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Abstract: Renewable energy sources (RES) generation has huge environmental and social benefits, as
a clean energy source with great potential. However, the difference in the uncertainty characteristics of
RES and electric–thermal loads poses a significant challenge to the optimal schedule of an integrated
energy system (IES). Therefore, for the different characteristics of the multiple uncertainties of IES,
this paper proposes a type-II fuzzy interval chance-constrained programming (T2FICCP)-based
optimization model to solve the above problem. In this model, type-II fuzzy sets are used to describe
the uncertainty of RES in an IES, and interval numbers are used to describe the load uncertainty, thus
constructing a T2FICCP-based IES day-ahead economic scheduling model. The model was resolved
with a hybrid algorithm based on interval linear programming and T2FICCP. The simulations are
conducted for a total of 20 randomly selected days to obtain the advance operation plan of each unit
and the operation cost of the system. The research results show that the T2FICCP optimization model
has less dependence on RES output power and load forecasting error, so can effectively improve the
economy of IES, while ensuring the safe and stable operation of the system.

Keywords: integrated energy system; type-II fuzzy sets; type-II fuzzy interval chance-constrained
programming; hybrid algorithm

1. Introduction

An integrated energy system (IES), which includes a mass of renewable energy sources
(RES), is becoming the main direction to improve energy efficiency [1]. However, the output
of RES such as wind and solar energy is affected by weather, the external environment,
and other factors, resulting in intermittent and random power output. In addition, the
load also has obvious volatility, so the operation of the system is affected by the multiple
uncertainties of the source load, which brings great challenges to the reliable operation and
optimal scheduling of the IES [2].

Literature Review

At present, the mainstream IES optimization methods that consider the influence of
uncertainty mainly include stochastic optimization [3], robust optimization [4], interval
analysis [5], and fuzzy optimization [6]. The stochastic optimization uses the probability
density functions (PDFs) of random variables to represent the uncertainty of the system.
The representative strategies include the Monte Carlo simulation method (MCS), the
scenario method, stochastic chance-constraint programming (SCCP), and so on [7–10].
Robust optimization describes the change of uncertain parameters through uncertain
sets, and it is unnecessary to assume the probability distribution of the random variables
in advance [11–14]. The interval optimization uses interval numbers to represent the
uncertainty of random variables, which further weakens its conservatism [5,15,16]. On the
other hand, fuzzy optimization can describe the uncertainty more accurately when there
is a lack of uncertain information or incomplete information of random variables, which
makes random variables closer to the real situation. Therefore, it can deal with uncertain
information expressed by fuzzy sets within the confidence level [17–20].
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However, it must be noted that most of the above IES optimization methods simplify
the different characteristics of uncertainties such as source-load prediction errors in the
system and use a single optimization method to deal with multiple uncertainties.

Renewable energy sources (RES) generation has characteristics such as intermittency
and strong volatility [21]; load uncertainties are mainly related to their own characteristics
and have certain laws to follow [22]. So, using a single optimization method does cannot
completely solve the challenges brought by multiple uncertainties. Based on the above
problems, hybrid optimization has emerged [23]. For example, Ref. [24] proposed a joint
imprecise stochastic–fuzzy chance-constrained programming method, which integrates
chance-constrained programming (CCP) and fuzzy credibility-constrained programming
(FCCP) into one framework and uses type−I fuzzy sets to describe the uncertainty of the
system. The results show that the method can effectively help decision-makers to determine
the required policies under different constraints as well as to save economic costs. Ref. [25]
considers the intermittent and fuzzy nature of renewable electricity output and develops an
imprecise two-stage stochastic fuzzy planning method, which combines FCCP and interval
two-stage stochastic programming (ITSP) into one framework and uses type−I fuzzy sets
to describe the uncertainty of RES prediction errors. The results show that the method can
effectively capture the variability of RES.

In summary, the hybrid optimization method has good feasibility in solving the
IES’s multiple uncertainty problems. However, in the actual operation of the IES, the
hybrid optimization method will face different operation laws and complex and variable
external factors; at this time, the uncertainty description of random variables is particularly
important. The current hybrid optimization method usually uses a type−I fuzzy set,
and the membership function (MF) of a fuzzy set adopts an explicit set. Although it can
simplify the complexity and computation of the model, it cannot accurately describe the
uncertainty of RES output under multiple influencing factors. In addition, the MF of
a type-II fuzzy set is described by another fuzzy set, which is more comprehensive for
uncertainty description compared with a type−I fuzzy set [26], so we adopt the type-II
fuzzy set to describe the uncertainty of RES output and interval numbers to describe
the uncertainty of load. Therefore, this paper proposes a type-II fuzzy interval chance-
constrained programming (T2FICCP)-based method for the day-ahead economic optimal
scheduling in the IES. Compared with the existing optimal scheduling methods, this optimal
scheduling method can describe the multiple uncertainties of IES more comprehensively
and reduce the IES operation cost effectively by adopting different description methods for
the different characteristics of multiple uncertainties in IES. The main contributions of this
paper are as follows.

(1) In view of the difference between the uncertainty characteristics of RES output
and load forecasting in the IES, this paper uses the type-II fuzzy set and interval method
to describe the uncertainty of RES and load, respectively. The multiple uncertainties of
RES in the IES can be described more effectively through the fuzzy expression of the MF of
the type-II fuzzy sets, while the interval method is suitable for the load uncertainty that
satisfies certain statistical laws.

(2) A T2FICCP optimization model based on type-II fuzzy sets is proposed. The model
incorporates FCCP, interval linear programming (ILP), and CCP into a mixed-integer linear
programming (MILP) framework.

(3) For the characteristics of intermittent RES, a hybrid solution algorithm is proposed
in this paper. The optimization problem is simplified as an ILP model, when the RES is sus-
pended. When the RES is in operation, the optimization problem is described as a complete
T2FICCP model, which is solved by transforming the type-II fuzzy set into a clear equiv-
alent form by using the fuzzy confidence constraints. The research results show that the
proposed solution algorithm has obvious advantages in dealing with multiple uncertainty
problems containing type-II fuzzy sets and interval numbers’ descriptions simultaneously.

The proposed method is validated in a simulated IES. Simulation experiments are
conducted for 20 randomly selected days in summer and winter. The statistical results show
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that the proposed method is more advantageous in terms of cost reduction and reliability
improvement than traditional optimal scheduling methods.

2. Problem Statement
2.1. Renewable Energy Multiple Uncertainty Description

The uncertainty of RES mainly considers the intermittence, volatility, and prediction
error of RES output. On the one hand, the output of RES is easily affected by environmental
factors; on the other hand, different scholars have different ways to deal with the output
data of RES. As a result, the prediction error of RES output power is also different [27].
According to different prediction errors, when describing them with fuzzy sets, the choice
of MF may be different [28,29], which will affect the optimal scheduling results of the IES.
The MF in the type−I fuzzy set that is commonly used now is single-valued [30,31], which
cannot describe the uncertainty in the selection of MF. In contrast, the interval type-II fuzzy
set expresses the affiliation degree of the type−I fuzzy set as a fuzzy set, and its type-II MF
has a multivalued nature. Compared with the type−I MF, the type-II MF is more inclusive
to the uncertainty [32], so the interval type-II fuzzy set is used to describe the uncertainty
of RES output. Figure 1 shows the fuzzy description of RES, in which Figure 1a represents
type−I MF, and Figure 1b represents type-II MF. It can be seen from the figure that the
type−I MF is a single-valued function, so it can only describe a single uncertainty. The
type-II MF, which is a multivalued function, is composed of infinite type−I MFs, so it can
describe the multiple uncertainties of living energy.
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In Figure 1b, footprint of uncertainty (FOU) represents the maximum uncertainty
range of RES output power, which is composed of upper membership function (UMF) and
lower membership function (LMF). FOU [29] is shown in Equation (1):

µ
R̃enew

(x) =



x−PRenew+∆PRenew
∆PRenew

, PRenew − ∆PRenew < x < PRenew

1 x = PRenew
PRenew+∆PRenew−x

∆PRenew
, PRenew < x ≤ PRenew + ∆PRenew

0 otherwise

(1)

where x represents the fuzzy variable of RES; µ
R̃enew

is a representative of RES type-II MF;
PRenew represents the predicted output power of RES; and ∆PRenew and ∆P′Renew represent
the prediction error of RES.
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2.2. Load Uncertainty Description

Compared with RES, the uncertainty of load is directly related to the elasticity of
user demand and the change of electricity price; it often has certain rules to follow, so
the accuracy of load forecasting is often higher than that of RES [33]. Compared with
other description methods, the interval method can effectively avoid the errors caused
by artificial subjective factors and make the uncertain information not easy to be lost in
the process of the solution, and it is also easy to realize in engineering applications [34].
Therefore, this paper uses interval numbers to describe the predicted values of thermal and
electrical loads, as shown in Equations (2) and (3):

P±Eload = PEload[1− αe, 1 + αe], αe ∈ [0, 1] (2)

P±Hload = PHload[1− αh, 1 + αh], αh ∈ [0, 1] (3)

P±Eload and P±Hload are the heat and electricity load of the building, respectively; αh and
αe are the relative error range of thermal and electrical load forecasting, respectively.

3. Optimal Scheduling Method of IES Based on T2FICCP

The IES in this paper is connected to the utility grid and gas grid. The system mainly
includes photovoltaic (PV) devices, combined heat and power (CHP) units, an electricity
storage system (ESS), a thermal storage system (TSS), a gas boiler (GB), an electric boiler
(EB), and other equipment units, as well as building heat and electricity load.

A T2FICCP optimization model is proposed to achieve accurate modeling of multiple
uncertainties in RES for different uncertainty characteristics of the source-load side in the
IES. It is based on three different optimization models, FCCP, ILP, and CCP, since each opti-
mization model has its unique contribution to the treatment of uncertainty information in
the system. For example, FCCP can solve the uncertainty problem in the system containing
fuzzy information [35]; ILP can solve the uncertainty problem in the system expressed in
the form of interval numbers [36]; and CCP can effectively reflect the reliability of satisfying
system constraints under uncertainty [37]. In this paper, the above three optimization
models are integrated into the MILP framework. Compared with the above optimization
models, T2FICCP can simultaneously deal with multiple uncertainty problems containing
type-II fuzzy sets as well as interval numbers’ descriptions in the system constraints and
proposes an IES optimal scheduling method based on T2FICCP, with a basic framework
that is shown in Figure 2.

3.1. Objective Function

Taking the above IES as the research object, the objective function of the T2FICCP
model is set as the minimum comprehensive operating cost in a scheduling cycle, as shown
in Equation (4):

min C±total
≈
= C±E + C±CHP + C±GB + C±ESS (4)

where C±total budget is the total operating cost of IES in one scheduling cycle. C±E is the cost
of purchasing electricity from utility grids. C±CHP is the start-up, shutdown and operation
cost of CHP units. C±GB is the running cost of GB. C±ESS is the running cost of ESS.

The cost of purchasing electricity from the utility grid is shown in Equation (5) [38]:

C±E =
T

∑
i=1

P±Grid(i) · cGrid(i) · ∆t (5)

where i is the specific time step of scheduling, T is the number of periods of a single
scheduling cycle, which can be set to 24 for day-ahead scheduling. P±Grid(i) and cGrid(i) are
the number of intervals and the price of power purchased from the utility grid in the ith
time step, respectively. ∆t is the scheduling time step.
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The start-up, stopping, and operating costs of the CHP unit are shown in Equation (6):

C±CHP = SCHP
U,D ·

(
|δCHP(1)− B|+

T
∑

i=2
(|δCHP(i− 1)− δCHP(i)|)

)
+

T
∑

i=1

((
a · P±CHP(i) + b · H±CHP(i) + c · δCHP(i)

)
· ∆t
) (6)

where SCHP
U,D is the cost of starting or shutting down a CHP unit once. B is the state variable

of the CHP unit for the last period of the day before the schedule date. δCHP(i) is the binary
variable of the operating status of the CHP unit in the ith time step. P±CHP(i) and H±CHP(i)
are the number of intervals of power generation and heat production of CHP units in the
ith time step, respectively. a, b, and c are the linear cost factors of fuel for CHP units.

The GB operating cost is shown in Equation (7):

C±GB =
T

∑
i=1

(
cgas ·

H±GB(i)
ηGB

· ∆t

)
(7)

where cgas is the unit calorific value price of natural gas. ηGB is the GB heat production
efficiency. H±GB(i) is the number of intervals of GB heat production power in the ith
time step.
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The ESS operating cost is shown in Equation (8):

C±ESS = cr ·
T

∑
i=1

((
δESS,c(i) · P±ESS,c(i) + δESS,d(i) · P±ESS,d(i)

)
· 1

CESS_cap
· ∆t

)
(8)

where cr is the cost of a single full charge/discharge. δESS,c(i) and δESS,d(i) are the binary
variables of the ESS charge/discharge states in the ith time step, respectively. P±ESS,c(i) and
P±ESS,d(i) are the number of intervals of ESS charging/discharging power in the ith time
step, respectively. CESS_cap is the ESS capacity.

3.2. Constraint Condition

In this paper, the constraints of the optimal schedule model are set considering the
source-load uncertainty in the system, power and heat balance, CHP units, energy storage
system, GB, EB, and power constraints between the contact line with the grid.

1. IES Power Constraints

The IES power constraint includes the balance constraint of electric power and thermal
power. Compared with the electric power balance of the conventional model, the electric
power balance constraint in this paper requires interval fuzzy treatment, considering
that the system contains both PV uncertainty described by a type-II fuzzy set and load
uncertainty described by interval numbers. Since the supply and demand of thermal power
in the model do not necessarily need to be balanced at all times, the thermal power balance
constraint is described by fuzzy equivalence in this paper. The balance constraints for
electric and thermal power are shown in Equations (9) and (10), respectively:

C̃r


P±Grid(i) + P±CHP(i) + δESS,c(i) · P±ESS,c(i)

−δESS,d(i) · P±ESS,d(i) +
M
∑

m=1
P±e,load(m, i)

−P±e,EB(i)
∼=
≈
PRenew(i)

 ≥ β (9)

H±CHP(i) + δTSS,c(i) · H±TSS,c(i)− δTSS,d(i) · H±TSS,d(i) + ηEB · P±e,EB(i)

+H±GB(i)=̃
M
∑

m=1
H±h,load(m, i) + H±h,loss(i)

(10)

where C̃r{•} is the fuzzy confidence level that the constraint holds. β is the given confidence
level. P±e,EB(i) and P±e,load(m, i) are the EB input power in the ith time step and the number

of electrical load intervals in the mth building, respectively.
≈
PRenew(i) is the interval type-II

fuzzy number of PV power generation in the ith time step, with a specific form that is
given in Equation (1). δTSS,c(i) and δTSS,d(i) are the binary variables of the TSS charging
and discharging heat state in the ith time step, respectively. H±TSS,c(i) and H±TSS,d(i) are the
number of intervals of TSS charging and discharging thermal power in the ith time step,
respectively. ηEB is the heat production efficiency of the EB. H±h,load(m, i) and H±h,loss(m, i)
are the number of heat load intervals and the number of total heat loss power intervals of
the building for the mth building in the ith time step, respectively.

2. CHP Unit Operating Constraints

The power generated and heat produced by the CHP unit must satisfy its operat-
ing characteristic constraints as well as the uphill and downhill power constraints, with
constraint equations that are shown in Equations (11) and (12):

max
{

cλ2 · H±CHP(i) + Pmin
CHP, λ ·

(
H±CHP(i)− H0

)}
≤ P±CHP(i) ≤ cλ1 · H±CHP(i) + Pmax

CHP

0 ≤ H±CHP(i) ≤ Hmax
CHP

(11)
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where Pmin
CHP and Pmax

CHP are the maximum and minimum values of the power generated by
the CHP unit under pure condensing conditions, respectively. Hmax

CHP is the maximum heat
production power of the CHP unit. cλ1 and cλ2 are the slopes of the curves for condensing
units. λ is the slope of the curve for back-pressure units. H0 is the heat threshold at which
steam from a back-pressure unit drives the turbine to do work.{ ∣∣P±CHP(1)− PCHP(B)

∣∣ ≤ ∆PU,D · ∆t∣∣H±CHP(1)− HCHP(B)
∣∣ ≤ ∆HU,D · ∆t{ ∣∣P±CHP(i)− PCHP(k− 1)
∣∣ ≤ ∆PU,D · ∆t∣∣H±CHP(i)− HCHP(k− 1)
∣∣ ≤ ∆HU,D · ∆t

, k ≥ 2

(12)

where PCHP(B) and HCHP(B) are the electric power and thermal power of the CHP unit
at the last moment of the day-ahead schedule, respectively. ∆PU,D and ∆HU,D are the
maximum changes of power generation and heat production power of CHP unit per unit
time, respectively.

3. ESS Energy Storage Constraints

ESS constraints mainly include capacity constraints and charging/discharging power
constraints, as shown in Equations (13) and (14):

S±SOC(1) = SSOC(B) · (1− σESS)+(
ηESS · δESS,c(1) · P±ESS,c(1)− δESS,d(1) · P±ESS,d(1)/ηESS

)
· ∆t

CESS_cap

S±SOC(i) = S±SOC(i− 1) · (1− σESS)+(
ηESS · δESS,c(i) · P±ESS,c(i)− δESS,d(i) · P±ESS,d(i)/ηESS

)
· ∆t

CESS_cap
, i ≥ 2

δESS,c(i) + δESS,d(i) ∈ (0, 1)

Smin
SOC ≤ S±SOC(i) ≤ Smax

SOC

(13)

where S±SOC(i) is the number of storage capacity intervals of the ESS in the ith time step.
SSOC(B) is the storage capacity of ESS at the last moment of day-ahead scheduling. σESS and
ηESS are the storage system self-discharge efficiency and ESS charge/discharge efficiency,
respectively. Smin

SOC and Smax
SOC are the maximum and minimum storage capacities of the

ESS, respectively.

Pc,d,min
ESS ≤ δESS,c(i) · P±ESS,c(i) + δESS,d(i) · P±ESS,d(i) ≤ Pc,d,max

ESS (14)

where Pc,d,min
ESS and Pc,d,max

ESS are the maximum and minimum charge/discharge powers, respectively.

4. TSS Energy Storage Constraints

The TSS constraints mainly include capacity constraints and charging/discharging
power constraints, and the main constraint equations are shown in Equations (15) and (16):

S±SOT(1) = SSOT(B) · (1− σTSS)+(
ηTSSδTSS,c(1) · H±TSS,c(1)− δTSS,d(1) · H±TSS,d(1)/ηTSS

)
· ∆t

CTSS_cap

S±SOT(i) = S±SOT(i− 1) · (1− σSOT)+(
ηTSSδTSS,c(i) · H±TSS,c(i)− δTSS,d(i) · H±TSS,d(i)/ηTSS

)
· ∆t

CTSS_cap
, i ≥ 2

δTSS,c(i) + δTSS,d(i) ∈ (0, 1)

Smin
SOT ≤ S±SOT(i) ≤ Smax

SOT

(15)

where S±SOT(i) is the number of storage capacity intervals of TSS in the ith time step.
SSOT(B) is the storage capacity of TSS at the last moment of day-ahead scheduling. σTSS and
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ηTSS are the storage system self-discharge efficiency and TSS charge/discharge efficiency,
respectively. CTSS_cap is the TSS capacity. Smin

SOT and Smax
SOT are the maximum and minimum

storage capacities of ESS, respectively.

Hc,d,min
TSS ≤ δTSS,c(i) · H±TSS,c(i) + xTSS,d(i) · H±TSS,d(i) ≤ Hc,d,max

TSS (16)

where Pc,d,min
TSS and Pc,d,max

TSS are the maximum and minimum charge/discharge powers, respectively.

5. GB, EB, and Utility Grid Contact Line Power Constraints
0 ≤ H±GB(i) ≤ Hmax

GB

0 ≤ P±e,EB(i) ≤ Pmax
EB

0 ≤ P±Grid(i) ≤ Pmax
Grid

(17)

where Hmax
GB is the maximum heat production power of GB. Pmax

EB is the maximum EB input
power. Pmax

Grid is the maximum purchased power of the IES.

3.3. Hybrid Solving Algorithm Based on ILP and T2FICCP

For the intermittent characteristics of PV, a hybrid solution algorithm based on ILP
and T2FICCP is used to solve the problem, as shown in Figure 3. Specifically, the ILP
optimization model can simplify the model and improve the calculation speed when
solving during the time without PV output, such as night or rainy days; and the T2FICCP
optimization model can reduce the dependence on uncertainty factors and make the
scheduling results more realistic and reliable by accurately modeling and solving the
multiple uncertain information in the IES when PV output is available. The steps are shown
as follows.
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Step 1: type-II fuzzy sets are used to describe RES uncertainty, and interval numbers are
used to describe load uncertainty, while the T2FICCP model is constructed by integrating
FCCP, ILP, and CCP under the MILP framework based on type-II fuzzy sets.

Step 2: different optimization models are used to classify the solution considering
the PV output condition. In the PV non-output hours or less hours, the ILP solution is
used; in the PV output hours, the T2FICCP solution is used to convert the type-II fuzzy
set into a clear equivalent form using fuzzy credibility constraints and construct two CCP
submodels using generalized credibility, and then the two CCP models are converted into
deterministic models [39].

Step 3: the deterministic model in the second step is combined with the ILP and
made to decompose into an upper bound submodel and a lower bound submodel, and the
optimal solutions of the two submodels are found to obtain an optimal solution interval.

Step 4: a confidence level is set, and an optimal solution that maximally satisfies the
system constraints is sought within the optimal solution interval found in the third step.

Step 5: a confidence level α is set, and an optimal solution that maximally satisfies the
system constraints is sought within the optimal solution interval found in the third step.

4. Simulation Research
4.1. System Infrastructure and Data Sources

The IES studied in this paper is constructed by referring to the PJM five-bus electrical
network structure and the six-node thermal network model in Ref. [40], as shown in Figure 4.
Bus A is connected to the main grid, EB is installed at Bus C, unit CHP is connected to the
power grid at Bus D, and both PV and ESS are installed at Bus E. In the thermal network,
Bus 1 connects with CHP, EB, and GB. The electric load and thermal load are distributed at
Bus B, C, and D and Bus 4, 5, and 6.
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Since microgrids generally have short physical distances, the power losses in micro-
grids can be neglected. The thermal network loss parameters and TSS loss parameters are
given in Ref. [40]; the operating characteristics of CHP units are shown in Figure A1 (in
Appendix A); the operating parameters of CHP and ESS are shown in Table A1 [40,41]. In
order to verify the effectiveness of the method in different seasons and different weather,
this paper simulates 20 days (5 sunny days and 5 cloudy days in both summer and winter)
of PV power prediction data, as well as load prediction data, to derive the statistical results
of the IES schedule cost. These 20 days are named as summer sunny days 1–5 (SSday1–
5), summer cloudy days 1–5 (SCday1–5), winter sunny days 1–5 (WSday1–5), and winter
cloudy days 1–5 (WCday1–5), and the corresponding PV predicted output power curves are
shown in Figure 5. The PV predicted output power data in this paper are from Hangzhou
Dianzi University’s PV microgrid system; the thermal and electrical load prediction data
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of typical buildings are from San Francisco, CA, USA, provided by the website of the U.S.
Energy Agency; the purchased power price and natural gas unit calorific value price are
provided by the website of PG&E.
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4.2. Simulation Results and Analysis

In order to verify the statistical effectiveness of the proposed T2FICCP-based day-ahead
scheduling model, two other related models are introduced in this paper, and the three
models are simulated and compared for experiments. The compared models can be listed as:

Uncertainty model-1: type−I fuzzy set is used to describe PV uncertainty and inter-
val numbers are used to describe load uncertainty, which is solved using fuzzy interval
confidence planning.

Uncertainty model-2: type-II fuzzy set is used to describe PV uncertainty as well as
load uncertainty, which is solved using type-II fuzzy confidence planning.

T2FICCP model (proposed in this paper): the type-II fuzzy set is used to describe
the PV output power uncertainty and the interval numbers are used to describe the load
uncertainty, which is solved using a hybrid solution algorithm.

Taking four typical days of SSday-1, SCday-4, WSday-1, and WCday-1 as examples,
the scheduling costs for a typical summer and winter day, β = 0.95, are given in Table 1.
From the comparison of different methods, the model proposed in this paper has the best
scheduling cost value. The cost comparison with model-1 shows that this paper uses the
type-II fuzzy set to express PV uncertainty, and the uncertainty of PV output is better
described by the type-II fuzzy set than the type−I fuzzy set. Model-2 does not take into
account the difference between PV and load uncertainty characteristics, so the scheduling
effect is not as good as the proposed method.

Table 1. Scheduling costs of different models for the same typical day (β = 0.95).

Typical Days Model-1 (USD) Model-2 (USD) T2FICCP (USD)

SSday-1 1273.6 1276.1 1254.9
SCday-4 1285.4 1288.1 1267.3
WSday-1 1329.3 1334.5 1315.8
WCday-1 1342.6 1348.7 1329.6
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Comparing different seasons and different weather types, the schedule cost is lower
on sunny days than on cloudy days and is lower in summer than in winter. This is due to
the smoother PV output on sunny days, and the smaller load and larger PV generation in
summer compared to winter. Figure 6 gives the scheduling plan of the proposed method,
β = 0.95, with SSday-1 as an example. It can be seen from the figure that during the low
electricity price and low building load hours, the grid-purchased electricity and GB heating
meet the load requirements. When the building load increases to a certain value, the
CHP unit starts to meet the load requirements while charging and charging the ESS and
TSS with heat. After sunrise, the PV output gradually increases, the CHP unit will stop
working, and the ESS and TSS start discharging and discharging heat. It can be seen that
the IES integrates multiple energy sources and energy-using devices, giving full play to
their complementary advantages in terms of operating characteristics and operating costs
in the time domain, realizing the coordinated optimization of multiple energy outputs.
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In this paper, we also simulate the IES scheduling with different confidence levels.
Taking a cloudy day SCday-4 in summer as an example, Table 2 gives the scheduling costs
of different methods with different confidence levels for the same prediction error. From
the cross-sectional comparison, the proposed method gives the lowest cost scheduling
solution regardless of the confidence level, with model-1 being the second-lowest and
model-2 being the highest. This is because the proposed method models uncertainty more
accurately and uses a hybrid solution algorithm, which makes the scheduling cost better.
From the vertical view, as the confidence level increases, the operational reliability of the
IES increases, but the operational cost increases, which is in line with the general rule that
reliability and economy are mutually exclusive.
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Table 2. Schedule costs for a typical day of SCday-4 at different confidence levels (PV power as well
as load prediction errors are constant).

β Model-1 (USD) Model-2 (USD) T2FICCP (USD)

0.95 1285.4 1288.1 1271.9
0.9 1283.8 1285.9 1271.1

0.85 1282.1 1283.7 1270.6
0.8 1280.3 1281.6 1270.1

In this paper, IES scheduling with different prediction errors is simulated. Taking a
cloudy day SCday-4 in summer as an example, Table 3 shows the different scheduling costs
for the same confidence level with different load forecasting errors. From the cross-sectional
comparison, the proposed method has the best scheduling cost regardless of the error level.
This is due to the fact that the proposed T2FICCP model models the uncertainty more
accurately and reduces the dependence on the prediction accuracy. Longitudinally, the
scheduling cost of all models gradually increases as the load forecasting error gradually
increases, but the proposed method has less fluctuation compared with model-1. This is
due to the fact that the interval method can effectively avoid the errors caused by human
subjective factors and simplify the uncertain information to a certain extent. Table 4
gives the different scheduling costs for different PV power prediction errors at the same
confidence level. From the longitudinal comparison, as the PV power prediction error
gradually increases, the scheduling cost of all models gradually increases, but the proposed
method fluctuates less with model-2. This is because the type-II fuzzy set is better than the
type−I fuzzy set in dealing with uncertainty.

Table 3. Scheduling costs for different load prediction errors (β = 0.95, constant PV power prediction error).

Load Prediction Error Model-1 (USD) Model-2 (USD) T2FICCP (USD)

0.05 1278.1 1288.1 1271.9
0.1 1290.7 1299.8 1275.1

0.15 1302.3 1327.5 1305.6
0.2 1316.1 1346.3 1310.2

Table 4. Scheduling costs for different PV prediction errors (β = 0.95, constant load prediction error).

PV Prediction Error Model-1 (USD) Model-2 (USD) T2FICCP (USD)

0.05 1278.1 1288.1 1271.9
0.1 1281.9 1289.1 1274.1

0.15 1284.5 1290.5 1277.1
0.2 1289.1 1292.1 1280.1

5. Conclusions

Aiming at the multiple uncertainties of RES generation and load in the IES, this paper
proposes an IES day-ahead economic scheduling model based on T2FICCP to solve the
impact of multiple uncertainties on IES scheduling. In addition, through the simulation
verification of the case, the following conclusions can be obtained.

• Compared with the traditional fuzzy and interval optimization models, the T2FICCP
optimization model describes the uncertainty more comprehensively and uses dif-
ferent methods to describe the uncertain information according to the different un-
certainty characteristics; the economic cost is better than other optimization models,
which shows that the performance of T2FICCP when dealing with multiple uncertain-
ties is better.

• In this paper, according to the intermittent characteristics of RES, a hybrid algorithm
is adopted. Compared with the traditional algorithm, it can effectively reduce the
dependence on uncertain factors, make the scheduling results more real and reliable,
and improve the computing speed.



Energies 2022, 15, 6763 13 of 17

• The operation cost of the IES changes with the prediction accuracy, confidence level,
and load prediction error, which reflects the dynamic fluctuation of the IES to the
prediction error.

• This research mainly compares the operating costs of RES and load forecast errors
at different confidence levels, and gives the IES scheduling plan under the optimal
operating cost. The research results show that the model proposed in this paper
can effectively improve the capacity of IES to consume RES, give full play to the
complementary advantages of operating characteristics and operating costs of multiple
energy sources and energy-using equipment, and realize the coordinated optimization
of multiple energy output.

As mentioned in the Section 2, this paper only describes the multiple uncertainties
on the source-load side, but there will be different uncertainties in the operation of IES,
such as CHP operating conditions, dynamic characteristics of the thermal network, and
so on. We will further study this problem in the future. In addition, at present, many
studies only focus on the time-domain characteristics of RES, but do not take into account
the frequency-domain characteristics, so the description of RES is single, which is also the
focus of our future research.
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CHP 

1c  −0.1778 

2c  −0.1698 

  1.7819 
max

CHPP  600 kW 
min

CHPP  100 kW 
max
CHPH  500 kWth 

0H  213.167 kWth 

B  0 

a  83.45 10  USD/kW2 

b  0.0145 USD/kW 

c  USD 64.37 

d  83.0 10  USD/kWth2 

Figure A1. The operation interval of CHP units.
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Table A1. Device parameters.

Device Symbol Value

CHP

cλ1 −0.1778

cλ2 −0.1698

λ 1.7819

Pmax
CHP 600 kW

Pmin
CHP 100 kW

Hmax
CHP 500 kWth

H0 213.167 kWth

B 0

a 3.45× 10−8 USD/kW2

b 0.0145 USD/kW

c USD 64.37

d 3.0× 10−8 USD/kWth2

e 0.0042 USD/kW

f 3.1× 10−8 USD/kW-kWth

∆PU,D 200 kW/h

∆HU,D 200 kWth/h

SCHP
U,D USD 10

ESS

cr USD 7.1217
ηESS 0.99

Pc,d,max
ESS 200kW

Pc,d,min
ESS 0

Smax
SOC 0.9

Smin
SOC 0.1

SSOC(B) 0.1

cESS_cap 500 kWh

TSS

ηTSS 0.87

Hc,d,max
TSS 100 kWth

Hc,d,min
TSS 0

Tmax
TSS 0.9

Tmin
TSS 0.1

TTSS(B) 0.1

CTSS_cap 500 kWth/h

GB
ηGB 0.9

Hmax
GB 200 kWth

EB
ηEB 0.97

Pmax
EB 150 kW

Grid Pmax
Grid 300 kW
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