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Abstract: The application of Lithium Metal Batteries (LMBs) as secondary cells is still limited due
to dendrite degradation mechanisms arising with cycling and responsible for safety risk and early
cell failure. Studies to prevent and suppress dendritic growth using state-of-the-art materials are in
continuous development. Specific detection techniques can be applied to verify the internal condition
of new LMB chemistries through cycling tests. In this work, six non-invasive and BMS-triggerable
detection techniques are investigated to anticipate LMB failures and to lay the basis for innovative
self-healing mechanisms. The novel methodology is based on: (i) defining detection parameters to
track the evolution of cell aging, (ii) defining a detection algorithm and applying it to cycling data, and
(iii) validating the algorithm in its capability to detect failure. The proposed methodology is applied
to Lil INMC pouch cells. The main outcomes of the work include the characterization results of the
tested LMBs under different cycling conditions, the detection techniques performance evaluation,
and a sensitivity analysis to identify the most performing parameter and its activation threshold.
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1. Introduction

The continuous demand for electrical storage systems with ever-growing energy
density has focused research and innovation on the development of batteries that can pro-
vide superior performance over the Lithium Ions Batteries (LIBs), also called beyond-LIB
technologies [1-3]. A detailed review about cathode and anode materials for developing
state-of-the-art and future battery technologies is given by Divakaran et al. in [4], highlight-
ing the viable materials to be used for research and development of new LIBs. Among
many beyond-LIBs, rechargeable Lithium Metal Batteries (LMBs) have been extensively
researched in recent years for their valuable properties [5,6]. Lithium metal is an ideal an-
ode material for its extremely high theoretical specific capacity (3860 mAh/g), low density
(0.59 g/cm?®) and the lowest negative electrochemical potential (—3.05 V vs. standard
hydrogen electrode). However, the applications of secondary LMBs have always been
limited due to one main degradation mechanism: the dendrite growth leading to safety
risk and early cell failure [7-10]. Whatever may be the testing conditions (e.g., current
rate, voltage range, temperature), LMB degradation starts from the Beginning of Life
(BoL) [11]. Dendrite nucleation takes place from the inhomogeneities of the Solid Elec-
trolyte Interphase (SEI) which represents a high conductive pathway for lithium ions. The
concentrated lithium ions are reduced causing fractures in the SEI layer due to volumetric
expansion. These fractures represent suitable sites for deposition of lithium metal forming
the dendrite [12,13]. The high conductivity of the initial deposition causes the dendritic
structure to continuously grow assuming various morphologies which depend on cycling
conditions [11,14]. In [15] Frenck et al. classified these morphologies in three main groups:
(i) whiskers, which are long and thin needle-shaped lithium metal frames growing from
the anode and covered with the SEI layer; (ii) mossy lithium, which corresponds to an accu-
mulation of solid lithium cluster with holes and internal cavities filled with electrolyte and
characterized by a large interface surface area that increases reactions with the electrolyte;
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and (iii) fractal dendrites, which are thin, highly ramified structures growing directly from
a layer of mossy lithium. The three listed morphologies occur in different testing conditions
or after different timing that is always strictly correlated to the specific components and
design of the cell under test [15]. Knowing the effects of these morphologies contribute
to understanding LMB degradation. During the cell’s early cycles, dendritic deposition is
mossy and then progresses in a fractal configuration when the lithium ion concentration
reaches zero value at the interface between the anode and the electrolyte [11,15]. The transi-
tion between mossy and fractal dendrites is described by Sand’s principle and occurs at
the so-called Sand’s time [16]. This transition time depends on the applied current density
and on the total amount of exchanged capacity. For instance, large current density leads to
a fast-growing fractal dendrite structure that may penetrate the separator and may cause
hazardous internal short circuits [17,18]. In addition to the short circuit risk, during the
discharging phase, lithium metal is mainly stripped from dendrites causing the detachment
of dendrite sections and resulting in electrically isolated inactive dead lithium [19,20]. Chen
et al. deepened the dead lithium impact on the mass transport in LMBs, proving that the
growth of a dead lithium layer, characterized by a small lithium ions diffusive coefficient, is
associated with an increase of the electrode overpotential which results in an arcing effect
of the voltage shape profile [21]. At later cycles, as the dead lithium layer thickens and
the overpotential becomes more significant, the cell begins to be cycled between a much
shallower voltage range, preventing a complete lithiation or delithiation of the cathode,
thus resulting in cell capacity fade [22].

Studies to prevent and suppress the dendrite growth mechanisms are under continuous
development and are classified as a self-healing method [23]. The most recent promising
solutions involve the use of optimized electrolytes with protective additives, the modulation of
lithium metal anodes and the introduction of piezoelectric separators [24-27]. Characterizing
new LMB chemistries through the application of a detection technique becomes fundamen-
tal to study their behavior and to determine when dendritic degradation is going to occur
in order to act accordingly. An extensive review about existing and emerging detection
techniques for LMB degradation is given by Paul et al. in [28]. These detection techniques
are classified into four groups, depending on their nature and application method: elec-
trochemical in situ methods, mechanical methods, spectroscopic operando methods and
chemical ex situ methods. Electrochemical in situ methods are the most promising for BMS
application [29,30]. However, existing works on LMBs degradation detection are all at the
development stage and have only investigated the possibility to track phenomena but not
to concretely use that information to trigger actions [28].

This work analyzes and combines non-invasive detection techniques to present a
novel methodology to detect LMBs degradation, laying the basis for the concreate appli-
cation of LMBs self-healing mechanisms triggered by the BMS. The work is structured as
follows. Section 2 shows the six selected electrochemical characterization techniques and
the innovative methodology developed to apply the detection parameters as degradation
identification tools. Section 3 presents the details of the experimental procedure, the most
relevant results of the tests and the application of the detection techniques for the determi-
nation of approaching degradations. Section 4 discusses and identifies the most performing
detection parameter based on an extensive sensitivity analysis.

2. Materials and Methods

This section includes an overview of non-invasive characterization techniques for the
detection of degradation mechanisms in LMBs and the developed methodology to bench-
mark and validate the detection parameters extracted by the characterization techniques.
The methodology has been applied to lithium metal pouch cells produced in the framework
of the Horizon 2020 project HIDDEN [31]. The cells consist of Lithium Nickel Manganese
Cobalt Oxide (LiNig 5Mng 3C0(20,) as the active cathode, coated on top of a 15 um thick
aluminum current collector, and a copper foil double coated with lithium metal mixed with
a small amount of aluminum as an anode material (99.7% Li and 0.3% Al) and a monolayer
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polypropylene separator of 20-40 pum thickness. Commercially available state-of-the-art
electrolyte for lithium metal anodes is added. A total of 5 cathode foils and 6 anode foils
alternated with 12 separator layers are stacked into the pouch cell. The stack is prepared
under a control environment in a glovebox and filled with the electrolyte before sealing
in a four-layer pouch foil of PET, oriented nylon, aluminum and polypropylene housing.
The cells have been produced in three batches at different times, with an average weight
of 11 g, a theoretical capacity of 670 mAh and an estimated gravimetric energy density of
225 Wh/Kg.

2.1. Detection Techniques

As mentioned in the introduction, electrochemical non-invasive techniques that do
not require cell modifications or major add-ons in a system are selected here for possible
application in real BMS. Aging tracking methods, already verified for LIBs, are analyzed to
select the most relevant techniques for the application with LMBs.

Incremental capacity (IC) is used as an effective method to analyze the aging mecha-
nisms based on the discrete derivative of the cell’s voltage with respect to the exchanged
capacity dQ/dV [32-35]. Voltage plateaus during charging and discharging processes,
corresponding to specific electrochemical phase transitions, are converted into clearly iden-
tifiable peaks on the IC curve as shown in Figure la. Several works proved that Loss of
Active Anode Material (LAM), responsible for capacity fade and limited cyclability, leads
to peak intensity reduction and peak position variation in the dQ/dV curve [36—40]. Since
the formation of dead lithium causes detachment and isolation of active lithium metal, its
development is directly detectable on the IC profile. Similarly to IC, Differential Voltage
(DV) analysis is an investigation technique given by the inverse derivative dV/dQ [41-43].
Therefore, the DV curve provides information similar to the IC curve but with a different
representation (peaks of IC are valleys of DV). Depending on the specific application, it
may be more appropriate to use the IC or the DV profile.
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Figure 1. Characterization techniques: (a) Incremental Capacity (IC) during discharging phase;
(b) Coulombic Efficiency (CE); (c) EIS spectrum; (d) voltage profile with mid-voltage (M-V) and
cycle-time (C-T).
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Coulombic Efficiency (CE) is a widely used technique exploited to monitor the degra-
dation rate inside a cell [28,33,44-46]. The CE of a cell is defined as the ratio between
the delivered capacity during the discharging and during the charging processes of a
given cycle; an example of its trend is shown in Figure 1b. In LMBs, the formation of
inactive dead lithium leads to a low CE. In [47], C. Fang et al. experimentally demonstrated
that the amount of unreacted metallic lithium shows a linear relationship with loss of
CE, whereas the lithium ions compound concentration is nearly constant during the CE
reduction, implying that the CE decrease in LMB is led by the thickening of the isolated and
unreacted lithium layer. Coulombic Efficiency Determination (CED) requires a dedicated
test, consisting of continuous cycling at full Depth of Discharge (DoD). In addition, a high
sampling rate is required to obtain accurate and reliable CE values, making this technique
complicated to be applied and integrated into real BMS systems.

Electrochemical Impedance Spectroscopy (EIS) is a powerful characterization technique
consisting of the application of a sinusoidal current signal and measuring the voltage
response of the cell at different frequencies to compute the impedance [35,48-53]. Therefore,
in BMS applications, a dedicated hardware is required for its application. The resulting
impedance curve is normally represented in the Nyquist plot, as shown in Figure 1c and is
characterized by three frequency regions [48]: high-frequency region (>1 kHz) including
the inductive and ohmic behavior, mid-frequency region (0.1 Hz-1000 Hz) associated to
the resistive-capacitive behavior of the charge-transfer processes and low-frequency region
(<0.1 Hz) related to the capacitive behavior of the diffusive processes. As observed in [35],
EIS spectra throughout cycling are affected by Loss of Lithium Inventory (LLI), that is
the consumption of lithium ions by parasitic reaction (SEI growth) and decomposition
reactions of the SEI or the electrolyte and LAM processes. EIS has been applied to LMBs [50],
showing a large rise of the mid-frequency arch in both real and imaginary impedances and
an increase of the ohmic resistance. Impedance evolution during cell aging can be tracked
by fitting the curve with Equivalent Circuit Models (ECMs) and by tracking the impedance
value of specific parameters (e.g., the maximum of the arch, the width of the arch and the
minimum before the tail) [54,55].

Mid-Voltage (M-V) and Cycle-Time (C-T): As a consequence of the dead lithium layer
thickening, an increasing electrode overpotential is introduced, leading to an arcing in the
voltage profile during the charging process [21]. Furthermore, the increasing overpotential
causes the voltage to reach the set maximum and the minimum limit values faster in time
during cycling. The evolution of the voltage shape profile (M-V) is recorded by measuring
the voltage value at the halfway point in time during charging, as represented in Figure 1d.
The time duration of a cycle is then adopted to evaluate the aging state of the cell and the
ongoing impact of dead lithium with the C-T parameter.

Table 1 summarizes and ranks the listed characterization techniques depending on
different criteria. EIS can be performed in the shortest time. All detection techniques can
be implemented into embedded systems (e.g., BMS), but both EIS and CE are considered
more complex measurement techniques. IC/DV and EIS parameters allow for the detection
of degradation and discriminate the degradation modes (e.g., loss of active material, loss
of lithium ions). Mid-Voltage and Cycle Time parameters only allow us to detect the
accumulation of dead lithium without more details. Finally, some of the listed techniques
allow us to calculate Li plating and stripping rates. These values are useful to quantify the
cell degradation in more detail.

2.2. Methodology

The procedure developed to benchmark the detection techniques is schematically rep-
resented in Figure 2, including four steps: cell testing, detection parameters identification,
thresholds setting and validation. These steps will be described in the next paragraphs.
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Figure 2. Schematic representation of the developed methodology.

Table 1. Evaluation of measurement and detection characteristics of the techniques analyzed for LMB

degradation detection.

Technique Length Complexity Applicability Degradation Modes Qu]a?rf:li‘fiiitfion
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CE L] ] | W] 0oa | ] L[] ]
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2.2.1. Cell Testing

A scheme of the cell testing protocol is represented in Figure 3. The procedure is

divided in three main steps:

Formation and characterization: The formation process for the initial SEI layer estab-
lishment is performed via two full cycles at low C-rate. The characterization is based
on the Battery Capacity Determination (BCD)—a full charge and discharge cycle at
specific current rate—and EIS measurements.

Cycling: consecutive charge—discharge cycles at specific C-rate and DoD.

Diagnosis: The cell properties are checked regularly after a fixed number of cycles.
BCD is performed to obtain the cell’s updated capacity (i.e., SoH) and to compute
the IC, M-V and C-T characterization techniques. EIS in the frequency range of
10 kHz-10 mHz with C/50 AC current excitation are performed at different OCVs
(i-e., SoCs).

Diagnosis
(BCD +EIS)

Cycling

Figure 3. Schematic representation of the cell testing protocol.

After the initial characterization step, cycling and diagnosis are lopped until the cell

reaches the End of Life (EoL), represented by a SoH lower than 70%. The only exception is
represented by the Coulombic Efficiency protocol, which consists of continuous cycling
without interruptions until the EoL of the cell.

2.2.2. Detection Parameters Identification

The experimental results collected during the cell testing are analyzed to define the

detection parameters as reported in the last column of Table 2:

IC: The variation of the peak intensity during the discharge phase constitutes a
parameter to follow the degradation of the cell. Generally, low current rates during
the diagnosis cycle are recommended to have the cell close to equilibrium condition
and thus obtain better parameter results. Low rates are preferable (~C/20), but it is
proven that even at higher rates (~1C), relevant aging signs are still identifiable [39].
Since the information of the DV and IC profile are similar, only IC analysis is adopted
in this study.
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CE: The CE technique itself represents the detection parameter.
EIS: Impedance spectra are tracked by recording specific impedance in the three
main frequency zones: the local maximum, the width of the mid-frequency semiarch,
and the local minimum before the diffusive tail. The resulting Zmax Zarch, and Zmin
represent suitable parameters to track the impedance evolution as the cell faces aging
processes. In this study, the imaginary part of Zmax and Zpn, is used.

e M-V and C-T: themselves represent the parameters for detection. Both the parameters
are retrieved from full diagnosis cycles at regular intervals during testing.

Table 2. Description of characterization techniques and overview of selected detection parameters.

Technique Measurement Protocol Elaboration (If Present) Detection Parameter
IC Full charge or discharge IC = % Peak intensity
CE Full cycle CE = % CE value
charge
EIS EIS Zarch: Zmin - Zohm Zarchr Zmax?imr Zminﬁim
M-V Full charge Mid — voltage = Vcharge(t = t““%) M-V
C-T Full cycle Cycle time = t, 4 — to C-T

2.2.3. Thresholds Setting

Through the application of the above presented techniques, the detection parameters
are extracted and tracked. Figure 4a exemplifies a parameter variation with respect to its
initial value. The parameters usually exhibit small variations between consecutive diagnos-
tic assessments, whereas large and rapid changes occur at later cycles when degradation
processes become more relevant. A threshold is set to identify when the transition between
the low and high degradation rate occurs:

Ap =p; —p; _; > [Threshold] 1

where Ap is the difference between the actual parameter value p; and its previous point
p; _ ;- If a threshold is exceeded during testing, as represented at the check n.3 of Figure 4a,
a warning signal is triggered to report an upcoming degradation.

Y Threshold I Sofl
T _ range 4
g8
z o Eu )
aR *
=2 P = SoH
2 E : (o) variation
g s | check.3 @
& st L T N S
___________ 1 x| check.2
check.1
Number of cycles Number of cycles
(a) (b)

Figure 4. Detection algorithm: (a) application of thresholds between consecutive measurements of

detection parameters; (b) validation procedure.

2.2.4. Validation

The validation procedure is then applied to verify whether the warning signal resulting
from exceeding a specific parameter threshold truly represents a condition preceding a
degradation of the LMB. The process is based on two State of Health (SoH) checks at the

triggering event:
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e SoHrange: At the time when the trigger is activated, the SoH of the cell must be between
two limits. This is performed to avoid too early or too late self-healing activation.

e  SoH variation: The variation between the SoH of the cell at the time when the trigger is
activated and the SoH at the following diagnosis step is used to check if the parameter
is detecting and preventing a fast degradation.

Figure 4b shows a graphical representation of the validation procedure for the generic
parameter triggered at the check n.3. The fulfillment of both criteria implies that the
detection parameter with the selected threshold is suitable for the LMB failure detection.

3. Results and Discussion

Characterization and cycling tests were performed at the Sustainable Energy Center
laboratories of CSEM in Neuchatel, Switzerland with a BioLogic BCS 815 [56] battery
tester (£0.01% FSD accuracy on the voltage, +0.015% FSD accuracy on current, for each
available range and EIS capability from 10 kHz to 10 mHz). The cells were placed inside a
thermostatic chamber Angelantoni ATT-DM340 [57] to prevent large temperature variations.
Table 3 collects the main characteristics of the tests performed on the three batches, under the
testing protocol shown in Figure 3: (i) number of cycles performed, the C-rate and voltage
range during formation; (ii) capacity determination and EIS during first characterization,
(iii) C-rate, DoD and number of cycles applied during cycling phase; and (iv) capacity
determination and EIS during the diagnosis phase. In short, the different batches focused
on different aspects:

e  1st batch (C-rate focused): The cells are cycled at different C-rates and at full cell
capacity (100% DoD), performing a complete diagnosis (BCD+EIS) every 10 cycles.

e  2nd batch (DoD focused): The cells are cycled at reduced DoD, keeping the same C-rate
throughout the whole test. EIS during charging are performed every equivalent cycle.

e  3rdbatch (hybrid): The tests alternate cycling phases at reduced DoD and full diagnosis
every five equivalent cycles.

Table 3. Testing protocol specifications for the three different batches of cells.

Cycling . .
Formation 1st Characterization Diagnosis
Cell ID C-Rate DoD n. of Cycles
5 C/10 100% 10
6 C/5 100% 10 BCD at C/10,
7 Cc/2 100% 10 EIS at different SoCs
3 cycles, C/10, BCD at C/10,
Istbatch 343V EIS at different SoCs 8 1C 100% 10
10 C/10 100% - CED
11 C/5 100% - CED
12 C/2 100% - CED
15 C/20 20% 5
21 C/20 50% 2
2 C/20 80% 1 ElSat3.8V
2nd batch 2 cycles, C/20, EIS at 3.8V
34V 24 C/20 100% 1
19 C/10 100% 1
17 C/20 100% - CED
36 C/20 20% 25
29 C/20 50% 10
3rd batch 2 cycles, C/20, BCD at C/20, o EIS Etcc]ljif?etzrce:r/ltl g,()Cs
34V EIS at different SoCs 38 C/20 80% 5

37 C/20 100% 5
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The cells that performed Coulombic Efficiency Determination are labelled as “CED”
in the column diagnosis (first batch and second batch).

3.1. Testing Results

When analyzing the most relevant results, Figure 5a,b show the SoH evolution re-
trieved from the BCD diagnosis as a function of the equivalent cycles, respectively, for the
1st and the 3rd batches. EIS spectra evolution (Figure 5¢c) shows a great rise both in real and
imaginary parts as the cell ages. Similarly, the IC profiles (Figure 5d) show a main peak
around 3.7 V that consistently decreases its intensity during aging and shifts rightward
between the third and fourth diagnosis steps.
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Figure 5. Test results: (a) SoH evolution profiles of the 1st batch cells; (b) SoH evolution profiles of
the 3rd batch cells; (c) EIS spectra evolution of cell ID6 at 3.9 V; (d) IC profiles of cell ID29.

Figure 6 shows the trends of the detection parameters listed in Table 2 for the 3rd
batch cells. For instance, Figure 6a shows the IC peak intensity variation batch, Figure 6b
represents the M-V parameter variation and Figure 6c shows the evolution of Z;,. All the
parameters are evaluated with respect to their initial value at BoL. The parameters follow a
common trend characterized by a sudden increase at the 12th equivalent cycle: this growth
is representative of a significant change in cell behavior, and it corresponds to the strong
SoH fade represented in Figure 5b.

Lastly, CED is analyzed in Figure 7a,b. The higher the current rate is, the earlier the
steep discharge capacity fade occurs, and consequently, the earlier CE drops to values
lower than 100%. The irregular trend of cell ID12 suggests that a current rate of C/2 is too
high for the cells under investigation.



Energies 2022, 15, 6904

9 of 14

120 — 10 + 4
o ] =—e—1D37_DoD_100% T ] =—=o—1D37_DoD_100% 0 | ——e—1D37_DoD_100%
= 100 A = b ]
1 8 4 9, — ]
.5 1 1D38_DoD_80% 5 g ID38_DoD_80% = 300 | ID38_DoD_80%
~§ 80 1 1D29_DoD_50% -§ 6 1 1D29_DoD_50% g : ID29_DoD_50%
£ 0 ] ID36_DoD_20% S ID36_DoD_20% & 200 ] ID36_DoD_20%
£ 0 { P4 o
5 407 O | 5 100 1
"é | > 2 ] 5 ]
9] 20 ] / —é ] /1 N j y
0 + \\‘Y_r\\:\/\\\ — — 2 0 ot T 0 tomrrm=e — :
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Equivalent cycles

Equivalent cycles Equivalent cycles

(a) (b) (©)
Figure 6. Examples of detection parameters trends over equivalent cycles for the cells of the 3rd
batch: (a) IC peak intensity; (b) M-V, (¢) Zaych-
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Figure 7. CED test results: (a) evolution of discharge capacity over equivalent cycles with respect to
the initial value; and (b) CE trends of the tested cells over the equivalent cycles.

Overall, the collected parameters show clear and distinct signals of cell degradation,
i.e., internal physical changes. Given the arcing effect observed in cells voltage profiles
during cycling, the degradation is mostly attributed to an accumulation of dead lithium [21].
This phenomenon causes a sudden and steep variation of the detection parameter occurring
just after an approximately steady condition.

3.2. Triggering Thresholds and Detection Parameters Validation

As per the procedure detailed in Figure 2, for each of the selected parameters, a suitable
threshold has been empirically defined as variation between two consecutive diagnosis
steps. Table 4 shows the selected values. In the case of M-V and C-T, a second limit has
been introduced to improve reliability of these indicators. The detection techniques with
the selected thresholds have been applied to the three batches, with the most representative
results reported in Figure 8.

Table 4. Triggering thresholds chosen for the detection parameters investigated.

Threshold Values

M-Vj))-(M-V,_;) > 1.25%
M=-V;)-(M—-V,) > 25%
(C—-T,)-(C—T,_;) <4%
(C-Ti) < 90%
Peak_Intensity;-Peak_intensity; ; >5%

Parameter

Mid-Voltage

Cycle Time

Incremental Capacity

Zmax_im Zmax_i — Zmax_i—1 > 15%
Zmax_im ijn_i —Zmin_jfl > 15%
Zarch Zarchﬁi - Zarchﬁi—l > 15%

Coulombic Efficiency

CE; -CEj_1 > 1.5%
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Figure 8. Detection results with triggering highlighted in yellow for: (a) cell ID6 of the 1st batch
cycling at C/5; (b) cell ID38 of the 3rd batch cycling at 80% DoD and C/20.
Regarding the 1st batch experiment, Figure 8a shows that the degradation detection
for cell ID6 is triggered in proximity of the SoH slope change for all the tested techniques.
Voltage profile-based parameters (i.e., IC, M-V, C-T) showed an earlier detection than
impedance-based ones, with the triggering event at the 13th EqC. Similar results were
obtained for cell ID38 (third batch), as shown in Figure 8b, with some early triggering
by the Znax parameter around the eighth cycle. Analogously, the detection parameters
have been evaluated for all the other tested cells. The degradation detection is validated
whenever the two criteria presented in Section 2.2.4 are fulfilled, specifically: (i) 70% <
SoH; <90% and (ii) SoH; . 1 — SoH; > 5%. Table 5 shows the validation results for the three
batches. Unfortunately, the 1st batch has been affected by the limited number of diagnostic
phases in the tests. In the case of the 2nd and 3rd batches, M-V, C-T and IC peak intensity
parameters fulfill both validation criteria in almost all the testing conditions suggesting a
good performance of the parameters to detect degradation.
Table 5. Validation procedure results for the three batch tests. The columns correspond to the testing
conditions and the rows to the detection parameters. The legend is given in the lower part of the table.
Parameter 1st Batch 2nd Batch 3rd Batch
A a o) [a) a o o) o A a n a
& & 3 § & & & & & & & & &
N X N ° X BN 2 N N BN N N BN
= B 5 £ B B 2z B F B & E G
| 1 T T T | | | 1 |
= b & | < S S S S < S 2 &
U i
S ¢ o ® § § 5 9 5§ o 5 0O
Zmax_im VARVARRVARVARED 4P XX XX ViV VI VIV XY VX XX XX XX
Zimin_im VIV VIV XX XX VI VIV VIV VIV VIXE VIXE VY XY XY
Zorch JIV VIV XIX XIX IV VIV VIV VIV XY VX Yy XX XX
M-V VIV VIV XIX O XIX O XIX XLy Iy XIY JIX VY VIV VIV VY
cT Viv VIV XIX Y VIX VY XY VY VIXE VI VI VI VY
IC peak intensity VARVARRVA RV 4P XX XX VIV Xy VIV VIV VIV VY X1X VARV
CE AN RAR - VAR - - - - - - - -
X | X: both SoH checks failed /I X: SoH range fulfilled; SoH variation failed
Legend

V/I/: both SoH checks fulfilled

X 14/: SoH range failed; SoH variation fulfilled

3.3. Sensitivity Analysis

A sensitivity analysis was applied to identify the best values for the parameters’ thresh-
olds (Table 6). Ten different thresholds values were tested for each detection parameter. The
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sensitivity analysis was applied only to the 2nd and 3rd batches, given the few diagnosis
points available in the 1st batch. The thresholds are evaluated separately, and the detection
Success Rate was computed, i.e., the ratio between the number of cases where the SoH
validation criterium was fulfilled over the total number of tested cases.

Table 6. Success rate results for SoH range and SoH variation validation procedures with the
parameter thresholds selected for the sensitivity analysis application.

Thresholds 2.5% 5% 7.5% 10%  12.5% 15%  17.5%  20%  22.5%  25%

Zmax_im [7] SoH range 22% 22% 22% 33%  33%  33% @ 22% @ 44% @ 22% = 22%
SoH var. 44% 44% 56% 56%  56%  56%  56%  78% = 67%  78%

Thresholds 2.5% 5% 7.5% 10%  12.5% 15%  17.5%  20%  22.5%  25%

Zmin_im [7] SoH range 22% 22% 22% 44%  56%  67%  67%  67% = 56%  33%
SoH var. 44% 44% 44% 67%  78%  89%  89%  89%  100% = 78%

Thresholds 2.5% 5% 7.5% 10%  12.5% 15%  17.5%  20%  22.5%  25%

Zarch [%] SoH range 22% 33% 33% 33%  44%  44%  44%  56%  33%  22%
SoH var. 44% 44% 44% 56%  67%  67%  67%  89%  78%  67%

Thresholds 0.1% 0.25% 05%  0.75% 1%  125% 15% 2%  225% 2.5%

M-V [%] SoH range 33% 33% 44% 67%  67%  67% = 56% = 44% = 44% = 44%
SoH var. 44% 44% 56% 78%  78%  78%  67%  78% = 67%  67%

Thresholds 1% 1.5% 2% 25% 3% 4% 5% 6%  75%  10%
C-T [%] SoH range 33% 44% 56% 56%  78%  89%  100%  100%  100%  100%
SoH var. 56% 56% 67% 67%  78%  78%  78%  78%  78%  78%

Thresholds 0.25% 0.5% 0.75% 1%  25% 5%  75%  10% 125%  15%

IC [%] SoH range 11% 11% 11% 1%  22%  56%  67%  67%  67%  56%
SoH var. 44% 44% 44% 44%  44%  78%  89%  100%  89%  67%

Thresholds 0.1% 0.25% 0.5% 1%  15% 2%  25% 3% 4% 5%

CE [%] SoH range 25% 25% 25% 50%  50%  50%  50%  50% = 50% = 25%
SoH var. 0% 0% 25% 25%  75%  50%  50%  50%  75%  50%

The resulting Success Rates are reported in Table 6, respectively, for the SoH range
and the SoH variation validation criteria. In the first case, mid-range thresholds allow for a
higher success rate applying all the detection techniques. Too small or too high threshold
values are ineffective, respectively, with too early and too late detection. In the second case,
the results for the SoH variation are very similar, even though larger threshold values give
a higher success rate for most of the techniques.

Thresholds” Success Rates for the two validation criteria were then combined by
retaining the lowest Success Rate value among the two applied criteria. The best threshold
value is defined as the one with the highest success rate for a specific detection parameter.
The results are listed in Table 7. Overall, the Cycle Time obtained the highest success rate
of 78%, the Mid-Voltage and IC peak intensity share the same success rate of 67%, whereas
the best performing impedance-based parameter is Z,;, with a 67% success rate, followed
by Z,icn and finally Zpa«. Lastly, the CE parameter led to effective detection in only half of
the tested cases.
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Table 7. Sensitivity analysis results.

Parameter Threshold Value [%] Success Rate [%]
Zmax_im 20% 44%
Zmin_im 15% 67%
Zarch_im 20% 56%

M-V 0.75% 67%
C-T 3% 78%
IC 7.5% 67%
CE 1.5% 50%

4. Conclusions

This work introduced a structured methodology to test and validate parameters
that can be used to detect degradation in LMB and which should be non-invasive and
BMS-triggerable. In this way, a novel algorithm structure is presented to enable LMB
degradation tracking and to trigger self-healing mechanism activation by BMS. After a
review of the selected electrochemical techniques (Section 1), Section 2 presented the devel-
oped methodology which includes (i) the cycling and diagnosis of standard LMBs via six
testing protocols, (ii) the analysis on the selected detection parameters trends with respect
to capacity fade, (iii) the thresholds definition to trigger a self-healing action and (iv) the
performance validation in early detecting LMBs degradation. Section 3 presented the case
study where three batches of LMBs have been tested with different protocol focus: different
C-rates and 100% DoD, fixed C-rate and different DoD ranges. A sensitivity analysis was
performed to compute the Success Rate of each detection technique. On average, the
detection techniques successfully detected degradation in 60% of the cases and can be used
to anticipate LMB failures and to lay the basis for self-healing mechanism activation.

Limitations of this work can be analyzed on different levels. Validity of the results: The
obtained Success Rate was not directly linked to the ability to detect dendrite growth
formation. During the experimental phase, it was in fact not possible to discriminate
dendrite growth from dead lithium, the fast accumulation of which was confirmed by
post-mortem analysis. All the tested cells reached their EoL due to cycling failure and
not for short-circuit failure. Replicability of the results: The obtained Success Rates are very
dependent on the experimental campaign performed for two reasons: statistics, due to
the limited number of tested samples, and specificities of the tested cells (Li| INMC). The
developed methodology can be replicated to other LMB with different chemical formulation,
but different performance results should be expected. These results could also be influenced
by more severe or real use profiles testing conditions. Applicability of the results: The tested
detection techniques can be implemented in embedded systems to sense degradation and
trigger actions such as, for instance, self-healing methods, which is one of the possible
routes to make LMB exploitable in real applications. Some techniques are easier than others,
but in general all the non-invasive techniques proposed can be implemented in BMSs.
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