by the
following two empirical facts: (1) the dynamic TQCCs have similar patterns under the
original data and 3-, 4-, and 5-year rolling windows; and (2) all TQCCs series have consistent
trends under various values of the threshold.
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The TQCC results provide empirical evidence for the existence of tail dependence
between carbon efficiency and regional carbon inequality. The significant positive TQCC
means that extremely higher efficiency for carbon emissions in a region is likely to come
with a higher variation of carbon emissions within that area. This result shows consistency
with the overall dependence results in Section 5.2.1. This provides further evidence for
the carbon efficiency and carbon equality “trade-off” in tail regions, which may not be an
“optimistic” situation. However, as the TQCCs in Figure 3 generally decrease in time, the
“pessimistic trade-off” is becoming less urgent, probably due to the same reasons as the
decreasing of the Kendall’s τ (see Section 5.2.1). The resulting fact, together with the overall
dependence results, inspire us to do further discussion and grouping study, which may
provide additional information for dealing with the efficiency-equality (E-E) “trade-off”
(see Section 5.3).

5.3. Grouped Dependence Estimations

The ungrouped dependence estimation results in Section 5.2 evidence of an efficiency-
equality (E-E) trade-off phenomenon, which means higher regional carbon efficiency tends
to come with larger carbon inequality. Motivated by these empirical facts, this section
aims to further investigate how we can alleviate the “E-E” conflict by grouping provincial
administrations based on some variables and/or benchmarks.

Regarding the “E-E” trade-off, a natural and beautiful vision is that we can have an
increase in carbon efficiency and a decrease in carbon inequality at the same time. In this
regard, measuring and calculating “the carbon inequality cost for carbon efficiency” is
crucial. In Section 5.3.1, we define a novel economic variable, which is termed “the carbon
inequality cost for carbon efficiency,” so as to evaluate the “economic impact” of the “E-E
trade-off” over regions, thereby making the economic grouping feasible and possible.

Meanwhile, in the literature, one of the major processes for carbon neutrality is
industrial upgrading (Sun et al., 2022) [72]. In this process, the ratio of the added value of
the tertiary industry to GDP is an important indicator of transformation (Xu et al., 2022;
Zhang et al., 2022) [73,74]. Motivated by these studies, we use industrial structure (the
proportion of the tertiary industry) as our second grouping variable (see Section 5.3.2).

In each subsection of this section, we group the 30 provincial administrative units into
5 groups. The grouping process is based on the idea which is to make the combination of
“strongest + weakest”, that is, the regions with the lowest values in a grouping variable (the
“E-E” cost, or the industrial structure) and the regions with the highest values are grouped
in a pair. This grouping strategy is in line with the “the strong lead the weak” idea. Detailed
rankings for the “E-E cost” and “industrial structure” are listed in Tables A13 and A14,
respectively. Overall dependence is re-investigated by using the copula method for each
grouping case. (Since TQCC can only generate non-negative values which measure the
upper tail dependence, but in this section, we hope to explore the correlation from the
lower tail direction, the TQCC estimation is omitted for grouped cases).

5.3.1. Grouped Dependence by “E-E Cost”

Motivated by the empirical findings in Section 5.2 which evidence an efficiency-
equality (E-E) trade-off in the sample period, this section proposes a novel economic
concept (variable) as the grouping criterion in this subsection for re-investigating the
dependence. The variable is called “the carbon inequality cost for carbon efficiency” (or for
short, the E-E cost), (“The carbon inequality cost for carbon efficiency” is the cost due to the
existence of E-E trade-off, therefore we term it as “E-E cost”). and it is defined as follows:

E-E Costi = ln

(
Inequalityi,2016

Inequalityi,2007

)
− ln

(
Efficiencyi,2016

Efficiencyi,2007

)
, (8)

where Inequalityi,2016 and Inequalityi,2007 represent the carbon inequality index of province
i in 2016 and 2007, respectively; and Efficiencyi,2016 and Efficiencyi,2007 represent the carbon
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efficiency of province i in 2016 and 2007, respectively. This construction is inspired by
the connotation “log-return” in empirical finance, which is commonly used in financial
literature as a measure of the change of a time series value from an initial time point to
an end time point. In this paper, the initial and the end time points are 2007 and 2016,
respectively. Consequently, the economic meaning of Equation (8) is essentially the gap
between the change of carbon inequality index and the change of carbon efficiency in the
region i over the whole sample period. Theoretically, the larger value in Equation (8), the
greater the “carbon inequality cost for carbon efficiency”. It is worth noting that a negative
value in E-E cost of the region i means an increase in carbon emission efficiency and an
increase in carbon equality can be achieved in the region i simultaneously. The E-E cost
results of 30 provincial administrative units in China are shown in Table A13.

Based on the “strongest + weakest” grouping strategy, we select 3 units from the
highest and another 3 units from the lowest according to the E-E cost values in turn
to form groups and eventually divide 30 provincial administrative units into 5 groups.
Group numbers 1–5 represent intra-group differences from the largest to the smallest.
Consequently, We re-investigate the overall dependence for each group using copula
functions and calculate the corresponding Kendall’s τ. The grouping results and grouped
Kendall’s τ are shown in Table 14.

Table 14. The grouping results according to the E-E cost, and Kendall’s τ estimation between RCI and
regional carbon efficiency for the six provinces in each group. Group numbers 1–5 represent intra-
group differences from the largest to the smallest. ∗∗∗ stands for statistical significance at 1% level.

Group 1 Group2 Group 3 Group 4 Group 5

Provinces

Yunnan Xinjiang Guangxi Shaanxi Liaoning
Sichuan Zhejiang Guizhou Jilin Gansu
Xinjiang Jiangxi Anhui InnerMongolia Guangdong
Chongqing Qinghai Henan Shandong Shanghai
Beijing Fujian Hainan Hebei Ningxia
Hubei Tianjin Heilongjiang Jiangsu Shanxi

Rank 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
28, 29, 30 25, 26, 27 22, 23, 24 19, 20, 21 16, 17, 18

Kendall’s τ 0.444 ∗∗∗ 0.670 ∗∗∗ −0.578 ∗∗∗ −0.117 0.506 ∗∗∗
p-value 1.366× 10−5 1.255× 10−13 1.548× 10−10 0.677 2.147× 10−8

According to Table 14, we may dig out the evidence for coordinating the “E-E” trade-
off and offering implications for carbon neutrality. We find that the Kendall’s τ estimation
of the third and fourth groups are negative, indicating that the higher carbon efficiency
comes with more balanced regional carbon emission in these groups. Even though the
dependence in Group 4 is insignificant, we should note that this at least indicates that
the “E-E” trade-off can be eliminated in areas of Group 4 by grouping via E-E cost. This
result means that by re-formulating the regional coordinating strategy according to certain
benchmarks (by the order of the proposed E-E cost in this case), both carbon equality and
carbon efficiency can be achieved in some regions simultaneously.

Based on the previous research, the above empirical result can be interpreted from the
following two aspects. First, regional economic cooperation and integration can decrease
carbon dioxide marginal abatement costs by providing the facility for the movement of
labor and capital (Xu and Voon, 2003; Daniel and DeJong, 2003; Kumar et al., 2014) [75–77],
thereby improving the efficiency of energy utilization and energy management at the
economic level (even if their technical efficiency remains the same). Second, by “grouping”
and integrating areas, there would be positive network externalities on local production
and carbon emission technology (Wang and He, 2017; He et al., 2018) [78,79], both of which
are conducive to the improvement of carbon emission efficiency (positive effect on carbon
efficiency) and factor equalization (positive effect on carbon equality).

This empirical evidence provides us with at least three inspirations: (1) the regional
economic restructuring planning according to some variables with important economic
connotations is an important idea to reconcile the “efficiency–equality” trade-off and
achieve green development; (2) the E-E cost proposed in this paper and its economic
connotation can be used as a reference in the process of broader emission reduction and
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carbon neutrality policies; (3) more reference variables (such as industrial structure which
would be discussed in Section 5.3.2) that may be used as the regional economic planning
can be proposed and related empirical research can be conducted.

5.3.2. Grouped Dependence by Industrial Structure

The empirical evidence in Section 5.3.1 implies the significance of the regional planning
and re-grouping strategy, which inspires us to look for more possibilities for solving
the E-E trade-off. According to recent studies, the increase of the tertiary industry’s
proportion in economy is an important feature of cleaner production, green economy
development, and carbon emission efficiency improvement (Sun et al., 2022; Xu et al., 2022;
Zhang et al., 2022) [72–74]. In this subsection, we use industrial structure as a grouping
variable to re-investigate the dependence of regional carbon efficiency and regional carbon
inequality within each grouped region.

The grouping variable industrial structure is an indicator of the proportion of the
tertiary industry in the regional economy, which is defined as:

Industrial structurei =
The added value of the tertiary industryi

GDPi
(9)

where i represents the ith province. The original data for computing industrial structure is
downloaded from the National Bureau of Statistics of China’s website (https://data.stats.
gov.cn/easyquery.htm?cn=E0103, (accessed on 1 January 2018)). The computed industrial
structure values for the 30 provincial administrative units are listed in Table A14.

The grouping method for industrial structure is analog to that in Section 5.3.1, that is,
the combination of the “strongest + weakest” pairs. By doing so, we divide 30 provincial
administrative units into 5 groups according to the rank of industrial structure values. The
grouping results according to the industrial structure and the overall dependence Kendall’s
τ for each group are shown in Table 15.

As can be seen from Table 15, the Kendall’s τ estimation of the second and third groups
are negative, suggesting that both carbon equality and carbon efficiency are achieved in
these grouping areas. In Group 3, the negative dependence is insignificant, which means
the “win-win” result may not be that strong. However, the insignificance can still imply
that the dilemma of “E-E trade-off” can be solved in the areas in Group 3. This empirical
result is in line with the evidence provided by Sun et al. (2022), Xu et al. (2022), and
Zhang et al. (2022) [72–74] who believe that the upgrading of industrial structure is an im-
portant way to improve regional carbon emission efficiency and energy efficiency, and has
very little spatial and/or industrial negative externalities. In the context of this subsection,
the specific embodiment of negative spatial externality is that the improvement of carbon
emission efficiency may lead to an increase in carbon emission inequality. Obviously, after
using industrial structure variables for regional grouping, the negative externalities in some
regions (Groups 2 and 3) disappeared, and even some regions (Group 2) saw evidence of
positive environmental externalities.

The empirical results in this subsection once again confirm the necessity of the regional
economic planning in alleviating the contradiction between the E-E trade-off of carbon
emissions and its important role in achieving carbon neutrality. It is worth mentioning that
in both grouping studies using industrial structure in this subsection and using E-E cost
in Section 5.3.1, the regions that show the “good result”, that is, the positive dependence
between the RCI and carbon efficiency disappears, only exists in the “middle” of the
grouping list (i.e., Group 2, 3, and/or 4). Does this mean that the ability or the “power” of
solving “E-E trade-off” by using regional economic regrouping strategies is only applicable
to the situations where the differences within the group are not particularly small or
large? The authors believe that, however, based on the evidence in this article and the
existing literature, we cannot yet draw this conclusion. This is because we currently have
insufficient grouping variables for computing copula-based grouping dependence. There
are possibilities that the above results are just special cases of the grouping variables

https://data.stats.gov.cn/easyquery.htm?cn=E0103
https://data.stats.gov.cn/easyquery.htm?cn=E0103
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E-E cost and industrial structure using the sample data in this paper. In the future, it
would be interesting and of both academic and practical significance to investigate if the
“middle is good” phenomenon still exists in cases using other grouping variables or/and
other datasets.

Table 15. The grouping results according to the industrial structure, and Kendall’s τ estimation
between carbon inequality and carbon efficiency for the six provinces in each group. Group numbers
1–5 represent intra-group differences from the largest to the smallest. ∗∗∗ stands for statistical
significance at 1% level. ∗∗ stands for statistical significance at 5% level.

Group 1 Group 2 Group 3 Group 4 Group 5

Provinces

Henan InnerMongolia Shandong Tianjin Fujian
Qinghai Shanxi Hebei Jilin Liaoning
Shaanxi Jiangxi Anhui Jiangsu Chongqing
Shanghai Heilongjiang Hunan Sichuan Zhejiang
Hainan Yunnan Xinjiang Hubei Ningxia
Beijing Guizhou Gansu Guangxi Guangdong

Rank 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
28, 29, 30 25, 26, 27 22, 23, 24 19, 20, 21 16, 17, 18

Kendall’s τ 0.438 ∗∗∗ −0.378 ∗∗∗ −0.194 0.551 ∗∗∗ 0.244 ∗∗
p-value 1.720× 10−6 2.645× 10−4 0.409 2.645× 4.196−9 0.014

6. Conclusions, Implications, and Future Research Directions
6.1. Main Findings

This paper proposes a novel regional carbon emission inequality (RCI) index based on
the EGB2 distribution. Using the proposed RCI index and based on China’s county-level
panel data, the carbon emission inequality of China is measured at three levels: intra-
provincial, sub-national, and national. Based on the resulting RCI indexes, the dependence
between regional carbon efficiency and carbon inequality is investigated by using copula
functions and TQCC. The major findings of our study are as follows. First, the proposed
regional carbon inequality index suggests that Shanghai, Tianjin, and Inner Mongolia
have the worst carbon inequalities (i.e., the highest values in RCI indexes); while Hainan,
Qinghai, and Jiangxi are the three most carbon-equal provinces (i.e., with the lowest RCI
values). The rank of the regional distribution of carbon emission inequality has no obvious
relationship with the geographical distribution of each province. Second, an interesting
divergence phenomenon in RCI values can be found in municipalities over the past decade.
Third, from a national-level perspective, the inter-provincial carbon emission inequality is
much greater than that at the intra-provincial level. From the sub-national-level perspective,
the east region has the highest degree of carbon emission inequality among the four sub-
national-level regions, and is much higher than the other three sub-national-level regions,
followed by the northeast region; and the central region is relatively the most balanced one.
Fourth, both the overall and tail dependence between the regional carbon efficiency and
carbon inequality are significantly negative for all ungrouped cases, suggesting that there
is a so-called “efficiency-equality (E-E) trade-off” in each provincial administrative unit,
which means the higher carbon efficiency generally come with higher carbon inequality
within a province. Finally, regarding the so-called “E-E trade-off”, this paper also proposes
a novel concept, the efficiency–equality (E-E) cost, which can be used as a grouping variable
for regional economic planning and coordination. The grouped results show that by re-
grouping provincial units via the proposed variable E-E cost and industrial structure, some
of the “middle groups” (Group 2, 3, and 4) display negative Kendall’s τ values, which
means that both carbon equality and carbon efficiency can be achieved in some of the
areas simultaneously, thereby solving the “E-E trade-off” problem. This result also implies
the necessity of the regional coordinating strategy and thus may offer some important
implications for policy-makers.
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6.2. Policy Implications

Regarding the above empirical findings, especially the notable difference between the
grouped and ungrouped results, the following policy implications can be offered.

First, the regional economic planning and coordination are important policy tools
for solving dilemmas regarding the welfare issues of the environmental problems. In this
paper, the grouping strategy is used to solve the “efficiency-equality” trade-off. Essen-
tially, this is one of the concrete manifestations of the economic topic of the relationship
between efficiency and fairness in the environmental field. Regarding this topic, the authors
believe that the ideas of “grouping” and “the strong lead the weak” can be applied in
various dimensions (not just dealing with environmental efficiency and equality). For
example, establishing a cross-regional carbon emission indicator trading market to op-
timize the allocation of carbon emission rights. Meanwhile, the government can lead
“cleaner-production-tech” leasing projects between the “strongest” and “weakest” regions,
and provide the enterprises in the “strongest” regions with economic support such as
tax reduction.

Second, the E-E cost proposed in this paper and its economic connotation can be
generalized as references for regional coordination in wider realms, such as the policy-
making process regarding cleaner production, emission reduction, and carbon neutrality.
In fact, using the “difference of logarithmic rate of return” construction, the police-makers
can generalize many carbon emission economic evaluation indicators (variables). As long
as the proposed indicator can be computed by “changes in environmental cost” mines
“changes in environmental benefit”, it can be used in the evaluation of environmental
policy implementation.

Last but not least, more reference variables can be investigated and used as a reference
for regional economic coordination. In Section 5.3, we use E-E cost, and industrial structure
as grouping variables. Admittedly, however, we cannot be sure that these two grouping
variables are the “optimal” grouping variables - in fact, due to the fact that environmental
and economic variable distributions change over time and vary by region (i.e., the spatial
fixed effect, see Lin et al. (2022) [71]), there may not be an “optimal” grouping variable
for all regions at any time. In practice, in order to reduce the cost of implementation,
the central government can coordinate with local governments, and take the “greatest
common divisor” of the resources urgently needed by each region in demand for cleaner
production for cross-regional coordination, so as to propose a “second-best” but feasible
grouping variable.

6.3. Limitations and Future Research

Regarding the empirical findings, there might be some interesting stuff left for future
research.

First, the RCI index proposed in this paper is an “absolute” measure of carbon inequal-
ity at the spatial level. Nevertheless, the possible causes of inequality have not been studied.
In the future, further studies can utilize the proposed RCI index as a dependent variable,
and its driven factors can be further investigated. In this regard, spatial econometrics is a
suitable methodology.

Second, in Section 5.1.1, we find an interesting divergence of RCI indexes in munic-
ipalities. Regarding this result, one might be curious about whether this phenomenon
could be explained by the industrial structural changes and the differences in the functional
positioning of municipalities over the past few years. This can be left as an interesting topic
for urban economic study.

Third, the grouping dependence results in Section 5.3 exhibit a “middle is good” (the
“E-E trade-off” is only solved in groups with moderate within group variation, that is,
Group 2, 3, or/and 4) phenomenon in each case. It would be interesting to figure out if this
phenomenon still exists by using other grouping variables and/or other datasets.

Fourth, whereas our empirical findings provide evidence for the existence of “E-E
trade-off”, its economic mechanism is not mentioned. Actually, there can be multi-factors
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driving this phenomenon, and thus the in-depth economic causality is supposed to be
further discussed both theoretically and empirically.

Fifth, considering the panel data structure of the carbon emission data, we use the
static EGB2 distribution for the fitting. That is, each region (no matter for provincial,
sub-national, or national) is fitted year by year. However, this is just the first step for
a related study. Recently, the dynamic EGB2 model (Caivano and Harvey, 2014) [80]
and the dynamic time series model of other asymmetric distributions such as dynamic
Weibull (Deng et al., 2020) [48] have been proposed by econometric scholars. These novel
methodologies may be conducive to further study of related topics based on the proposed
RCI index and the research framework of this paper.

Sixth, due to the lack of enough (more than 5 years) most recent county-level panel
data, in this paper, we are not able to conduct the research based on the latest carbon
emission information. There are possibilities that the recent carbon emissions in China
might be slightly different from that before the year 2020. (In the year 2020, China pledged
to be carbon neutral by 2060, thereby leading to the introduction of many policies for
supporting Chinese green industries and green innovations). However, based on existing
theories, we cannot yet conclusively say whether the dependence results today are higher
or lower than the dependence estimates in the sample period of this paper. There is even a
possibility that the dependencies before and after 2020 are not significantly different, even if
green innovations and green industries are indeed supported. Thus, this comparable study
can be left for future study when enough data (at least 5 years) is released. Regarding this
issue, many contemporary econometric methods such as segmented multivariate regression
(Liu et al., 1997) [81], max-linear regression (Cui et al., 2021) [82], and multiple time periods
Difference-in-Differences (DID) approach (Callaway and Sant’anna, 2021) [83] can be used.

Finally, it would be of both academic and practical significance to investigate what
other possible grouping variables can be used for regional coordination. As discussed
above, there may not be an “optimal” grouping variable for all regions. Therefore, it is of
great significance to find grouping variables that are applicable to different economies in
practice. Specifically, possible attention can be paid on green innovation and its regional
differences (Yang et al., 2020; Zhang et al., 2022; Qing et al., 2022) [84–86]. In this regard,
the proposed RCI index and the framework used in this paper would be helpful for doing
more work.
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Appendix A

Table A1. The carbon emission efficiency data of 30 provincial-level administrative regions in
China (excluding Taiwan, Hong Kong, Macao, and Tibet) from 2007 to 2016, which is given by
Ning et al. (2021) [54].

Province 2008 2009 2010 2011 2012 2013 2014 2015 2016

Beijing 1.140 1.147 1.159 1.217 1.19 1.201 1.199 1.199 1.216
Tianjin 0.658 0.665 0.662 0.658 0.672 0.736 0.71 0.741 0.808
Hebei 0.386 0.376 0.381 0.375 0.377 0.365 0.362 0.361 0.364
Shanxi 0.347 0.325 0.327 0.327 0.326 0.319 0.298 0.299 0.297
Inner Mongolia 0.353 0.366 0.373 0.368 0.362 0.375 0.366 0.371 0.376
Liaoning 0.42 0.42 0.427 0.425 0.428 0.428 0.418 0.421 0.404
Jilin 0.371 0.376 0.38 0.381 0.4 0.398 0.394 0.4 0.408
Heilongjiang 0.466 0.456 0.456 0.45 0.449 0.443 0.434 0.421 0.421
Shanghai 1.066 1.059 1.062 1.073 1.085 1.026 1.035 1.042 1.052
Jiangsu 0.617 0.619 0.618 0.602 0.616 0.603 0.613 0.619 0.627
Zhejiang 0.638 0.625 0.628 0.605 0.621 0.603 0.608 0.607 0.611
Anhui 0.419 0.416 0.427 0.422 0.427 0.409 0.407 0.404 0.407
Fujian 0.594 0.575 0.581 0.545 0.561 0.549 0.539 0.544 0.559
Jiangxi 0.492 0.49 0.488 0.475 0.488 0.468 0.47 0.467 0.473
Shandong 0.474 0.473 0.472 0.489 0.494 0.485 0.484 0.479 0.48
Henan 0.384 0.378 0.394 0.382 0.39 0.373 0.367 0.365 0.37
Hubei 0.418 0.42 0.422 0.416 0.422 0.438 0.438 0.44 0.441
Hunan 0.448 0.447 0.446 0.435 0.445 0.453 0.453 0.453 0.455
Guangdong 1.101 1.091 1.088 1.081 1.07 1.056 1.04 1.033 1.027
Guangxi 0.455 0.442 0.421 0.396 0.397 0.381 0.378 0.379 0.373
Hainan 0.557 0.534 0.537 0.483 0.463 0.43 0.41 0.395 0.396
Chongqing 0.445 0.451 0.464 0.467 0.489 0.493 0.494 0.502 0.503
Sichuan 0.419 0.415 0.423 0.435 0.448 0.445 0.445 0.454 0.464
Guizhou 0.286 0.292 0.295 0.309 0.311 0.3 0.293 0.287 0.284
Yunnan 0.329 0.326 0.321 0.314 0.314 0.313 0.304 0.304 1.015
Shaanxi 0.389 0.387 0.391 0.389 0.392 0.381 0.377 0.395 0.38
Gansu 0.335 0.337 0.333 0.328 0.335 0.327 0.321 0.318 0.319
Qinghai 0.283 0.277 0.283 0.278 0.272 0.257 0.247 0.238 0.233
Ningxia 0.255 0.245 0.244 0.237 0.233 0.235 0.226 0.214 0.209
Xinjiang 0.357 0.341 0.335 0.324 0.312 0.295 0.283 0.273 0.266

Table A2. The intra-provincial carbon inequality estimation results of original carbon emission data
for 30 provinces in China from 1997 to 2003.

Province 1997 1998 1999 2000 2001 2002 2003

Shanghai 421.651 362.648 447.841 484.132 384.913 545.903 852.825
Tianjin 47.554 45.513 45.372 57.364 52.582 61.923 102.047
Inner Mongolia 2.887 0.921 1.398 1.640 2.163 2.160 3.720
Jiangsu 1.469 0.974 1.155 1.328 1.344 2.673 6.062
Liaoning 4.841 4.338 4.956 6.280 5.823 7.326 11.122
Zhejiang 1.230 1.059 1.292 1.685 1.928 4.271 7.376
Guangdong 3.469 3.051 4.360 5.425 5.106 6.680 11.181
Beijing 17.557 18.037 18.494 22.769 21.222 28.605 41.311
Xinjiang 0.361 0.242 0.370 0.358 0.327 0.442 0.701
Guizhou 2.409 2.067 2.256 2.695 2.348 3.008 4.653
Chongqing 9.407 7.636 6.236 6.347 4.582 3.880 5.524
Hebei 1.390 1.070 1.367 1.588 1.596 1.994 3.099
Hubei 3.472 3.191 3.682 4.369 3.951 5.208 6.834
Ningxia 0.071 0.057 0.060 0.065 −0.126 −0.201 −0.524
Shaanxi 0.546 0.443 0.510 0.626 0.582 0.727 1.291
Fujian 0.738 0.626 0.790 0.957 0.882 1.139 1.767
Shanxi 3.163 2.766 3.066 3.613 3.217 4.044 5.912
Hunan 0.424 0.351 0.425 0.491 0.434 0.539 0.863
Jilin 1.477 1.324 1.439 1.733 1.460 1.741 2.592
Shandong 1.551 0.073 0.402 0.191 0.600 0.830 1.111
Guangxi 0.306 0.212 0.231 0.307 0.275 0.359 0.565
Gansu 0.456 0.341 0.487 0.526 0.531 0.625 0.914
Anhui 0.263 0.231 0.259 0.303 0.266 0.354 0.539
Henan 0.437 0.347 0.393 0.454 0.411 0.534 0.840
Sichuan 0.400 0.314 0.416 0.531 0.503 0.642 1.146
Yunnan 0.277 0.261 0.271 0.333 0.330 0.422 0.653
Heilongjiang 0.500 0.503 0.586 0.812 0.723 1.022 1.587
Jiangxi 0.233 0.194 0.205 0.236 0.207 0.268 0.430
Qinghai 0.170 0.146 0.201 0.175 0.144 0.169 0.210
Hainan 0.271 0.261 0.112 0.089 0.082 0.087 0.145
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Table A3. The intra-provincial carbon inequality estimation results of original carbon emission data
for 30 provinces in China from 2004 to 2010.

Province 2004 2005 2006 2007 2008 2009 2010

Shanghai 1100.206 1488.187 2176.122 2594.256 2363.514 3270.809 3530.806
Tianjin 130.645 202.325 283.584 339.456 406.155 543.472 702.186
Inner Mongolia 6.468 17.807 27.422 40.083 59.582 68.191 103.625
Jiangsu 9.238 17.032 28.931 40.568 54.359 64.880 86.337
Liaoning 14.453 21.701 30.227 36.761 43.588 55.833 71.644
Zhejiang 9.983 15.897 28.418 38.136 45.713 57.360 72.990
Guangdong 14.924 21.285 29.789 36.379 40.905 50.091 60.615
Beijing 57.138 77.174 114.239 122.591 140.359 179.411 212.924
Xinjiang 1.007 2.083 3.199 4.455 6.457 8.193 13.210
Guizhou 6.348 8.610 12.297 12.279 15.535 20.805 25.608
Chongqing 7.425 11.580 18.839 21.637 23.876 31.596 36.291
Hebei 4.278 7.267 10.074 12.727 16.119 19.249 25.594
Hubei 9.240 13.883 16.497 16.896 18.935 24.431 29.593
Ningxia −0.714 0.163 0.245 0.297 0.612 2.073 4.717
Shaanxi 1.754 3.077 4.798 5.955 7.462 10.525 14.484
Fujian 2.354 3.792 5.521 6.646 8.196 10.671 14.545
Shanxi 7.593 10.980 14.492 15.952 18.108 22.603 27.305
Hunan 1.169 1.867 2.672 3.203 4.065 5.289 7.435
Jilin 3.269 4.751 6.362 6.630 7.521 10.287 13.518
Shandong 2.313 6.035 8.609 10.865 13.399 15.013 17.638
Guangxi 0.810 1.253 1.760 2.254 2.611 3.513 5.229
Gansu 1.058 1.833 2.529 2.943 3.706 4.863 6.182
Anhui 0.683 1.035 1.584 2.252 2.898 3.772 5.505
Henan 1.162 1.980 3.219 3.905 4.834 5.943 7.772
Sichuan 1.367 2.399 3.053 3.696 4.442 5.779 7.681
Yunnan 0.895 1.365 1.934 2.628 3.059 3.748 5.340
Heilongjiang 2.003 2.794 4.157 4.512 5.662 7.131 8.187
Jiangxi 0.581 0.877 1.208 1.362 1.637 2.142 2.800
Qinghai 0.219 0.292 0.469 0.371 0.371 0.516 0.528
Hainan 0.421 0.509 0.630 0.750 0.962 1.019 1.185

Table A4. The intra-provincial carbon inequality estimation results of original carbon emission data
based on a 3-year rolling window for 30 provinces in China from 1999 to 2004.

Province 1999 2000 2001 2002 2003 2004

Shanghai 379.413 413.228 473.436 495.605 567.296 819.374
Tianjin 47.862 43.713 53.022 59.991 75.877 102.549
Inner Mongolia 1.655 1.295 1.723 1.947 2.669 3.997
Jiangsu 1.218 1.192 1.283 1.795 3.463 6.221
Liaoning 4.711 5.182 5.682 6.472 8.054 10.924
Guangdong 3.631 4.272 4.960 5.487 7.556 10.638
Zhejiang 1.218 1.433 1.653 2.604 4.983 7.913
Beijing 18.072 22.148 22.095 25.072 34.124 44.776
Xinjiang 0.305 0.327 0.343 0.447 0.509 0.706
Guizhou 2.250 2.352 2.382 2.548 3.159 4.284
Chongqing 8.330 6.763 5.620 4.832 4.841 5.751
Hebei 1.280 1.346 1.518 1.728 2.239 3.136
Hubei 3.555 3.775 4.202 4.336 5.042 6.892
Ningxia 0.061 0.059 0.059 0.057 −0.170 0.078
Shaanxi 0.504 0.526 0.579 0.654 0.837 1.177
Shanxi 3.001 3.155 3.300 3.632 4.417 5.889
Shandong 1.536 0.333 0.665 0.792 1.263 2.380
Fujian 0.698 0.766 0.869 0.981 1.230 1.712
Hunan 0.398 0.420 0.450 0.488 0.605 0.847
Jilin 1.416 1.512 1.551 1.655 2.015 2.641
Heilongjiang 0.528 0.624 0.702 0.844 1.075 1.525
Guangxi 0.230 0.265 0.286 0.331 0.394 0.538
Henan 0.394 0.405 0.421 0.473 0.638 0.897
Hainan 0.282 0.112 0.093 0.087 0.099 0.138
Gansu 0.457 0.505 0.481 0.535 0.579 0.812
Sichuan 0.411 0.454 0.470 0.580 0.719 1.081
Anhui 0.252 0.269 0.278 0.314 0.427 0.579
Yunnan 0.252 0.327 0.323 0.377 0.466 0.621
Jiangxi 0.212 0.213 0.216 0.237 0.303 0.427
Qinghai 0.213 0.190 0.215 0.180 0.192 0.200
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Table A5. The intra-provincial carbon inequality estimation results of original carbon emission data
based on a 3-year rolling window for 30 provinces in China from 2005 to 2010.

Province 2005 2006 2007 2008 2009 2010

Shanghai 1116.471 1597.669 2040.841 2512.865 2708.537 3255.931
Tianjin 143.760 208.832 272.116 367.874 420.792 543.451
Inner Mongolia 8.871 16.878 28.028 42.511 56.176 76.916
Jiangsu 11.279 19.221 29.356 41.631 53.647 69.396
Liaoning 15.641 21.920 29.374 36.720 45.233 56.795
Guangdong 15.386 21.438 28.804 35.636 41.263 49.287
Zhejiang 11.570 18.783 27.985 37.742 47.433 59.352
Beijing 61.440 84.084 106.861 126.661 132.961 179.326
Xinjiang 1.190 1.970 3.109 4.538 6.261 9.018
Guizhou 6.366 8.688 10.012 13.612 16.303 21.601
Chongqing 8.246 12.551 17.203 21.447 25.793 30.750
Hebei 4.914 7.273 10.063 13.025 16.072 20.385
Hubei 10.060 13.659 17.323 17.198 20.083 24.382
Ningxia −0.185 0.170 0.233 0.318 1.340 3.390
Shaanxi 1.868 2.743 4.519 6.135 8.176 11.036
Shanxi 8.232 11.190 13.936 16.252 19.002 22.788
Shandong 4.665 10.268 14.225 18.334 21.735 25.755
Fujian 2.560 3.734 5.215 6.748 8.450 11.094
Hunan 1.286 1.879 2.570 3.312 4.170 5.557
Jilin 3.651 4.969 6.019 6.898 8.297 10.688
Heilongjiang 2.049 2.950 2.993 4.832 5.389 6.702
Guangxi 0.808 1.219 1.711 2.237 2.865 3.765
Henan 1.416 2.287 3.145 4.055 4.990 6.342
Hainan 0.401 0.523 0.616 0.609 0.926 1.200
Gansu 1.173 1.939 2.474 3.145 3.848 5.023
Sichuan 1.513 2.270 3.030 3.681 4.562 5.810
Anhui 0.833 1.223 1.689 2.274 3.060 4.201
Yunnan 0.970 1.394 1.899 2.255 3.046 3.881
Jiangxi 0.628 0.892 1.155 1.393 1.694 2.194
Qinghai 0.239 0.308 0.371 0.334 0.436 0.493

Table A6. The intra-provincial carbon inequality estimation results of original carbon emission data
based on a 3-year rolling window for 30 provinces in China from 2011 to 2017.

Province 2011 2012 2013 2014 2015 2016 2017

Shanghai 3615.487 3658.573 2371.686 2946.888 2293.422 2454.046 2342.263
Tianjin 733.192 916.721 1082.821 1125.255 1062.452 1043.192 1090.298
Inner Mongolia 115.032 152.632 179.326 182.744 180.803 181.647 181.165
Jiangsu 94.202 114.250 124.765 126.486 121.996 120.688 116.756
Liaoning 73.797 90.167 99.700 102.259 96.338 95.545 92.874
Guangdong 61.427 70.159 74.692 77.018 78.426 80.723 81.256
Zhejiang 70.004 78.251 76.000 72.010 65.424 69.379 79.129
Beijing 182.342 177.607 137.753 113.043 85.000 87.755 78.603
Xinjiang 16.529 24.206 36.244 43.595 51.409 48.087 50.843
Guizhou 27.322 33.078 38.162 41.139 40.427 39.949 40.796
Chongqing 36.071 39.361 40.097 41.091 38.669 38.766 39.409
Hebei 27.890 34.398 38.244 39.167 38.451 39.102 38.808
Hubei 29.995 34.253 35.662 36.099 33.888 34.086 33.807
Ningxia 18.371 19.172 21.835 25.180 23.076 21.984 29.956
Shaanxi 15.003 23.536 28.728 28.647 28.135 26.855 27.940
Shanxi 27.990 31.922 33.209 32.747 29.950 28.633 27.290
Shandong 28.871 31.286 30.047 28.146 15.721 26.287 26.366
Fujian 16.402 21.830 25.118 28.252 27.286 26.373 23.068
Hunan 8.592 11.759 14.999 16.762 17.118 17.182 17.794
Jilin 13.264 15.165 15.439 15.831 15.282 15.923 17.108
Heilongjiang 6.965 7.426 8.092 10.753 12.922 13.519 11.977
Guangxi 5.648 7.590 9.865 10.826 11.046 10.941 11.556
Henan 8.968 11.038 12.321 12.492 11.712 11.442 10.992
Hainan 2.141 2.725 5.150 6.216 7.242 7.845 10.943
Gansu 7.353 9.591 11.207 11.284 11.058 10.489 10.406
Sichuan 7.777 9.705 10.722 11.107 10.513 10.355 10.203
Anhui 6.054 7.573 8.508 9.235 9.251 9.815 10.179
Yunnan 5.456 6.710 8.019 8.731 9.683 8.512 8.512
Jiangxi 3.098 3.896 4.907 5.671 5.956 5.966 6.465
Qinghai 0.865 1.322 2.314 2.825 3.204 2.959 3.864
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Table A7. The intra-provincial carbon inequality estimation results of original carbon emission data
based on a 4-year rolling window for 30 provinces in China from 2000 to 2005.

Province 2000 2001 2002 2003 2004 2005

Shanghai 413.364 422.049 368.588 562.919 659.945 811.119
Tianjin 50.726 50.410 61.251 71.044 68.996 123.649
Inner Mongolia 1.629 1.495 1.858 2.501 3.502 6.963
Jiangsu 1.260 1.238 1.647 2.934 5.104 9.496
Liaoning 5.098 5.340 6.084 7.594 9.605 13.492
Beijing 21.040 18.932 24.088 29.995 37.432 53.364
Guangdong 4.081 4.484 5.384 7.004 9.313 13.311
Zhejiang 1.390 1.567 2.291 4.132 6.787 10.624
Xinjiang 0.318 0.341 0.375 0.480 0.628 0.978
Guizhou 2.367 2.342 2.570 3.106 3.840 5.339
Chongqing 8.524 5.999 5.132 5.164 5.640 7.328
Hebei 1.432 1.483 1.724 2.165 2.857 4.341
Hubei 3.705 3.894 4.054 4.861 5.851 8.216
Ningxia 0.060 −0.065 0.056 0.062 -0.129 0.099
Shanxi 3.160 3.172 3.495 4.221 5.252 7.244
Shaanxi 0.523 0.541 0.619 0.771 1.018 1.541
Fujian 0.754 0.789 0.928 1.158 1.479 2.146
Jilin 1.504 1.492 1.609 1.951 2.429 3.320
Hunan 0.421 0.424 0.473 0.576 0.737 1.083
Shandong 1.048 0.552 0.717 1.121 2.070 5.569
Heilongjiang 0.591 0.647 0.772 1.004 1.291 1.840
Guangxi 0.255 0.271 0.299 0.387 0.469 0.681
Henan 0.413 0.407 0.454 0.598 0.819 1.274
Gansu 0.458 0.420 0.503 0.641 0.759 1.124
Sichuan 0.469 0.476 0.580 0.697 0.890 1.342
Anhui 0.268 0.268 0.300 0.399 0.542 0.792
Hainan 0.129 0.103 0.092 0.097 0.117 0.399
Yunnan 0.292 0.298 0.361 0.491 0.548 0.800
Jiangxi 0.219 0.212 0.230 0.286 0.373 0.540
Qinghai 0.187 0.180 0.160 0.231 0.219 0.210

Table A8. The intra-provincial carbon inequality estimation results of original carbon emission data
based on a 4-year rolling window for 30 provinces in China from 2006 to 2011.

Province 2006 2007 2008 2009 2010 2011

Shanghai 1367.674 1720.858 2104.329 2616.477 3017.794 2941.328
Tianjin 164.620 236.998 303.177 387.372 429.950 637.009
Inner Mongolia 13.133 22.415 35.929 49.533 67.797 100.871
Jiangsu 16.387 25.341 36.041 47.911 62.690 85.445
Liaoning 19.089 25.432 32.746 41.260 51.545 65.895
Beijing 66.591 95.383 113.547 137.997 139.820 162.070
Guangdong 18.977 25.212 31.865 39.172 46.821 56.132
Zhejiang 16.309 24.286 32.809 43.177 54.537 64.987
Xinjiang 1.586 2.459 3.827 5.351 7.706 13.621
Guizhou 7.407 9.719 12.861 14.864 18.081 24.688
Chongqing 10.808 14.730 18.858 24.058 28.589 33.234
Hebei 6.483 9.041 12.174 15.255 19.233 25.003
Hubei 11.851 15.442 16.838 19.018 22.545 27.328
Ningxia 0.227 0.306 0.541 1.293 3.223 16.606
Shanxi 9.953 12.522 15.076 17.908 21.139 25.656
Shaanxi 2.539 3.613 5.403 7.077 9.569 14.284
Fujian 3.179 4.366 5.892 7.658 9.890 14.118
Jilin 4.511 5.877 7.231 8.982 9.840 12.134
Hunan 1.608 2.202 2.935 3.788 4.941 7.368
Shandong 7.105 12.479 16.498 20.126 23.958 16.535
Heilongjiang 2.594 3.345 3.968 5.232 6.025 6.439
Guangxi 1.029 1.428 1.951 2.549 3.343 4.839
Henan 2.018 2.833 3.674 4.632 5.882 8.152
Gansu 1.461 2.114 2.766 3.518 4.469 6.270
Sichuan 1.930 2.519 3.356 4.264 5.208 6.771
Anhui 1.140 1.555 2.043 2.744 3.819 5.474
Hainan 0.509 0.543 0.754 0.899 1.008 2.047
Yunnan 0.957 1.560 2.105 2.551 3.536 4.685
Jiangxi 0.775 1.019 1.270 1.571 1.967 2.735
Qinghai 0.253 0.348 0.313 0.398 0.507 0.595
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Table A9. The intra-provincial carbon inequality estimation results of original carbon emission data
based on a 4-year rolling window for 30 provinces in China from 2012 to 2017.

Province 2012 2013 2014 2015 2016 2017

Shanghai 3302.229 3470.679 3858.184 2754.650 2513.485 1908.051
Tianjin 830.881 980.868 1076.603 1219.724 1258.944 1137.842
Inner Mongolia 130.902 159.603 181.851 180.091 181.444 183.347
Jiangsu 104.232 117.131 125.599 123.236 121.554 119.548
Liaoning 81.156 92.228 100.465 98.406 96.283 95.609
Beijing 174.570 156.483 122.363 104.771 85.615 83.054
Guangdong 65.662 71.122 76.242 76.653 78.381 81.241
Zhejiang 72.412 74.952 73.312 69.704 69.559 74.746
Xinjiang 19.611 29.548 39.855 43.395 50.758 51.740
Guizhou 31.180 34.985 39.733 39.854 40.154 41.752
Chongqing 37.566 39.204 40.869 39.360 38.746 40.414
Hebei 30.868 35.316 38.872 38.558 38.786 39.286
Hubei 31.757 34.302 36.081 34.806 33.975 34.637
Ningxia 21.760 27.825 24.783 23.579 22.515 28.516
Shanxi 29.780 31.877 32.939 31.047 29.408 28.486
Shaanxi 19.658 24.975 29.331 27.343 27.560 26.674
Fujian 18.789 23.392 32.600 27.720 28.415 25.437
Jilin 16.280 17.644 18.567 18.399 18.424 18.721
Hunan 10.021 12.994 15.926 16.452 17.129 18.094
Shandong 29.832 17.861 17.321 16.617 16.071 15.965
Heilongjiang 6.862 8.127 9.340 11.149 14.572 12.390
Guangxi 6.489 8.591 10.426 10.552 10.998 11.746
Henan 10.105 11.424 12.432 11.878 11.694 11.324
Gansu 8.256 10.009 11.392 11.136 10.774 10.787
Sichuan 8.562 10.022 10.922 10.646 10.452 10.531
Anhui 6.890 7.964 8.889 9.112 9.600 10.171
Hainan 2.336 3.397 5.861 6.457 7.380 9.500
Yunnan 5.909 7.747 8.370 8.397 8.452 8.816
Jiangxi 3.478 4.417 5.330 5.590 5.943 6.510
Qinghai 1.047 2.012 2.092 2.581 3.112 3.363

Table A10. The intra-provincial carbon inequality estimation results of original carbon emission data
based on a 5-year rolling window for 30 provinces in China from 2001 to 2006.

Province 2001 2002 2003 2004 2005 2006

Shanghai 434.277 439.693 517.855 663.608 840.635 1138.644
Tianjin 50.810 54.661 65.616 80.899 110.847 152.144
Inner Mongolia 1.728 1.634 2.205 3.084 5.831 10.571
Jiangsu 1.283 1.551 2.598 4.357 8.074 14.270
Liaoning 5.240 5.725 7.045 8.903 11.870 16.592
Beijing 20.959 21.781 28.194 36.763 47.580 66.758
Guangdong 4.292 4.918 6.454 8.485 11.542 16.336
Zhejiang 1.512 2.130 3.600 5.797 9.461 15.092
Xinjiang 0.338 0.366 0.446 0.572 0.849 1.309
Guizhou 2.368 2.472 2.929 3.598 4.659 6.435
Chongqing 6.459 5.480 5.367 5.786 7.041 9.606
Hebei 1.405 1.530 1.935 2.522 3.687 5.430
Hubei 3.808 4.050 4.688 5.497 6.988 9.777
Shanxi 3.173 3.357 3.994 4.935 6.480 8.865
Ningxia −0.029 −0.100 −0.116 −0.094 0.148 0.477
Fujian 0.775 0.848 1.075 1.365 1.853 2.687
Shaanxi 0.513 0.564 0.719 0.924 1.292 2.016
Shandong 1.032 0.639 1.026 1.858 4.805 8.540
Hunan 0.425 0.448 0.546 0.687 0.941 1.371
Jilin 1.501 1.559 1.866 2.305 3.068 4.149
Heilongjiang 0.616 0.712 0.908 1.183 1.567 2.215
Guangxi 0.253 0.288 0.360 0.442 0.589 0.852
Henan 0.413 0.441 0.566 0.762 1.172 1.841
Gansu 0.485 0.472 0.584 0.726 1.005 1.333
Sichuan 0.453 0.480 0.634 0.817 1.158 1.636
Anhui 0.268 0.290 0.377 0.500 0.754 1.101
Yunnan 0.268 0.320 0.400 0.512 0.691 0.968
Hainan 0.111 0.101 0.100 0.111 0.362 0.440
Jiangxi 0.218 0.224 0.271 0.346 0.474 0.676
Qinghai 0.179 0.323 0.179 0.228 0.208 0.219
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Table A11. The intra-provincial carbon inequality estimation results of original carbon emission data
based on a 5-year rolling window for 30 provinces in China from 2007 to 2012.

Province 2007 2008 2009 2010 2011 2012

Shanghai 1707.895 1627.190 3401.818 2726.388 3030.769 3372.613
Tianjin 204.842 262.524 346.888 427.730 653.959 723.145
Inner Mongolia 18.188 29.775 42.939 60.469 88.528 116.548
Jiangsu 22.213 32.024 42.534 56.615 77.437 96.074
Liaoning 22.362 28.829 37.063 46.955 59.657 73.121
Beijing 85.792 104.687 127.315 165.212 159.747 169.449
Guangdong 22.213 28.253 35.382 43.300 52.085 60.525
Zhejiang 21.472 29.154 38.452 49.872 59.927 68.821
Xinjiang 2.016 3.102 4.568 6.631 11.394 16.589
Guizhou 8.592 10.842 13.616 17.957 22.455 26.915
Chongqing 12.819 16.550 21.461 26.685 31.107 35.117
Hebei 7.649 10.293 13.238 16.892 22.677 28.099
Hubei 13.435 17.046 18.196 21.220 25.240 29.438
Shanxi 11.339 13.814 16.705 19.935 23.857 27.647
Ningxia 0.600 0.991 1.403 3.063 15.564 22.565
Fujian 3.759 5.042 6.757 8.921 12.419 16.390
Shaanxi 2.711 4.332 5.972 8.424 12.685 16.992
Shandong 11.420 14.656 18.426 22.357 25.618 28.442
Hunan 1.915 2.562 3.384 4.470 6.463 8.717
Jilin 5.094 6.041 7.435 10.448 11.199 13.187
Heilongjiang 2.943 3.652 4.614 5.635 6.070 6.341
Guangxi 1.220 1.659 2.240 2.971 4.237 5.633
Henan 2.571 3.402 4.277 5.459 7.537 9.350
Gansu 1.835 2.426 3.141 4.059 5.509 7.149
Sichuan 2.245 2.909 3.482 4.743 6.088 7.822
Anhui 1.465 1.924 2.502 3.448 5.009 6.357
Yunnan 1.427 1.875 2.413 3.020 3.860 5.215
Hainan 0.566 0.655 0.779 0.919 1.601 2.202
Jiangxi 0.902 1.141 1.438 1.812 2.438 3.121
Qinghai 0.276 0.336 0.365 0.482 0.570 1.067

Table A12. The intra-provincial carbon inequality estimation results of original carbon emission data
based on a 5-year rolling window for 30 provinces in China from 2013 to 2017.

Province 2013 2014 2015 2016 2017

Shanghai 3600.303 3238.876 2901.954 2804.623 2826.936
Tianjin 819.709 1015.776 1000.079 1066.494 1153.142
Inner Mongolia 141.018 165.419 179.937 180.790 182.932
Jiangsu 109.204 119.581 123.162 122.583 120.431
Liaoning 84.467 94.425 97.785 97.964 96.247
Beijing 165.065 144.930 113.319 101.608 83.194
Guangdong 66.862 73.057 76.121 78.378 79.166
Zhejiang 71.148 72.920 72.067 71.984 70.690
Xinjiang 24.565 33.483 40.233 43.866 52.074
Guizhou 31.883 36.871 38.974 39.757 41.562
Chongqing 37.827 40.025 39.512 39.291 40.058
Hebei 32.376 36.395 38.439 38.817 38.961
Hubei 32.259 34.754 34.955 34.749 34.481
Shanxi 30.225 31.930 31.531 30.387 29.129
Ningxia 34.125 32.240 23.546 22.987 27.632
Fujian 20.585 24.606 26.814 26.758 27.600
Shaanxi 21.550 26.166 28.308 27.859 27.591
Shandong 29.162 29.236 28.204 27.366 26.153
Hunan 11.332 14.097 15.844 16.591 17.862
Jilin 14.307 15.339 15.512 15.834 16.574
Heilongjiang 7.902 9.109 9.913 11.754 12.490
Guangxi 7.467 9.315 10.273 10.602 11.645
Henan 10.663 11.723 11.905 11.819 11.581
Gansu 8.795 10.268 10.971 10.912 10.966
Sichuan 9.005 10.259 10.591 10.574 10.558
Anhui 7.363 8.393 8.847 9.392 9.923
Yunnan 6.786 7.674 8.107 8.305 8.818
Hainan 2.966 4.030 6.138 6.723 8.766
Jiangxi 3.991 4.860 5.329 5.654 6.379
Qinghai 1.344 2.227 2.217 2.800 3.957
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Table A13. The “E-E cost” rank of 30 provinces in China.

Province The E-E Cost Rank

Yunnan −0.355 1
Sichuan −0.326 2
Xinjiang 0.350 3
Zhejiang 0.497 4
Jiangxi 0.594 5
Hunan 0.694 6
Guangxi 0.790 7
Guizhou 0.850 8
Anhui 0.954 9
Shaanxi 0.978 10
Jilin 0.978 11
Inner Mongolia 1.011 12
Liaoning 1.062 13
Gansu 1.147 14
Guangdong 1.216 15
Shanghai 1.258 16
Ningxia 1.330 17
Shanxi 1.334 18
Shandong 1.354 19
Hebei 1.544 20
Jiangsu 1.548 21
Henan 1.562 22
Hainan 1.594 23
Heilongjiang 1.672 24
Qinghai 1.724 25
Fujian 1.754 26
Tianjin 1.932 27
Chongqing 2.229 28
Beijing 2.289 29
Hubei 4.169 30

Table A14. The industrial structure (the proportion of the tertiary industry) rank of 30 provinces
in China.

Province The Proportion of the Tertiary Industry Rank

Henan 0.539 1
Qinghai 0.538 2
Shaanxi 0.530 3
Inner Mongolia 0.522 4
Shanxi 0.522 5
Jiangxi 0.520 6
Shandong 0.519 7
Hebei 0.517 8
Anhui 0.508 9
Tianjin 0.508 10
Jilin 0.505 11
Jiangsu 0.505 12
Fujian 0.504 13
Liaoning 0.502 14
Chongqing 0.500 15
Zhejiang 0.499 16
Ningxia 0.490 17
Guangdong 0.479 18
Sichuan 0.477 19
Hubei 0.470 20
Guangxi 0.456 21
Hunan 0.450 22
Xinjiang 0.446 23
Gansu 0.438 24
Heilongjiang 0.429 25
Yunnan 0.419 26
Guizhou 0.393 27
Shanghai 0.383 28
Hainan 0.264 29
Beijing 0.224 30
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