

Article Analysis and Case Study of National Economic Evaluation of Expressway Dynamic Wireless Charging

Siqi Li¹, Hengjiao Duan¹, Jinglin Xia^{1,*} and Lu Xiong²

- ¹ School of Electric Power Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
- ² Guizhou Expressway Group Co., Ltd., No. 1, Kaifa Dadao, Huaxi District, Guiyang 550025, China

Correspondence: xiajl18@mails.jlu.edu.cn

Abstract: As the transportation industry develops new forms of energy and electrification, expressway dynamic wireless charging has become an attractive technology that has the potential to completely solve a range of anxieties associated with electric vehicles. The main objective of this paper was to analyze the economic feasibility of dynamic wireless charging projects on highways. First, the roadside cost of dynamic wireless charging was estimated in terms of equipment, construction, and maintenance costs. Then, various indicators of the national economy of expressway dynamic wireless charging were analyzed. Finally, using the GM (1,1) model, a prediction model for evaluating the associated economic benefits is proposed in this study. As a case study, a national economic evaluation of retrofitting a dynamic wireless charging infrastructure on the Guiyang to Xinzhai Expressway was calculated with the following results: the economic internal rate of return (EIRR) is 11.27% to 29.11%, the economic net present value (ENPV) is 321.59 million RMB to 733.51 million RMB, the economic benefit to cost ratio (EBCR) is 1.02 to 1.32, and the payback period is 3.15 years to 6.35 years. All indicators are higher than the benchmark value for the national economic evaluation, and the sensitivity analysis results are also higher than the benchmark. The results of this paper show that the project is economically feasible and has certain economic benefits. From the perspective of economic benefits, it is necessary to provide more effective information for investors and decision-makers to build dynamic wireless charging highway projects.

Keywords: dynamic wireless charging; economic benefits; national economic evaluation

1. Introduction

Expressway transportation is one of the main methods of freight transportation. In 1988, China's first expressway was completed and opened to traffic. By the end of 2021, the total mileage of China's expressways will be 117,000 km, ranking first in the world [1]. With the development of the economy and continuous improvements in terms of expressway construction, the traffic volume of expressways is increasing daily.

The rapid development of expressways has also brought about vast problems in terms of oil consumption and carbon dioxide emissions that cannot be ignored. With the second largest oil and gas consumption in the world, China relies on imports for 70% of its oil. Of the nearly 700 million tons of oil consumed, automobile consumption accounts for 55%. In recent years, China has vigorously developed new energy sources and improved its energy structure [2]. To respond to the national call for energy conservation and emission reductions and a reduction in the oil consumption of automobiles, the development of electric vehicles (EVs) has become one of the fields that China attaches great importance to and actively promotes. EVs play an important role in reducing greenhouse gas emissions, improving energy security, and meeting future energy demands [3,4].

EVs can reduce China's dependence on oil and actively respond to China's "dual carbon" policy. At present, EVs are categorized as pure battery electric vehicles (PEVs) [5],

Citation: Li, S.; Duan, H.; Xia, J.; Xiong, L. Analysis and Case Study of National Economic Evaluation of Expressway Dynamic Wireless Charging. *Energies* **2022**, *15*, 6924. https://doi.org/10.3390/en15196924

Academic Editors: Junjun Deng and Giuseppe Guidi

Received: 1 August 2022 Accepted: 18 September 2022 Published: 21 September 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

hybrid electric vehicles (HEVs) [6], plug-in hybrid electric vehicles (PHEVs) [7], battery replacement electric vehicles (BREVs) [8], and road power electric vehicles (RPEV) [9]. Table 1 lists the characteristics of these different EVs. As shown in Table 1, PEVs and BREVs rely on batteries, but the cost of batteries is high, resulting in the high cost of such vehicles; HEVs are expensive to purchase and consume a lot of fuel over long-term use, which is not conducive to energy conservation and emission reductions; BREVs mean that electric vehicles are charged by replacing batteries, but the standards of battery replacements are not uniform, and the initial investment is relatively large; compared with the first four, RPEVs have high levels of endurance, safety, and environmental protections, but the implementation of their technology is relatively difficult.

Table 1. The characteristics of different EVs.

Vehicle Type	Characteristics
PEV	Depends on battery, high cost
HEV	The cost of the car is expensive, and the long-term driving does not save fuel
PHEV	Batteries are expensive and difficult to charge
BREV	Depends on battery, high cost
RPEV	Safe, environmentally friendly, but technically difficult

Dynamic wireless charging technology for road EVs has the advantages of being convenient to use and involving no direct electrical contact and an unlimited charging time [10]. At present, most research is focused on the transferred power, efficiency, and coil optimization of dynamic wireless charging projects, but fewer studies focus on economic feasibility analysis of these projects [11,12]. In 1997, the University of Auckland in New Zealand cooperated with the German company Kang wen to design the world's first wireless charging bus, with a transferred power of 30 kW and a frequency of 13 kHz. Engineers at Oak Ridge National Laboratory in the United States studied the transmission characteristics, electromagnetic radiation, and dielectric loss of dynamic wireless charging technology [13]. In 2013, researchers from the Korea Advanced Institute of Science and Technology (KAIST) conducted research on dynamic wireless charging technology and named electric vehicles that "recharge while driving" online electric vehicles (OLEV) [14,15]. In 2017, Qualcomm laid a test track with a length of 100 m in Paris, France, and realized the wireless charging of a small electric box truck with a charging power of 20 kW [16].

In the context of dynamic wireless charging expressway construction, to determine whether a new project is feasible requires a national economic evaluation. National economic evaluations contain indicators of the economic internal rate of return (EIRR), economic net present value (ENPV), economic benefit-cost ratio (EBCR), and payback period [17]. National economic evaluations are used to evaluate the feasibility and economic benefits of projects from the perspective of the state and society and are mainly dependent on the relevant economic policies promulgated by the state and the specific market conditions, as well as the actual implementation, of the project. Using limited funds to obtain maximum benefits, projects are chosen according to the results of national economic evaluations. Expressways are a quasi-public property. To ensure the unity of social and economic benefits of expressways, it is necessary to carry out national economic evaluations on new expressway projects. National economic evaluations of expressways is conducive to maintaining the national and social interests of any new project. A national economic evaluation of an expressway forms the basis for studying the feasibility of a new project. Whether the construction of a new high-speed highway project commences or not depends on the results of national economic evaluations.

Dynamic wireless charging technology is over 100 years old, and some articles have also studied its economics. In 1990, the PATH team built a high-power rail with an output of 60 kW and an air gap of 7.6 cm at a cost of about 1 M\$/km [14]. In 2009, the KAIST research group in South Korea founded the OLEV project, which achieved a system output power of 60 kW, an air gap of 20 cm, and a maximum efficiency of 83% [15]. The cost

of the KAIST research group was one-third the cost of the PATH team project. This paper considers the actual development of highways in China, proposes a scheme of laying dynamic wireless charging coils on highways to charge electric trucks, and uses the national economic evaluation method to evaluate the associated costs and benefits. Based on a national economic evaluation, combined with the GM (1,1) model and the dynamic wireless expressway revenue model proposed in this study, the income from a dynamic wireless charging expressway over the coming year was predicted.

The purpose of this paper was to analyze a national economic evaluation of an expressway dynamic wireless charging project and comprehensively analyze its national economics through a cost, benefit, and future economic forecast of an expressway dynamic wireless charging project. The contributions of this paper are as follows:

The highway dynamic wireless charging project analyzed in this paper is, to certain extent, innovative. Although there are many studies on wireless charging and dynamic wireless charging, few studies specifically analyze the cost of wireless charging. In particular, there is a relatively small amount of research on the costs of highway dynamic wireless charging projects. This paper analyzes the equipment, construction, and maintenance costs of an expressway dynamic wireless charging project. Firstly, the cost of the transmitter coil of the expressway dynamic wireless charging project was analyzed. The relationship between the coupling coefficient and the size of the transmitter coil and that between the air gap and the transmission power were analyzed as well as the relationship between the coupling coefficient and the coil cost. Secondly, the construction cost of the project was considered, as were the maintenance costs. This paper predicts the future maintenance cost of this project based on the relationship between other expressways opened to traffic and their maintenance cost over the years.

The national economic evaluation is used to evaluate projects' benefits. Previous studies of expressway benefits mainly include transportation cost benefits, mileage shortening benefits, time-saving benefits, and so on. Combined with the characteristics of dynamic wireless charging on expressways, this paper mainly analyzes the benefits in terms of reducing transportation costs, increasing highway revenue, and reducing carbon emissions. It clearly shows the superiority of the highway dynamic wireless charging project.

To ensure the credibility of the national economic evaluation of the project, a sensitivity analysis was carried out based on the national economic evaluation. In the two extreme cases of a 30% reduction in income and a 30% reduction in benefits, the indicators of the national economic evaluation were all satisfied with the requirements, demonstrate the feasibility of the project.

Finally, this paper predicts the income of the expressway dynamic wireless charging project according to the future annual traffic volume and toll of the expressway, and an income prediction model is proposed in this paper. From the perspective of the economic, energy saving, and emission reduction aspects of dynamic wireless charging projects, the research in this paper has important theoretical and practical significance.

The structure of the rest paper is set as follows: Section 2 introduces dynamic wireless charging technology, how to apply dynamic wireless charging technology to an expressway, and how to choose a suitable expressway for renovation; in Section 3, the costs of the project, including its direct and maintenance costs, are analyzed; in Section 4, a benefit analysis of the project is carried out from three points of view: reducing the transportation cost benefit, increasing the expressway revenue benefit, and reducing the carbon emission benefit; in Section 5, an actual case study of an expressway dynamic wireless charging project is analyzed in terms of its benefits, national economic evaluation, and future benefits; in Section 6, the research results of this paper are summarized and some suggestions for future research are put forward.

2. Dynamic Wireless Charging Expressway

2.1. Dynamic Wireless Charging

Dynamic wireless charging technology can reduce the weight of the vehicle battery pack, extend the cruising range, and effectively meet the requirements of electric vehicle charging times and space while only using existing road resources [18]. It should be noted that a certain amount of battery is needed for vehicles to maintain a certain distance when vehicles drive on non-charging road. As shown in Figure 1, a dynamic wireless charging system for electric vehicles mainly consists of two parts: the transmitting side and the receiving side. The transmitting side mainly includes transmitting coils, high-frequency inverters, and compensation networks. The receiving side mainly includes receiving coils, compensation networks, AC-DC rectifier filters, battery packs, etc. In a dynamic charging system, the transmitting coils identify the location of the receiving coil and then enable the transmitting coils near the receiving coils. When there are no vehicles, the transmitting coils are not enabled to avoid wasting energy.

Figure 1. Dynamic wireless charging schematic.

2.2. Selection of Expressway

In a dynamic wireless charging expressway project, the selection of an expressway is very important and needs to be determined first. Expressway transportation mainly includes passage and freight transportation, using cars and trucks, respectively. Among them, freight always uses the expressway for long-distance transportation. Compared with cars, the trucks used for freight transportation always have enough installation space under the chassis, which is easier to retrofit. Additionally, multiple receiving coils can be installed under trucks to increase the received power. Therefore, we chose an expressway mainly used for freight transportation as the research object. The selected expressway should have the following characteristics:

- Choose an expressway that has a large volume of freight transportation.
- Choose an expressway where the trucks have fixed routes, which can reduce the mileage of trucks in non-charging areas.

Figure 2 shows a schematic diagram of the expressway with transmitting coils. Using suitable geometry, the transmitting coils are continuously laid on the expressway. By using proper receiving coils, the coupling ecoefficiency and transmission efficiency between the coils can be improved [19]. Concerning China's expressways, two-way four-lane and two-way six-lane are common layout styles. In the initial project design, it was required to transform one lane in each direction into a dynamic wireless charging road, as shown in Figure 2.

Figure 2. Schematic diagram of the laying of the transmitting coil of the expressway.

3. Project Cost (Two-Way Construction Configuration)

The construction quality of road engineering takes account of the construction period, cost, quality, and environment [20]. The costs mainly include direct costs (material costs, construction costs) and maintenance costs. To simplify the analysis process, the downtime cost of the expressway construction was included as part of the construction cost, with the upgrade cost of the vehicles and the reduction of batteries being ignored in this study.

3.1. Direct Costs

Direct costs refer to various costs associated with the entire project and those that contribute to the formation of the project during project implementation, including material costs and construction costs (labor costs and machinery costs) [21].

3.1.1. Material Costs

The material costs consist of coil costs, electronic power converter costs, and asphalt costs. Among them, the coil costs are significant and needed to be calculated first. In this study, identical rectangular coils were used as the transmission coils, and schematic diagram is shown in Figure 3. *L* and *W* represent the length and width of the coils and *K* represents the width of the wires, whose value is 200 mm.

Figure 3. Coil schematic.

When *L* and *W* are the same, the coupling coefficients under different coil sizes are obtained through a simulation, with the results being provided in Appendix A.

As shown in Table 2, the larger the coil size, the higher the coupling coefficient. However, a larger coil size may increase the coil cost. Considering the coupling coefficient and the coil cost, the dimension of the transmission coils was set as 1500 mm \times 1500 mm in this study.

Table 2. Coupling coefficient under different coil sizes.

L/W (mm)	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
k	0.391	0.421	0.453	0.502	0.519	0.529	0.540	0.547	0.556	0.562	0.568	0.572	0.575

A simplified transmitting coil is a hollow conductor without ferrite cores and is installed along the charging rail. The current direction of the coil is shown in Figure 4a. N_1 is the number of turns, and I_1 is the current. The magnetic field strength at any point x on the horizontal line of the wires is shown in Figure 4b. The magnetic field strength H_x can be calculated as:

$$H_x = H_1 + H_2 = \frac{N_1 I_1}{2\pi r_1} + \frac{N_1 I_1}{2\pi r_2}$$
(1)

where *r* represents the magnetic field radius.

Figure 4. (a) Schematic diagram of current direction; (b). Magnetic field strength at point x.

According to the principle of magnetic field strength, the magnetic flux density at the point *x* can be obtained:

$$B_x = \mu_0 H_x = \frac{\mu_0 N_1 I_1}{2\pi} (\frac{1}{r_1} + \frac{1}{r_2})$$
⁽²⁾

where B_x is the magnetic flux density at point x, μ_0 is the free space permeability, and the value is $4\pi \times 10^{-7}$.

If the horizontal length of the coil is d, the magnetic flux density at r_1 can be calculated.

$$B_x(r_1) = \frac{\mu_0 N_1 I_1}{2\pi} \left(\frac{1}{r_1} + \frac{1}{d - r_1}\right)$$
(3)

If we assume that the width of the wire is 1/5 of the horizontal length, the total flux density at $B_x(r_1)$ can then be calculated by integrating the magnetic flux density from 0.1*d* to 0.9*d*, as follows.

$$\int_{0.1d}^{0.9d} B_x(r_1) d_{r_1} = \int_{0.1d}^{0.9d} \frac{\mu_0 N_1 I_1}{\pi r_1} d_{r_1} \approx 0.7 \mu_0 N_1 I_1 \tag{4}$$

In practical applications, it should be ensured that the maximum magnetic flux density passing through the magnetic core does not exceed a certain value B_{max} , as shown in Figure 5, to ensure that the loss of the magnetic core will not cause a large drop in the system transmission efficiency.

Figure 5. The magnetic flux density of the magnetic core.

The magnetic flux density passing through the magnetic core can be calculated as:

$$B_{core} \approx 0.35 \mu_0 N_2 I_2 / d_c < B_{\max} \tag{5}$$

where d_c is the height of the magnetic core, whose value should be adjusted to meet the requirement of transferred power and maximum magnetic flux density.

In this study, the length of the receiving coil is L_r , the width of the receiving coil is W_r , the length of the transmitting coil is L_t , the width of the transmitting coil is W_t , and the coupling coefficient between the transmitting coil and the receiving coil is k. With the resonant frequency of 85 kHz, the received power P can then be obtained as:

$$P = 0.7k\mu_0\omega N_1 N_2 I_1 I_2 L_r \tag{6}$$

When the size of the receiving coil is fixed and the length of the transmitting coil does not change during the dynamic wireless charging process, the coupling coefficient k is mainly dependent on the transmitter coil width W_t , air gap and transferred power P. With a change in the transferred power, the thickness of the magnetic core changes. A diagram of the magnetic flux density distribution under different power and different thicknesses is provided in attachment A. Figure 6 shows the coupling coefficient under different coil widths, air gaps, transferred powers, and core thicknesses when the receiving coil size is 1500 mm × 1500 mm and the transmitting coil length L_t is 1500 mm.

Figure 6. Coupling coefficient at different powers, air gaps, and *W*^{*t*} measurements.

Based on the simulation results shown in Figure 6, we can conclude that:

- To ensure the ferrite magnetic flux density $B_{\text{max}} \leq 0.2T$, the thickness of the magnetic core should increase with an increase in the transferred power and the coupling coefficient should increase with increasing core thicknesses, appropriately.
- The coupling coefficient mainly depends on the coil width *W*_t and increases significantly when *W*_t increases.

With the given B_{max} , Lr, and dc, the amount of Litz wires needed in the receiving coil can be obtained from equation 5. With the transferred power and coupling coefficient k shown in Figure 6, the amount of Litz wires needed in the transmitting coils can be obtained from equation 6. According to the sizes of the coils, the amount of magnetic core and aluminum shielding plate can then be obtained. The Litz wire is made of aluminum. By using the market prices of ferrite and aluminum, the total cost of the coils at different Wt, P, and air gaps can then be obtained. The detailed calculation process is shown in attachment B, and the total coil cost is shown in Figure 7.

Figure 7. The total cost of the coils under different powers, coil widths, and air gaps.

We can conclude from Figure 7 that:

- The total coil cost varies with the transferred power, air gap, and transmitting coil width *W*_t. When the air gap and *W*_t are fixed, the coil cost increases with increasing transferred power.
- The range of the coil cost is large. When the air gap is 100 mm and the *W*_t is 400 mm, the total coil cost varies from 888 RMB/m to 1948 RMB/m, while the transferred power increases from 50 kW to 200 kW.
- The lowest coil cost is achieved when P = 50 kW, $W_t = 500$ mm, and the air gap = 100 mm, which is 888 RMB/m; the highest coil cost is achieved when P = 200 kW, $W_t = 1500$ mm, and the air gap = 300 mm, which is 2903 RMB/m.

With a transferred power of 50 kW, the cost ratios of various materials under different air gaps and W_t measurements are shown in Figure 8.

Figure 8. Various material cost percentages.

We can conclude from Figure 8 that:

- Among the three material costs, the core cost accounts for the highest proportion, with an average proportion of 68.9%, and the aluminum plate cost accounts for the lowest proportion, with an average proportion of 14.9%.
- With a given air gap, the coupling coefficients shown in Figure 6 increase with an increasing *Wt*, resulting in a decrease in the Litz wire cost; additionally, the surface area of the coil also increases, leading to an increase in the core cost and aluminum plate cost.
- With a given *W*_t, the coupling coefficients shown in Figure 6 decrease with an increasing air gap, resulting in an increase in the Litz wire cost. Since the surface area of the coil remains unchanged, the costs of the magnetic core and aluminum plate remain unchanged, but the associated cost ratio decreases, as shown in Figure 8.

It should be noted that the coil cost is obtained with aligned coils. During the dynamic charging process, misalignment conditions are inevitable, which can affect the coupling coefficients and further reduce the transferred power and efficiency. To ensure the received power, complex coupler structures such as DD/DDQ coils and BP couplers have been introduced to improve misalignment tolerance [22]. Additionally, the receiver coil turns are always increased to achieve the same level of transferred power. All these methods will increase the actual coil cost accordingly.

In the literature, when designing a 50 kW high-power wireless charging coil, the current density was increased from 2.4 A/mm² to 4.8 A/mm² [23]. Without increasing the size of the coil, the power density was increased by 2.5 times, and the transmission efficiency of the 50 kW power coil was 97.7%. As shown in Appendix B, the current density of the coil in this paper was 2 A/mm². To combat the offset problem, the current density can be appropriately increased to reduce the power loss. After the vehicle position is offset, the primary side current can be increased to increase the primary side magnetic field strength to maintain the same power.

In addition to the coil cost, the material cost also includes the cost of the electronic power converter and the cost of the asphalt for laying the road. Traditionally, the cost of a 30 kW inverter in the laboratory is about 2000 RMB/m. The key components that result in most of the inverter cost are electronic power devices, and the main electronic power devices of the inverter analyzed in this paper are shown in Table 3. For large-scale applications, the cost of the inverter can be further reduced [14]. The cost of asphalt is 100 RMB/m. Considering the coil cost shown in Figure 7, the specific cost of each material was obtained, as shown in Figure 9. The material cost of a dynamic wireless charging expressway can be as low as 2988 RMB/m and as high as 5000 RMB/m.

Table 3. Primary inverter electronic power components.

Module	Main Components	Price (RMB)	Quantity	Total Price (RMB)
Main Power Switch Module	F4-23MR12W1M1-B11	1000	1	1000
Drive Module	ISO5852DW	10	6	60
Control Module	MCU	100	1	100
Capacitance	MKP-LL	220	2	440
Others				800
Total				2000

3.1.2. Construction Costs

The total cost of a dynamic wireless charging expressway comprises a material cost and a construction cost. The construction cost, which consists of labor costs and machinery costs, accounts for 17% of the project cost, which is approximately 500~780 RMB/m. The construction cost increased with the downtime cost. Here, we set the total construction cost to account for 22% of the project cost, which is approximately 646~1009 RMB/m. Therefore, the total cost of a dynamic wireless charging expressway is at its lowest 3.60 million RMB/km and at its highest 6.00 million RMB/km.

3.2. Maintenance Cost

Using reasonable and scientific methods to maintain the expressway can prolong its service life. Therefore, a dynamic wireless charging expressway requires regular maintenance in terms of the transmitting coil, which, if faulty or damaged, needs to be replaced. The maintenance cost of an expressway is mainly related to the number of years of traffic. As shown in Table 4, data on the number of years in which different expressways have been open to traffic and the average annual maintenance costs are collected, and an analysis of this relationship is provided in Figure 10. The black dots are the specific data collected. The dotted line is the growth trend of the average annual maintenance cost with the number of years in operation. A large-scale inspection of a dynamic wireless charging expressway should be carried out every year, and the damaged coils should be replaced to reduce the

requirements for manpower and material resources and ensure the normal operation of the dynamic wireless charging expressway.

Table 4. The number of years in operation and the average annual maintenance fee.

Expressway	Years in Operation	Average Annual Maintenance Cost (10,000 RMB/km)	Expressway	Years in Operation	Average Annual Maintenance Cost (10,000 RMB/km)
1	5.5	8.743	6	4.6	6.214
2	5.4	7.116	7	6	7.535
3	3.8	6.059	8	4.9	8.642
4	6.5	8.752	9	2.6	3.878
5	6.1	9.26	10	8.1	11.266

Figure 10. The relationship between the average annual maintenance cost and the number of years of operation.

4. Project Benefit

4.1. Reduce Transportation Cost

The project's benefit includes three parts: a reduction in transportation costs, an increase in the expressway's revenue, and a reduction in carbon emissions. The transportation cost refers to the cost of completing the transportation of goods, including two aspects: one is the station cost, and the other is cost of transportation [24]. The station cost mainly includes the loading and unloading of goods and the cost of using docks, which is not related to this project. Transportation costs on the road mainly include fuel consumption, daily maintenance and repair costs, tire maintenance costs, road tolls, traffic accident costs, and other costs [25,26]. JGT B01 2014 "Technical Standards for Expressway Engineering" stipulates the division of vehicles based on the rated load, and the traffic revenue of new energy trucks on dynamic wireless charging expressways is decided according to this standard.

The truck transportation cost is mainly dependent on tolls, fuel consumption, daily maintenance and repair costs, and car purchase costs. If the truck driver works for 20 days a month, at 8 h a day, and at 80 km per hour, he can drive for approximately 160,000 km a year on average. The transportation cost *C* is divided into the original expressway truck

transportation cost C_W and the dynamic wireless charging expressway transportation cost C_Y , which can be calculated as follows:

$$C_{Wi} = (T_{Wi} + M) \times L \tag{7}$$

$$C_{\gamma_i} = T_{\gamma_i} \times L \tag{8}$$

where C_{Wi} is the original expressway transportation cost of the i-type truck [ten thousand RMB/year], C_{Yi} is the transportation cost of the dynamic wireless charging expressway of i-type truck [Ten thousand RMB/year], and T_{Wi} is the toll of the original expressway i-type truck [RMB/km], T_{Yi} is the toll of the i-type truck on the dynamic wireless charging expressway [RMB/km], M is the fuel consumption [RMB/km], and L is the total mileage of the truck [km]. The fuel costs of different trucks are shown in Table 5.

Table 5. Dynamic wireless charging expressway toll standard.

Car Model (i)	Truck Category	Μ	T_{Wi}	T_{Yi}
1	Small electric truck	0.65	0.45	<1.1
2	Medium electric truck	1.01	0.90	<1.91
3	Large electric truck	1.413	1.462	<2.875
4	Extra-large electric truck	2.102	2.138	<4.24

The cost of expressway tolls is one of the main aspects of transportation costs. Expressway toll standards have been different at different times. New dynamic wireless charging expressways need to formulate new toll standards. The formula for calculating a standard charge for dynamic wireless charging expressways is as follows:

$$T_{\rm Yi} = T_{\rm Wi} + \lambda M \tag{9}$$

where λ is the income coefficient and the value range is $\lambda < 1$, which not only ensures the income of the expressway but also reduces the transportation cost of the truck driver.

Compared with static charging trucks, dynamic wireless charging trucks reduce the weight of the battery and bypass the need to install large-capacity battery packs. In terms of daily maintenance costs, traditional trucks need to regularly replace maintenance oil, three filters, spark plugs, and other components as well as replace the brake fluid every two years and change the transmission gear oil every year. The associated maintenance cost is close to 30,000 RMB/year. The structure of a dynamic wireless charging truck is simpler than that of a traditional refueling truck, and most of the time the battery is shallowly charged and discharged during the dynamic wireless charging process. The cycle life is increased and is close to being maintenance-free. According to the "Regulations on the Standard for Compulsory Scrap of Motor Vehicles", the service life of a truck is generally 15 years. The 15-year income of truck drivers can be obtained by using the following equation

$$R = [(C_{Wi} + S) - (C_{Yi} + S)] \times 15$$
(10)

where *R* is the income benefit in 15 years [ten thousand RMB] and *S* is the maintenance cost [ten thousand RMB].

4.2. Increase Expressway Revenue Benefit

The income of the expressway is mainly related to the traffic volume. The dynamic wireless charging expressway toll standard is shown in Table 4, together with the traffic volume of each vehicle type, and, thus, the revenue benefit of the expressway can be calculated as:

$$\Delta Q = \sum_{i=1}^{n} V_i \times T_{Yi} \times n - \sum_{i=1}^{n} V_i \times T_{Wi} \times n$$
(11)

where ΔQ is the income benefit of the expressway after the construction of the new project [ten thousand RMB], V_i is the monthly/annual traffic volume of truck models; n is the mileage of the proposed dynamic wireless charging expressway [km].

4.3. Lower Carbon Emissions Benefits

The development of the transportation industry has led to problems such as the increased consumption of fossil fuels, greenhouse gas emissions, traffic congestion, and noise pollution [27,28]. However, when being driven the carbon emissions of an electric vehicle is approximately zero. The carbon emissions of the vehicle during the driving process can be calculated as follows:

$$E = \sum_{i}^{n} m \times \rho \times j \times F_{i} \times I_{i}$$
(12)

where *E* is the carbon emission [mg]; *m* is the annual diesel consumption of the truck [L]; ρ is the diesel density [kg/L]; *j* is the default net calorific value of diesel [MJ/kg]; *F_i* is the emission factor based on the net calorific value [mg/MJ]; *I_i* is the characteristic factor; $\rho = 0.84 \text{ kg/L}$; *j* = 43 MJ/kg; *F*(CO₂) = 74,100 mg/MJ; *F*(CH₄) = 3 mg/MJ; *F*(N₂O) = 0.6 mg/MJ; *I*(CO₂) = 1, *I*(CH₄) = 1; and *I*(N₂O) = 1.

5. Case Analysis

Based on the above discussions, we took the Guiyang-Xinzhai Expressway as an example. According to the national economic evaluation parameters stipulated by the state, the social refractive index of this project is 8%, and the trade expense rate is 6%. The Guixin Expressway is designed and constructed as a full interchange, two-way, four-lane expressway, with a designated speed of 80 km/h and a total length of 260 km. Table 6 shows the collected truck traffic volume of the Guixin Expressway over the past 10 years. If each lane of the Guixin Expressway was transformed into a dynamic wireless charging lane, the total construction cost of the project would be approximately 936 million RMB to 1.56 billion RMB.

Table 6. Guixin expresswa	y 2010–2020 truck flow meter ((unit: 100,000 vehicles).
---------------------------	--------------------------------	---------------------------

Years	Small Electric Truck	Medium Electric Truck	Large Electric Truck	Extra-Large Electric Truck	Total
2010	9.20335	4.14656	5.90630	1.83872	21.09508
2011	8.97132	3.87113	4.83986	2.34854	20.03085
2012	10.25494	4.19009	4.94149	3.12496	22.51148
2013	11.94710	4.39946	5.59139	3.83666	25.77461
2014	13.26713	3.87552	5.30127	4.52386	26.96778
2015	13.51392	3.53149	4.78404	4.84820	26.67765
2016	13.75422	3.81275	5.08454	6.47008	29.12159
2017	14.93093	4.01737	5.17986	9.73920	33.86736
2018	15.41392	4.21882	5.16826	10.79225	35.59325
2019	14.69306	4.01318	4.42245	11.67002	34.79871
2020	16.29994	4.25822	9.62136	4.02998	34.20950
total	142.2498	44.33459	60.84082	63.22247	310.64771

5.1. Project Benefit Results

5.1.1. Reduced Shipping Cost

Figure 11 shows the 15-year transportation costs for truck drivers when λ ranges from 0.5 to 0.8.

Figure 11. 15 Years of transportation cost-effectiveness for truck drivers.

It can be seen from Figure 11 that after the construction of the dynamic wireless charging expressway, the transportation cost of small trucks is reduced by 20% to 36%, the transportation cost of medium trucks is reduced by 40% to 50%, the transportation cost of large trucks is reduced by 14% to 32%, and the transportation cost of extra-large trucks is reduced by 13% to 27%.

5.1.2. Expressway Revenue Benefit

If the toll standard of Guixin Expressway is charged according to the standard shown in Table 5, and taking account of the traffic volume of each vehicle model in Table 6, the revenue benefit of the Guixin Expressway can be obtained from Equation (11), with the results being shown in Figure 12.

Figure 12. Revenue of Guixin Expressway, 2010–2020.

Upon completion of new project of the Guixin Expressway, the toll standard of the expressway would be increased by 50~70% from the original toll standard. Based on the truck traffic data collected from 2010 to 2020, with this toll standard for the dynamic wireless charging project, the Guixin Expressway would increase its revenue by 22% to 70%.

5.1.3. Lower Carbon Emissions Benefits

With the traffic volume of each vehicle model provided in Table 6, the gas emitted by traditional fuel trucks is shown in Figure 13, where the primary gas emission is CO_2

emissions. Each small truck emits 47.6 t per year, each medium truck emits 74.049 t per year, each large truck emits 100.495 t per year, and each extra-large truck emits 148.1 t per year. If new energy trucks are used and charged via the dynamic wireless charging lanes of the expressway, the average annual CO_2 emissions of each truck would be reduced by 92 t.

Figure 13. Lower carbon emissions benefits.

5.2. National Economic Evaluation Results

The national economic evaluation indicators of the dynamic wireless charging project of Guixin Expressway were calculated according to the national economic evaluation method. Figure 14 analyzes the highest and lowest costs in terms of EIRR and EPVN under different λ values.

Figure 14. The highest and lowest cost EIRR and EPVN for different λ values.

We can see from Figure 14 that the EIRR and ENPV values increase with an increasing λ , with the growth trend for EIRR being more obvious.

Table 7 analyzes the national economic evaluation results for the lowest construction cost and the highest construction cost of this project, where $\lambda = 0.5$.

Result	EIRR (%)	ENPV (Ten Thousand RMB)	EBCR	Payback Period (Years)
High cost	13.56	39,081.25	1.26	5.10
Low cost	29.11	73,351.60	1.31	3.15

 Table 7. National economic evaluation result.

The national economic evaluation results for the Guixin Expressway dynamic wireless charging project are all within the standards, and the dynamic wireless charging project for the expressway is feasible in terms of the national economic evaluation. Since the data of national economic evaluation are mostly predictions, which include uncertainties, a sensitivity analysis of the national economic evaluation results can enhance the accuracy of the evaluation results. Sensitivity analysis of high cost and low cost is shown in Tables 8 and 9.

Table 8. National economic evaluation results (High cost).

Result	EIRR (%)	ENPV (Ten Thousand RMB)	EBCR	Payback Period (Years)
10% more cost	13.85	51,305.46	1.16	5.35
10% less benefit	13.61	44,614.91	1.12	5.41
20% more cost	11.82	35,705.46	1.06	5.77
20% less benefit	14.11	43,115.25	1.02	5.98
15% more cost and 15% less benefit	11.27	32,159.95	1.12	6.35

Table 9. National economic evaluation results (Low cost).

Result	EIRR (%)	ENPV (Ten Thousand RMB)	EBCR	Payback Period (Years)
10% more cost	27.92	64,051.61	1.21	3.45
10% less benefit	22.48	56,656.45	1.22	3.75
20% more cost	19.86	54,651.61	1.10	3.71
20% less benefit	18.51	39,961.28	1.10	3.84
15% more cost and $15%$ less benefit	16.01	34,308.86	1.23	4.10

When the project construction cost is high, the sensitivity analysis results are within the national economic evaluation standard, which indicates that the project construction will have stable economic benefits in the future.

5.3. Future Economic Prediction

5.3.1. Traffic Volume Prediction

The expressway toll charges are dependent on traffic volume, vehicle type, mileage, charging standards, and national policies [29]. The future annual toll revenue of dynamic wireless charging expressways can be predicted by combining multiple factors such as traffic volume, toll standard, toll mileage, and toll models [30]. Traffic volume forecasting methods mainly include the regression forecasting method, exponential smoothing method, grey forecasting method GM (1,1), growth curve trend extrapolation method, elastic coefficient forecasting method, and the gravity model forecasting method, etc. In this paper, the grey prediction method GM (1,1) model was used to predict the future traffic volumes of different types of trucks. The main feature of grey prediction is that the model does not use the original data series but the generated data series. Its core system is the grey model (GM), which is a method which involves accumulating the original data to obtain an approximate exponential law and then modeling [31]. The grey prediction method has strong regularity and can predict future developments.

The model building process is as follows:

Let the reference data be listed as:

$$x^{(0)} = (x^{(1)}, x^{(2)}, \dots, x^{(n)})$$
(13)

One accumulation generates a new data column:

$$\begin{aligned} x^{(1)} &= (x^{(0)}(1), x^{(0)}x(1) + x^{(0)}(2), \dots, x^{(0)}(1) + \dots + x^{(0)}(n)) \\ &= (x^{(1)}(1), x^{(2)}(2), \dots, x^{(n)}(n)) \end{aligned}$$
(14)

Set up the differential equation:

$$x^{(0)}(k) + az^{(1)}(k) = b, k = 2, 3, \dots, n$$
(15)

Modeling:

$$\frac{dx^{(1)}}{dt} + \hat{a}x^{(1)} = \hat{b}$$
(16)

Further solve the time response function:

$$\hat{x}^{(1)}(k=1) = (x^{0}(1) - \frac{\hat{b}}{\hat{a}})e - \hat{a}k + \frac{\hat{b}}{\hat{a}}$$
(17)

Build the model as:

$$\hat{V}_{i}^{(0)}(t+1) = \left(V_{i}^{(0)} - \frac{\hat{b}}{\hat{a}}\right)e^{-\hat{a}t} + \frac{\hat{b}}{\hat{a}}, t = 0, 1, \dots, n-1, \dots,$$
(18)

Entering the truck traffic volume data for the Guixin Expressway from 2010 to 2020 in Table 6 into the GM (1,1) model, the small truck traffic volume prediction model can be obtained as $y = 160.546e^{0.0617837t} - 151.346$, the medium truck traffic volume prediction model is $y = 1312.52e^{0.00301685t} - 1308.37$, the large truck traffic volume prediction model is $y = 94.5678e^{0.0457103t} - 88.6618$, and the extra-large truck traffic volume prediction model is $y = 34.0753e^{0.182078t} - 32.2373$.

5.3.2. Revenue Prediction

Considering the predicted value for truck traffic volume, the Guixin Expressway revenue in the next 10 years can be calculated by using the following equation (the results are shown in Table 10):

$$Q_{Wi} = \sum_{i=1}^{n} V_i \times T_{Wi} \times n \tag{19}$$

Table 10. Guixin expressway revenue forecast (Unit: Billion RMB).

Years	Small Electric Truck	Medium Electric Truck	Large Electric Truck	Extra-Large Electric Truck	Total
2021	1.8751	0.5419	1.0135	1.2552	4.6857
2022	1.9946	0.5432	1.0609	1.5635	5.1622
2023	2.1218	0.5452	1.1584	1.7362	5.5616
2024	2.2570	0.5468	1.1146	1.9277	5.8461
2025	2.3999	0.5485	1.2128	2.1405	6.3017
2026	2.5530	0.5502	1.2738	2.3767	6.7537
2027	2.7157	0.5519	1.4464	2.6389	7.3529
2028	2.8894	0.5535	1.3958	2.9302	7.7689
2029	3.0735	0.5552	1.4610	3.2536	8.3433
2030	3.2696	0.5568	1.5293	3.6213	8.9770

Table 10 shows the revenue of Guixin Expressway over the next 10 years. According to the number of years of operation and maintenance cost in Figure 7, the profit of Guixin Expressway in the next 10 years was obtained, as shown in Figure 15.

Figure 15. The future profits and the number of Guixin Expressway.

As shown in Figure 15, the blue bars represent annual profits, and the red dotted lines represent profit growth trends. The profit of the Guixin expressway dynamic wireless charging project increases year by year. The relationship between the profit and the number of years of operation is: $y = 0.0153x^2 - 61.599 + 61911$.

6. Conclusions

This paper studies the national economic evaluation of expressway dynamic wireless charging projects and draws the following conclusions:

Firstly, for truck drivers, electric vans offer lower transportation costs than traditional vans. Electric trucks have lower purchase and operating costs than traditional refueling trucks. Dynamic wireless charging trucks can reduce the transportation costs of truck drivers by 35~48%. The reduction in transportation costs will encourage more electric trucks to be put into highway operation in the future.

Secondly, the dynamic wireless charging highway is a green and environmentally friendly way of travel, in line with the principle of harmonious coexistence between man and nature. The dynamic wireless charging expressway can reduce carbon emissions. Pure electric trucks travel roughly 160,000 km a year, and each vehicle can reduce greenhouse gas emissions by 92 t per year.

Although the initial investment required for a dynamic wireless charging highway project is large, the project has economic benefits later on. Under the sensitivity analysis of national economic evaluation, the investment payback period is 3.05~6.35 years, and various national economic evaluation indicators are also higher than the benchmark values, indicating that the project will have stable economic benefits in the future. The economic income of the dynamic wireless charging high-speed Guixin Expressway was predicted for the next ten years. Excluding the maintenance cost, the profit over the next ten years will be 464 million RMB/year to 864 million RMB/year, with this forecast only being for the traffic revenue of trucks, indicating that the economic benefits of dynamic wireless charging expressways are substantial.

Other research groups, those mentioned in the introduction, have also carried out economic research on dynamic wireless charging lanes, and the research results of this paper were compared with other groups. The research cost of the PATH team was 1 M/km, and the research cost of the KAIST team was one-third of that of the PATH team, being approximately US\$330,000/km. The research cost of this paper is 3.60 million yuan/km to 6.00 million yuan/km. This cost is half that of the PATH team. The initial investment for the dynamic wireless charging lane project in this paper is large, but, like the research

results of the KAIST team, the project has huge benefits further down the line and has good economic benefits. Combined with the results of this national economic evaluation, the construction of dynamic wireless charging highways in China would result in substantial economic gains.

Finally, the coil studied in this paper is a conventional rectangular array coil, and the coupling mechanism is relatively simple. To improve the misalignment tolerance of the dynamic wireless charging system, complex coupler structures and coupling mechanisms require further study. Additionally, the control strategies for the charging system are also important to ensure the received power and transmission efficiency. It is hoped that subsequent research can enrich the coupling mechanism, making estimation of the coil cost more accurate and the national economic evaluation results closer to the actual figures.

Author Contributions: Writing—original draft, S.L.; writing—review and editing, H.D., L.X. and J.X. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China under Grant: Research on key technologies of large-scale space wireless power transmission (No. 52067011), project principal is Siqi Li. And this work was also supported in part by the Xingdian Young Talents Program of Yunnan Province (YNWR-QNBJ-2018-114).

Data Availability Statement: The data presented in this study are available on request from the first author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following symbols/abbreviations are used in this manuscript.

GM (1,1)	Grey forecasting method
EIRR	Economic internal rate of return
EBCR	Economic benefit to cost ratio
EVs	Electric vehicles
PEV	Pure battery electric vehicles
HEV	Hybrid electric vehicles
PHEV	Plug-in hybrid electric vehicles
BREV	Battery replacement electric vehicles
RPEV	Road power electric vehicles
L	Length of the coils
W	Width of the coils
Κ	Width of wires
Ι	Current
Ν	Number of turns
H	Magnetic field strength
В	Magnetic field strength
Р	Power
M	Fuel consumption
R	Income benefit
S	Maintenance cost
Ε	Carbon emission

Appendix A

P = 100 kW Magnetic flux density distribution map (Core gapickness7mm)

 1500×500 mm air gap = 150 mm

1500×500mm air gap = 200mm

1.030-001 1.030-0000 1.030-0000 1.030-0000 1.030-0000 1.030-0000 1.030

 1500×500 mm air gap = 300 mm

Figure A1. Cont.

P = 200 kW

Magnetic flux density distribution map (Core gapickness15mm)

 150×500 mm air gap = 150mm

Figure A1. Magnetic field simulation diagram.

Appendix B

The calculation process of the price of each material of the coil: Litz wire cost (RMB):(Litz wire material is aluminium)

$$v = (N_1 I_1 / J) \cdot L; m = \rho \cdot v; c_1 = m \cdot p_1$$

where *v* is volume of aluminum wire (m³); *J* is current density(A/m²), $J = 2 \text{ A/m}^2$; *L* is length of aluminum wire (m); *m* is aluminum wire weight (kg); ρ is density of aluminum ($\rho_{\text{aluminum}} = 2.7 * 10^3 \text{ kg/m}^3$); c_1 is Leeds wire cost (RMB/m); p_1 is the sum of the unit price of aluminium and the unit price of aluminium processed into litz wire (RMB/kg). Core cost:

•

 $c_2 = p_2 \cdot n$

where c_2 is Core cost (RMB/m); p_2 isCore unit price (RMB); n is required number of cores. Aluminum plate cost:

$$c3 = (l \cdot w \cdot h) \cdot \rho \cdot p2$$

where *c*3 is Aluminum plate cost (RMB/m); *l* is the length of aluminum plate (m); *w* is the width of the aluminum plate (m); *h* is the thickness of the aluminum plate (m); *p*2 is the unit price of aluminium plate (RMB/m).

Total cost (RMB/m):

$$T = c1 + c2 + c3$$

where *T* is total cost of coil (RMB/m).

Table A1. Coil specific price.

Power (kW)	Air Gap (mm)	W _t (mm)	Core Thickness (mm)	Coupling Coefficient	N_1I_1	Bidirectional N_1I_1	Leeds Wire Cost	Core Cost	Aluminum Plate Cos	Total Cost (RMB/m)	Litz Cost Percentage	Core Cost Percentage	Aluminum Plate Cost Percentage
		500		0.1583	263	526	260	896	176	888	19.52%	67.24%	13.24%
		600		0.1917	217	435	215	952	212	919	15.58%	69.06%	15.36%
		700		0.2197	190	379	187	1008	247	962	12.99%	69.89%	17.12%
		800		0.2534	164	329	162	1064	282	1006	10.77%	70.52%	18.71%
		900		0.2973	140	280	138	1120	318	1051	8.79%	71.07%	20.15%
	100	1000		0.3470	120	240	119	1176	353	1098	7.20%	71.38%	21.42%
		1100		0.4162	100	200	99	1232	388	1146	5.75%	71.67%	22.58%
		1200		0.4816	87	173	85	1288	423	1198	4.76%	71.68%	23.56%
		1300		0.5330	78	156	77	1344	459	1253	4.11%	71.49%	24.40%
		1400		0.5635	74	148	73	1400	494	1311	3.71%	71.17%	25.11%
		1500		0.6701	62	124	61	1456	529	1364	3.00%	71.14%	25.86%
-		500		0.1520	274	548	271	896	176	895	20.16%	66.71%	13.13%
	150	600		0.1786	233	467	231	952	212	930	16.54%	68.28%	15.18%
		700	-	0.2085	200	400	197	1008	247	968	13.59%	69.40%	17.01%
		800		0.2358	177	353	175	1064	282	1014	11.48%	69.96%	18.56%
		900		0.2708	154	308	152	1120	318	1060	9.56%	70.46%	19.98%
50		1000	5	0.3094	135	269	133	1176	353	1108	8.01%	70.76%	21.23%
		1100	· · ·	0.3532	118	236	117	1232	388	1158	6.71%	70.94%	22.35%
		1200		0.3902	107	214	105	1288	423	1211	5.81%	70.89%	23.30%
		1300		0.4215	99	198	98	1344	459	1267	5.14%	70.72%	24.14%
		1400		0.4397	95	190	94	1400	494	1325	4.71%	70.44%	24.85%
		1500		0.5137	81	162	80	1456	529	1377	3.88%	70.50%	25.62%
		500		0.1418	294	588	290	896	176	908	21.30%	65.75%	12.95%
		600		0.1677	248	497	245	952	212	939	17.42%	67.56%	15.02%
		700		0.1926	216	433	214	1008	247	979	14.55%	68.63%	16.82%
		800		0.2178	191	383	189	1064	282	1024	12.31%	69.30%	18.38%
		900		0.2435	171	342	169	1120	318	1071	10.52%	69.71%	19.77%
	200	1000		0.2731	153	305	151	1176	353	1120	8.98%	70.02%	21.01%
		1100		0.2974	140	280	138	1232	388	1172	7.87%	70.06%	22.07%
		1200		0.3245	128	257	127	1288	423	1226	6.90%	70.07%	23.03%
		1300		0.3437	121	242	120	1344	459	1282	6.23%	69.91%	23.86%
		1400		0.3534	118	236	116	1400	494	1340	5.79%	69.64%	24.57%
		1500		0.4147	100	201	99	1456	529	1390	4.76%	69.85%	25.39%

Power (kW)	Air Gap (mm)	W _t (mm)	Core Thickness (mm)	Coupling Coefficient	N_1I_1	$\begin{array}{c} \text{Bidirectional} \\ N_1 I_1 \end{array}$	Leeds Wire Cost	Core Cost	Aluminum Plate Cos	Total Cost (RMB/m)	Litz Cost Percentage	Core Cost Percentage	Aluminum Plate Cost Percentage
		500		0.1347	309	619	306	896	176	919	22.18%	65.02%	12.80%
		600		0.1528	273	546	270	952	212	955	18.80%	66.42%	14.77%
		700		0.1745	239	478	236	1008	247	994	15.82%	67.61%	16.57%
		800		0.1937	215	430	213	1064	282	1039	13.63%	68.26%	18.11%
	250	900		0.2187	190	381	188	1120	318	1084	11.58%	68.89%	19.53%
	250	1000		0.2381	175	350	173	1176	353	1135	10.16%	69.10%	20.73%
		1100		0.2587	161	322	159	1232	388	1186	8.94%	69.24%	21.81%
		1200		0.2748	152	303	150	1288	423	1241	8.05%	69.20%	22.75%
		1300		0.2846	146	293	145	1344	459	1298	7.43%	69.02%	23.55%
		1400		0.2916	143	286	141	1400	494	1357	6.94%	68.79%	24.27%
		1500		0.3438	121	242	120	1456	529	1403	5.69%	69.17%	25.14%
50 -		500	5	0.1271	328	656	324	896	176	931	23.20%	64.17%	12.63%
		600		0.1369	304	609	301	952	212	976	20.54%	65.01%	14.46%
		700		0.1546	269	539	266	1008	247	1014	17.50%	66.26%	16.24%
		800		0.1728	241	482	238	1064	282	1056	15.04%	67.15%	17.81%
		900		0.1888	221	441	218	1120	318	1104	13.17%	67.65%	19.18%
	300	1000		0.2049	203	407	201	1176	353	1153	11.62%	67.99%	20.40%
		1100		0.2192	190	380	188	1232	388	1205	10.39%	68.14%	21.47%
		1200		0.2285	182	365	180	1288	423	1261	9.53%	68.09%	22.38%
		1300		0.2372	176	351	174	1344	459	1318	8.78%	68.01%	23.21%
		1400		0.2413	173	345	171	1400	494	1376	8.26%	67.81%	23.93%
		1500		0.2853	146	292	144	1456	529	1420	6.78%	68.37%	24.85%
		500		0.1655	504	1007	497	1075	176	1166	28.44%	61.47%	10.09%
		600		0.1962	425	849	420	1142	212	1182	23.66%	64.41%	11.94%
		700		0.2266	368	736	363	1210	247	1213	19.96%	66.46%	13.57%
		800		0.2617	318	637	315	1277	282	1249	16.79%	68.14%	15.06%
	100	900		0.3055	273	546	270	1344	318	1287	13.96%	69.60%	16.44%
	100	1000		0.3576	233	466	230	1411	353	1330	11.54%	70.76%	17.69%
		1100		0.4245	196	393	194	1478	388	1374	9.41%	71.75%	18.84%
		1200		0.4917	169	339	167	1546	423	1424	7.84%	72.34%	19.82%
		1300		0.5429	153	307	152	1613	459	1482	6.82%	72.55%	20.63%
		1400		0.5748	145	290	143	1680	494	1545	6.18%	72.50%	21.32%
		1500		0.6747	124	247	122	1747	529	1599	5.09%	72.85%	22.07%
100 -		500	7	0.1558	535	1070	528	1075	176	1187	29.68%	60.40%	9.91%
		600		0.1860	448	896	443	1142	212	1198	24.64%	63.58%	11.78%
		700		0.2135	390	781	386	1210	247	1228	20.93%	65.66%	13.41%
		800		0.2429	343	686	339	1277	282	1265	17.86%	67.27%	14.87%
	150	900		0.2745	304	607	300	1344	318	1308	15.29%	68.52%	16.19%
	100	1000		0.3170	263	526	260	1411	353	1349	12.83%	69.73%	17.43%
		1100		0.3578	233	466	230	1478	388	1398	10.98%	70.51%	18.51%
		1200		0.3983	209	418	207	1546	423	1450	9.50%	71.04%	19.46%
		1300		0.4266	195	391	193	1613	459	1510	8.52%	71.22%	20.26%
		1400		0.4462	187	374	185	1680	494	1572	7.82%	71.23%	20.94%
		1500		0.5329	156	313	155	1747	529	1621	6.36%	71.87%	21.77%

Table A1. Cont.

Table A	1. Cont.
---------	-----------------

Power (kW)	Air Gap (mm)	W _t (mm)	Core Thickness (mm)	Coupling Coefficient	N_1I_1	Bidirectional N_1I_1	Leeds Wire Cost	Core Cost	Aluminum Plate Cos	Total Cost (RMB/m)	Litz Cost Percentage	Core Cost Percentage	Aluminum Plate Cost Percentage
		500		0.1457	572	1144	565	1075	176	1211	31.11%	59.18%	9.71%
		600		0.1733	481	962	475	1142	212	1219	25.97%	62.45%	11.57%
		700		0.1980	421	842	416	1210	247	1248	22.21%	64.60%	13.19%
		800		0.2230	374	747	369	1277	282	1286	19.15%	66.21%	14.64%
	200	900		0.2480	336	672	332	1344	318	1329	16.65%	67.42%	15.93%
	200	1000		0.2769	301	602	297	1411	353	1374	14.42%	68.46%	17.12%
		1100		0.3091	270	539	266	1478	388	1422	12.49%	69.31%	18.20%
		1200		0.3321	251	502	248	1546	423	1478	11.18%	69.72%	19.10%
		1300		0.3520	237	473	234	1613	459	1537	10.15%	69.96%	19.90%
		1400		0.3611	231	462	228	1680	494	1601	9.49%	69.94%	20.57%
		1500		0.4216	198	395	195	1747	529	1648	7.90%	70.69%	21.41%
		500		0.1347	619	1238	611	1075	176	1242	32.82%	57.72%	9.47%
		600		0.1591	524	1048	517	1142	212	1248	27.65%	61.04%	11.31%
		700		0.1800	463	926	457	1210	247	1276	23.90%	63.20%	12.90%
		800		0.2031	410	821	405	1277	282	1310	20.64%	65.00%	14.37%
	250	900		0.2232	373	747	369	1344	318	1354	18.17%	66.19%	15.64%
100	230	1000	7	0.2430	343	686	339	1411	353	1402	16.11%	67.11%	16.78%
		1100		0.2632	317	633	313	1478	388	1453	14.35%	67.84%	17.81%
		1200		0.2823	295	590	292	1546	423	1507	12.90%	68.37%	18.73%
		1300		0.2922	285	570	282	1613	459	1569	11.97%	68.53%	19.49%
		1400		0.2987	279	558	276	1680	494	1633	11.25%	68.58%	20.17%
		1500		0.3469	240	480	237	1747	529	1676	9.44%	69.50%	21.05%
		500		0.1198	696	1391	687	1075	176	1293	35.45%	55.45%	9.10%
		600		0.1429	583	1166	576	1142	212	1287	29.85%	59.18%	10.97%
		700		0.1631	511	1022	505	1210	247	1308	25.74%	61.67%	12.59%
		800		0.1790	466	931	460	1277	282	1346	22.78%	63.24%	13.98%
	300	900		0.1944	429	857	424	1344	318	1390	20.31%	64.46%	15.23%
	300	1000		0.2140	389	779	385	1411	353	1433	17.90%	65.67%	16.42%
		1100		0.2304	362	723	357	1478	388	1483	16.07%	66.48%	17.45%
		1200		0.2406	346	693	342	1546	423	1541	14.81%	66.87%	18.32%
		1300		0.2465	338	676	334	1613	459	1604	13.89%	67.05%	19.07%
		1400		0.2488	335	670	331	1680	494	1670	13.21%	67.07%	19.72%
		1500		0.2926	285	570	281	1747	529	1705	11.00%	68.31%	20.69%
		500		0.1740	719	1437	710	1344	176	1487	31.83%	60.26%	7.91%
		600		0.2055	608	1217	601	1428	212	1494	26.82%	63.73%	9.45%
		700		0.2363	529	1058	523	1512	247	1521	22.91%	66.27%	10.82%
		800		0.2702	463	925	457	1596	282	1557	19.57%	68.34%	12.09%
150	100	900	10	0.3131	399	798	394	1680	318	1595	16.49%	70.23%	13.28%
		1000		0.3651	342	685	338	1764	353	1637	13.78%	71.85%	14.37%
		1100		0.4369	286	572	283	1848	388	1679	11.22%	73.37%	15.41%
		1200		0.5047	248	495	245	1932	423	1733	9.41%	74.30%	16.28%
		1300		0.5542	226	451	223	2016	459	1798	8.26%	74.74%	17.00%
		1400		0.5831	214	429	212	2100	494	1871	7.55%	74.85%	17.61%
		1500		0.6855	182	365	180	2184	529	1929	6.23%	75.48%	18.29%

Table A1. Cont.

Power (kW)	Air Gap (mm)	W _t (mm)	Core Thickness (mm)	Coupling Coefficient	N_1I_1	$\begin{array}{c} \text{Bidirectional} \\ N_1 I_1 \end{array}$	Leeds Wire Cost	Core Cost	Aluminum Plate Cos	Total Cost (RMB/m)	Litz Cost Percentage	Core Cost Percentage	Aluminum Plate Cost Percentage
		500		0.1586	788	1576	779	1344	176	1533	33.87%	58.46%	7.67%
		600		0.1904	657	1313	649	1428	212	1526	28.35%	62.40%	9.25%
		700		0.2202	568	1135	561	1512	247	1547	24.18%	65.18%	10.65%
		800		0.2510	498	996	492	1596	282	1580	20.76%	67.33%	11.91%
	150	900		0.2862	437	874	432	1680	318	1619	17.76%	69.16%	13.07%
		1000		0.3216	389	777	384	1764	353	1667	15.36%	70.54%	14.11%
		1100		0.3669	341	681	337	1848	388	1715	13.08%	71.83%	15.09%
		1200		0.4078	307	613	303	1932	423	1772	11.39%	72.68%	15.93%
		1300		0.4368	286	572	283	2016	459	1838	10.25%	73.11%	16.63%
		1400		0.4559	274	548	271	2100	494	1910	9.46%	73.30%	17.24%
		1500		0.5375	233	465	230	2184	529	1962	7.81%	74.21%	17.98%
		500		0.1504	831	1662	821	1344	176	1561	35.07%	57.40%	7.53%
		600		0.1793	697	1394	689	1428	212	1552	29.58%	61.33%	9.09%
		700		0.2038	613	1227	606	1512	247	1577	25.62%	63.93%	10.44%
		800		0.2315	540	1080	533	1596	282	1608	22.12%	66.18%	11.70%
	200	900		0.2584	484	967	478	1680	318	1650	19.31%	67.87%	12.83%
		1000		0.2860	437	874	432	1764	353	1699	16.94%	69.21%	13.84%
		1100		0.3161	395	791	391	1848	388	1751	14.87%	70.35%	14.78%
		1200		0.3428	365	729	360	1932	423	1810	13.27%	71.14%	15.59%
		1300		0.3638	344	687	339	2016	459	1876	12.06%	71.64%	16.30%
		1400		0.3738	334	669	330	2100	494	1950	11.30%	71.81%	16.89%
150		1500	. 10	0.4175	299	599	296	2184	529	2006	9.83%	72.58%	17.59%
150		500	10	0.1371	912	1823	901	1344	176	1614	37.20%	55.51%	7.29%
		600		0.1629	767	1535	758	1428	212	1599	31.62%	59.55%	8.83%
		700		0.1868	669	1338	661	1512	247	1613	27.32%	62.48%	10.21%
		800		0.2088	599	1197	591	1596	282	1646	23.95%	64.62%	11.43%
	250	900		0.2284	547	1095	541	1680	318	1692	21.30%	66.19%	12.51%
		1000		0.2510	498	996	492	1764	353	1739	18.86%	67.62%	13.52%
		1100		0.2730	458	916	452	1848	388	1792	16.83%	68.74%	14.44%
		1200		0.2897	431	863	426	1932	423	1854	15.33%	69.45%	15.22%
		1300		0.2998	417	834	412	2016	459	1924	14.27%	69.84%	15.89%
		1400		0.3051	410	819	405	2100	494	1999	13.50%	70.03%	16.47%
		1500		0.3534	354	707	349	2184	529	2042	11.41%	71.31%	17.28%
		500		0.1218	1026	2053	1014	1344	176	1690	40.01%	53.03%	6.96%
		600		0.1444	866	1731	855	1428	212	1663	34.28%	57.24%	8.49%
		700		0.1645	760	1520	751	1512	247	1673	29.91%	60.25%	9.84%
		800		0.1838	680	1360	672	1596	282	1700	26.35%	62.58%	11.07%
	300	900		0.2020	619	1238	611	1680	318	1739	23.43%	64.39%	12.17%
	000	1000		0.2175	575	1149	568	1764	353	1790	21.15%	65.71%	13.14%
		1100		0.2316	540	1079	533	1848	388	1846	19.26%	66 73%	14.01%
		1200		0.2445	511	1022	505	1932	423	1907	17.66%	67.54%	14.80%
		1300		0.2510	498	996	492	2016	459	1978	16,59%	67.95%	15.46%
		1400		0.2554	489	979	484	2100	494	2052	15.71%	68.24%	16.05%
		1500		0.2947	424	848	419	2184	529	2088	13.38%	69.72%	16.90%

Table A1. Cont.

Power (kW)	Air Gap (mm)	W _t (mm)	Core Thickness (mm)	Coupling Coefficient	N_1I_1	Bidirectional N_1I_1	Leeds Wire Cost	Core Cost	Aluminum Plate Cos	Total Cost (RMB/m)	Litz Cost Percentage	Core Cost Percentage	Aluminum Plate Cost Percentage
		500		0.2125	784	1569	775	1971	176	1948	26.51%	67.45%	6.04%
		600		0.2536	657	1314	649	2094	212	1970	21.97%	70.87%	7.16%
		700		0.2852	584	1169	577	2218	247	2028	18.98%	72.90%	8.12%
		800		0.3229	516	1032	510	2341	282	2089	16.28%	74.71%	9.01%
	100	900		0.3631	459	918	454	2464	318	2157	14.02%	76.17%	9.82%
		1000		0.4222	395	790	390	2587	353	2220	11.71%	77.69%	10.60%
		1100		0.4876	342	684	338	2710	388	2291	9.83%	78.88%	11.29%
		1200		0.5503	303	606	299	2834	423	2371	8.41%	79.68%	11.91%
		1300		0.6020	277	554	274	2957	459	2459	7.41%	80.15%	12.43%
		1400		0.6303	264	529	261	3080	494	2557	6.81%	80.31%	12.88%
		1500		0.6323	264	527	260	3203	529	2662	6.52%	80.22%	13.25%
		500		0.1683	990	1981	978	1971	176	2084	31.30%	63.06%	5.64%
		600		0.2033	820	1640	810	2094	212	2077	25.99%	67.21%	6.79%
		700		0.2316	720	1439	711	2218	247	2117	22.39%	69.83%	7.78%
		800		0.2645	630	1260	623	2341	282	2164	19.18%	72.12%	8.70%
	150	900		0.3012	553	1107	547	2464	318	2219	16.43%	74.03%	9.54%
		1000		0.3412	488	977	483	2587	353	2282	14.10%	75.59%	10.31%
		1100		0.3844	434	867	428	2710	388	2351	12.15%	76.85%	11.00%
		1200		0.4251	392	784	387	2834	423	2430	10.63%	77.75%	11.62%
		1300		0.4546	367	733	362	2957	459	2518	9.59%	78.27%	12.14%
		1400		0.4760	350	700	346	3080	494	2613	8.83%	78.57%	12.60%
		1500		0.4744	351	703	347	3203	529	2720	8.51%	78.52%	12.97%
		500		0.1527	1091	2183	1078	1971	176	2151	33.43%	61.10%	5.47%
	200	600		0.1880	887	1773	876	2094	212	2121	27.53%	65.82%	6.65%
		700		0.2154	774	1548	764	2218	247	2153	23.67%	68.68%	7.65%
200		800	15	0.2421	688	1377	680	2341	282	2202	20.59%	70.86%	8.55%
		900		0.2693	619	1238	611	2464	318	2262	18.02%	72.62%	9.36%
		1000		0.2986	558	1116	551	2587	353	2328	15.79%	74.10%	10.11%
				0.3274	509	1018	503	2710	388	2401	13.97%	75.26%	10.78%
		1200		0.3547	470	940	464	2834	423	2481	12.48%	76.15%	11.38%
		1300		0.3735	446	892	441	2957	459	2571	11.43%	76.67%	11.89%
		1400		0.3854	432	865	427	3080	494	2667	10.68%	76.98%	12.35%
		1500		0.3826	436	871	430	3203	529	2775	10.34%	76.95%	12.71%
		500		0.1411	1181	2362	1167	1971	176	2210	35.21%	59.47%	5.32%
		600		0.1708	976	1952	964	2094	212	2180	29.48%	64.05%	6.47%
		700		0.1936	861	1722	851	2218	247	2210	25.66%	66.89%	7.45%
		800		0.2185	763	1526	754	2341	282	2251	22.32%	69.32%	8.36%
	250	900		0.2382	700	1399	691	2464	318	2315	19.91%	70.95%	9.14%
		1000		0.2618	637	1273	629	2587	353	2379	17.62%	72.49%	9.89%
				0.2830	589	1178	582	2710	388	2454	15.81%	73.64%	10.55%
		1200		0.3007	554	1109	548	2834	423	2536	14.39%	74.48%	11.13%
		1300		0.3134	532	1064	525	2957	459	2627	13.33%	75.03%	11.64%
		1400		0.3192	522	1044	516	3080	494	2727	12.61%	75.31%	12.08%
		1500		0.3182	524	1048	517	3203	529	2833	12.18%	75.37%	12.45%
				0.1271	1311	2623	1296	1971	176	2296	37.63%	57.25%	5.12%
		600		0.1535	1086	2172	1073	2094	212	2253	31.75%	61.99%	6.27%
				0.1743	956	1912	945	2218	247	2273	27.71%	65.05%	7.24%
		800		0.1919	869	1737	858	2341	282	2321	24.65%	67.24%	8.11%
	300	900		0.2106	791	1583	782	2464	318	2376	21.94%	69.15%	8.91%
		1000		0.2270	734	1468	725	2587	353	2444	19.79%	70.58%	9.63%
		1100		0.2434	685	1369	677	2710	388	2517	17.92%	71.80%	10.28%
		1200		0.2557	652	1304	644	2834	423	2601	16.51%	72.64%	10.85%
		1300		0.2632	633	1266	626	2957	459	2694	15.48%	73.17%	11.35%
		1400		0.2664	626	1251	618	3080	494	2795	14.74%	73.47%	11.78%
		1500		0.2737	609	1218	602	3203	529	2889	13.88%	73.91%	12.21%

References

- Liu, Z.-H.; Sang, M.-Y.; Wu, L. Developing history and trends of Chinese expressway's toll collection technique. In Proceedings of the 2017 2nd IEEE International Conference on Intelligent Transportation Engineering (ICITE), Singapore, 1–3 September 2017; pp. 219–222. [CrossRef]
- 2. Nie, D.; Li, Y.-B.; Li, X.-Y. Dynamic Spillovers and Asymmetric Spillover Effect between the Carbon Emission Trading Market, Fossil Energy Market, and New Energy Stock Market in China. *Energies* **2021**, *14*, 6438. [CrossRef]
- Frieske, B.; Kloetzke, M.; Mauser, F. Trends in vehicle concept and key technology development for hybrid and battery electric vehicles. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013; pp. 1–12. [CrossRef]
- Li, S.-Q.; Lu, S.-Z.; Mi, C.C. Revolution of Electric Vehicle Charging Technologies Accelerated by Wide Bandgap Devices. *Proc. IEEE* 2021, 109, 985–1003. [CrossRef]
- Li, W.-H.; Zhao, H.; Li, S.-Q.; Deng, J.-J.; Kan, T.-Z.; Mi, C.-C. Integrated LCC Compensation Topology for Wireless Charger in Electric and Plug-in Electric Vehicles. *IEEE Trans. Ind. Electron.* 2015, 62, 4215–4225. [CrossRef]
- Malan, J.; Kamper, M.-J. Performance of a hybrid electric vehicle using reluctance synchronous machine technology. *IEEE Trans. Ind. Appl.* 2001, 37, 1319–1324. [CrossRef]
- Mapelli, F.-L.; Tarsitano, D.; Mauri, M. Plug-In Hybrid Electric Vehicle: Modeling, Prototype Realization, and Inverter Losses Reduction Analysis. *IEEE Trans. Ind. Electron.* 2010, 57, 598–607. [CrossRef]
- Lombardi, P.; Heuer, M.; Styczynski, Z. Battery switch station as storage system in an autonomous power system: Optimization issue. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–6. [CrossRef]
- 9. Yao, Y.; Du, L. Design of Intelligent Vehicle Based on Dynamic Wireless Charging. In Proceedings of the 2020 12th International Conference on Advanced Computational Intelligence (ICACI), Dali, China, 14–16 August 2020; pp. 402–407. [CrossRef]
- Gunji, G.; Mukai, Y.; Imura, T.; Fujimoto, H. Basic Study on Arrangement Design of In-Motion Charging Facility on Urban Roads. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 5153–5158. [CrossRef]
- Liu, Z.; Su, Y.-G.; Zhao, Y.-M.; Hu, A.-P.; Dai, X. Capacitive Power Transfer System with Double T-Type Resonant Network for Mobile Devices Charging/Supply. *IEEE Trans. Power Electron.* 2022, 37, 2394–2403. [CrossRef]
- 12. Moon, S.-C.; Kim, B.-C.; Cho, S.-Y.; Ahn, C.-H.; Moon, G.-W. Analysis and Design of a Wireless Power Transfer System with an Intermediate Coil for High Efficiency. *IEEE Trans. Ind. Electron.* **2014**, *61*, 5861–5870. [CrossRef]
- Miller, J.-M.; Jones, P.-T.; Li, J.-M.; Onar, O.-C. ORNL Experience and Challenges Facing Dynamic Wireless Power Charging of EV's. *IEEE Circuits Syst. Mag.* 2015, 15, 40–53. [CrossRef]
- Choi, S.-Y.; Gu, B.-W.; Jeong, S.-Y.; Chun, T. Rim. Advances in Wireless Power Transfer Systems for Roadway-Powered Electric Vehicles. *IEEE J. Emerg. Sel. Top. Power Electron.* 2015, *3*, 18–36. [CrossRef]
- Mi, C.-C.; Buja, G.; Choi, S.-Y.; Rim, C.-T. Modern Advances in Wireless Power Transfer Systems for Roadway Powered Electric Vehicles. *IEEE Trans. Ind. Electron.* 2016, 63, 6533–6545. [CrossRef]
- 16. Budhia, M.; Boys, J.-T.; Covic, G.-A.; Huang, C.-Y. Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems. *IEEE Trans. Ind. Electron.* **2013**, *60*, 318–328. [CrossRef]
- 17. Wu, L.-P.; Pang, C.-P. National Economic Evaluation Model about Urban Public Transportation Structure Optimization. *Appl. Mech. Mater.* **2014**, *610*, 1050–1052. [CrossRef]
- 18. Ahmad, A.; Alam, M.-S.; Chabaan, R. A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles. *IEEE Trans. Transp. Electrif.* **2018**, *4*, 38–63. [CrossRef]
- 19. Sampath, J.-P.-K.; Vilathgamuwa, D.-M.; Alphonse, A. Efficiency Enhancement for Dynamic Wireless Power Transfer System with Segmented Transmitter Array. *IEEE Trans. Transp. Electrif.* **2016**, *2*, 76–85. [CrossRef]
- Zhan, W.-W. Research on quality control method of road engineering construction based on genetic algorithm. In Proceedings of the 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), Nanjing, China, 15–17 October 2021; pp. 1–7. [CrossRef]
- 21. Xue, X.-J.; Jia, Y.-H.; Tang, Y.-J. Expressway Project Cost Estimation with a Convolutional Neural Network Model. *IEEE Access* **2020**, *8*, 217848–217866. [CrossRef]
- Zhang, Y.-M.; Pan, W.-B.; Wang, H.; Shen, Z.-W.; Wu, Y.-C.; Dong, J.-Q.; Mao, X.-K. Misalignment-Tolerant Dual-Transmitter Electric Vehicle Wireless Charging System with Reconfigurable Topologies. *IEEE Trans. Power Electron.* 2022, 37, 8816–8819. [CrossRef]
- 23. Bosshard, R.; Iruretagoyena, U.; Kolar, J.-W. Comprehensive Evaluation of Rectangular and Double-D Coil Geometry for 50 kW/85 kHz IPT System. *IEEE J. Emerg. Sel. Top. Power Electron.* **2016**, *4*, 1406–1415. [CrossRef]
- 24. Rus, G.; Socorro, M.; Campos, J. Cost-benefit analysis of transport projects: Theoretical framework and practical rules. *Energy* **2022**, 123, 25–39. [CrossRef]
- 25. Lewczuk, K.; Wasiak, M. Transportation Services Costs Allocation for the Delivery System. In Proceedings of the 2011 21st International Conference on Systems Engineering, Las Vegas, NV, USA, 16–18 August 2011; pp. 429–433. [CrossRef]
- 26. Yin, Z.-B.; Guo, Q.-W.; Xiao, Q. City logistics transportation invisible cost control based on ITS. In Proceedings of the 6th Advanced Forum on Transportation of China (AFTC 2010), Beijing, China, 16 October 2010; pp. 204–210. [CrossRef]

- 27. Vajihi, M.; Ricci, S. Energy Efficiency Assessment of Rail Freight Transport: Freight Tram in Berlin. *Energies* 2021, 14, 3982. [CrossRef]
- 28. He, Z.-B.; Zhang, W.-Y.; Jia, N. Estimating Carbon Dioxide Emissions of Freeway Traffic: A Spatiotemporal Cell-Based Model. *IEEE Trans. Intell. Transp. Syst.* 2020, 21, 1976–1986. [CrossRef]
- Gousios, S.; Mazzenga, N.-J.; Park, B. Determining Highway Toll: Revenue Maximization Approach. In Proceedings of the 2007 IEEE Intelligent Transportation Systems Conference, Bellevue, WA, USA, 30 September–3 October 2007; pp. 607–612. [CrossRef]
- Liu, Y.-H.; Sun, J.-Y.; Miu, Y.-F. Research on the calculation method of link traffic volume based on database of expressway loading based toll collection. In Proceedings of the 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, 6–18 April 2011. [CrossRef]
- Ji, P.-R.; Luo, X.-J.; Zou, H.B. A study on properties of GM (1,1) model and direct GM (1,1) model. In Proceedings of the 2007 IEEE International Conference on Grey Systems and Intelligent Services, Nanjing, China, 18–20 November 2007; pp. 399–403. [CrossRef]