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Abstract: The real-time speed estimation of induction motors (IMs) is important for the motors’
state monitoring and control. The utilization of rotor slot harmonics (RSHs) due to the inherent
cogging effect is regarded as a promising way to realize the speed estimation of IMs. The key to
the RSH-based speed estimation method is how to accurately and quickly identify the frequency
of an RSH signal. However, as the RSH signal always consists of two side-frequency components
that are adjacent to each other, it is actually improper to directly use the conventional phase-locked
loop (PLL) method designed for single-frequency tracking. Furthermore, the form of the two side
components in the frequency domain also leads to a significant amplitude fluctuation in the time-
domain waveform of RSHs, thus resulting in the obvious frequency tracking errors of the conventional
PLL method. In this paper, we proposed an improved PLL through harmonic separation to further
improve the performance of the RSH-based speed estimation method of multiphase IMs, so that the
dynamic tracking errors of PLL due to the reasons mentioned above can be significantly reduced.
Simulations and experiments in a wide speed range were also performed, with their results presented
as verifications of the proposed method.

Keywords: induction motor; speed estimation; phase-locked loop; motor harmonics

1. Introduction

The real-time and accurate speed measurement of induction motors is important
to monitor the operation condition of the motors or achieve high performance in speed
control. Conventional speed sensors, such as rotational transformers or photoelectrical
encoders, are generally installed coaxially on the motor to accomplish the measurement.
However, these sensors are generally vulnerable to water immersion, rotor eccentricity,
vibrations, and shocks [1], so the sensors may face the risk of failure under harsh industrial
applications, such as ship propulsion or industrial production. In this case, the online speed
estimation of induction motors is essential, as the speed sensor fault can be inherently
avoided, contributing to a reduction in system cost and an increase in system reliability.

Various methods have been proposed to realize the speed estimation of induction
motors, within which the model-based method and high-frequency signal injection method
are commonly used in industry for the condition monitoring or control of induction mo-
tors. As an induction motor is a complex electromechanical system with features such as
multiple variables, time variations, strong coupling, and uncertainty, its commonly used
mathematical model is established under several assumptions and simplifications. There-
fore, model-based speed estimation methods often suffer disturbances and uncertainties
from unmodeled system dynamics as well as parameter variations. Online identification al-
gorithms for complicated parameters are actually essential to maintain the accuracy of this
kind of speed estimation method. Comparatively, high-frequency signal injection methods
are more robust to model errors, but special structural designs or external high-frequency
signal injections are often needed to construct magnetic saliency.

The well-known cogging effect, which is due to the slotting of the stator and the rotor,
introduces an inherent magnetic saliency and results in slot harmonics in both the phase
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current and the induced electromotive force. As the slot harmonics due to rotor slotting
contain information about motor speed, it is possible to realize a real-time speed estimation
by analyzing the frequency properties of rotor slot harmonics [2], with no special design
for motor structure or additional high-frequency signal injection.

Among the available frequency analysis methods that are suitable for rotor slot har-
monics (RSHs), such as fast Fourier transform (FFT), wavelet analysis (WA), phase-locked
loop (PLL) [3], etc., the PLL is believed to be effective in the real-time identification of
the frequency of input signal and has a quick response time that is valuable for the dy-
namic performance of speed estimation [4]. Shen [5] used PLL to track the third-order
EMF harmonics and achieved an ultrahigh-speed (120 kr/min) drive of BLDC. Song [6]
proposed a fractional-N phase-locked loop (FN-PLL) and a synchronous frequency-extract
filter (SFF) to detect the commutation position of a high-speed PMSM. Orfanoudakis [7]
investigated the application of second-order generalized integrator (SOGI) PLL under
the asymmetry of the currents supplied to the motor. PLL has also been utilized in the
high-frequency-injection-based sensorless control of PMSMs. In fact, there is always a
compromise between the stability and response time of PLLs [8,9], especially under dis-
turbances [10]. Filipović [11] studied the performance of PLL-based repetitive controls
under sudden frequency changes. Yang [12] evaluated the effect of unbalance loads on
the PLL-based power control of multilevel converters. Novak [13] introduced an adaptive
quadrature PLL in the sensorless control of high-speed PMSMs for improved dynamics.

The key to the RSH-based speed estimation method is to accurately and quickly
identify the frequency of an RSH signal. However, as the RSH signal always consists of two
side-frequency components that are adjacent to each other [14,15], it is actually improper to
utilize a conventional phase-locked loop (PLL) method to effectively identify the frequency
of the RSH signal. Furthermore, the form of the two side components in the frequency
domain also leads to a significant amplitude fluctuation in the time-domain waveform
of RSH, thus resulting in the obvious frequency tracking errors of the conventional PLL
method. In this paper, we proposed an improved PLL through harmonic separation to
further improve the performance of the RSH-based speed estimation method of multiphase
IMs. The time-domain properties of RSHs were firstly analyzed, and a frequency separation
algorithm was embedded to preprocess the RSHs so that their amplitude fluctuation
would be eliminated. Then, the proposed real-time speed estimation method through
the RSH frequency identification was defined and implemented. Finally, simulations and
experimental verifications were carried out on a nine-phase induction motor platform
under different speed and load conditions.

2. The Time and Frequency Properties of Rotor Slot Harmonics in IMs
2.1. The Analytical Model of RSHs for Multiphase IMs

The rotor slot harmonics are generally regarded as undesired disturbances that not
only affect the motor efficiency but also generate cogging ripples. Although the approaches
of magnetic slot wedge or slot skewness are generally applied to weaken the effect of RSHs,
these kinds of harmonics are actually inherent in the motor’s voltage and current, as well
as the air-gap magnetic field, if only the rotor is slotted.

To analyze the time and frequency properties of RSHs in IMs, the magnetic potential
and permeability methods were used here. Among the different-order RSHs, we took the
first or primary rotor slot harmonics (PSHs) as an example; the time-domain expression of
PSH consists of two parts: The first one is generated by the fundamental magnetic potential
of the motor, along with the magnetic conductivity due to slot cogging effect, and the other
one is caused by the interaction between the RSH-induced magnetic potential and the DC
component of the air-gap magnetic conductivity. By combining the two parts, the PSH can
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be modeled as the combination of two side-frequency components, Bt1−(θ,t) and Bt1+(θ,t),
as shown in Equation (1) [16].

Bt1(θ, t) = Bt1−(θ, t) + Bt1+(θ, t)
= (Fr(Z2/p−1)Λ0 +

1
2 F0Λr) cos

[
(Z2 − p)θ −

(
Z2
p (1− sm)− 1

)
ω1t
]

+(Fr(Z2/p+1)Λ0 +
1
2 F0Λr) cos

[
(Z2 + p)θ −

(
Z2
p (1− sm) + 1

)
ω1t
] (1)

where Fr(Z2/p−1) and Fr(Z2/p+1) are the amplitudes of rotor cogging MMFs, Λ0 is the DC
component of the air-gap magnetic conductivity, Λr is the amplitude of sinusoidal air-gap
permeance due to a rotor cogging effect, Z2 is the rotor slot number, sm is the slip ratio,
p is the motor’s pole pair number, θ is the mechanical rotor’s position, and ω1 is the
synchronous angular speed of the fundamental component.

It can be seen from Equation (1) that the PSH consists of two side-frequency compo-
nents that are adjacent to each other with a distance of 2f 1. The frequencies of the two side
components are, respectively, ft1− and ft1+,

ft1− =

(
Z2

p
(1− s)− 1

)
f1 = (

Z2n
60 f1

− 1) f1 (2)

ft1+ =

(
Z2

p
(1− s) + 1

)
f1 = (

Z2n
60 f1

+ 1) f (3)

in which f 1 is the frequency of the fundamental magnetic field, and n is the motor’s speed
in r/min.

Then, by combining Equations (2) and (3), the motor’s speed can be obtained as

n =
15p
Z2

( ft1− + ft1+) (4)

Despite the PSH in the air-gap flux field, the ft1− and ft1+ components are also induced
in the stator voltage and current of the induction motor, which can be measured and
identified through PLLs. Then, the key to the implementation of the online speed estimation
is to identify the frequency of ft1− and ft1+ components in real time. However, it is actually
improper to utilize a conventional PLL to track the frequency of PSH, which consists of
two side-frequency components rather than an ideal single one.

2.2. The Basic Principle of SOGI-PLL

The phase-locked loop has been widely utilized in motor control, the main purpose of
which is to synchronize an output oscillator signal with a reference signal. A typical phase-
locked loop consists of a phase detector, a loop filter, and a voltage-controlled oscillator
(VCO). Here, we used the well-known second-order generalized integrator (SOGI) PLL [17],
as shown in Figure 1, in which the orthogonal components uα and uβ can be generated from
the input voltage signal u in a variety of different ways such as transport delay, Hilbert
transform, etc. A widely discussed method is to use a second-order integrator, as shown in
Figure 2, which is essentially a notch filter that can selectively tune the orthogonal signal
generator to reject other frequencies except the referenced frequency. In the SOGI-PLL, kp
and ki are the proportional and integral parameters of the loop filter, ko is the gain coefficient
of VCO, and ωo and ωout are separately the initial and output angular frequency of PLL.
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The second-order generalized integrator closed-loop transfer function can be expressed
as [18]

Hd(s) =
uα

u
(s) =

kωns
s2 + kωns + ω2

n
(5)

Hq(s) =
uβ

u
(s) =

kω2
n

s2 + kωns + ω2
n

(6)

where Hd(s) is the transfer function from the PLL input u to the output uα, Hq(s) is the
transfer function from the PLL input u to the output uβ,, and s = jω. k > 1 is the gain of the
orthogonal signal generation block. ωn is the frequency of the RSH component in radians.

As the frequencies of RSHs keep changing during motor operation, the orthogonal
signal generator must be tuned online accordingly. Here, the trapezoidal approximation [19]
is used to obtain the discrete transfer function as follows:

Hd(z) =
b0 + b2z−2

1− a1z−1 − a2z−2 =

(
x

x+y+4

)
+
(
−x

x+y+4

)
z−2

1−
(

2(4−y)
x+y+4

)
z−1 −

(
x−y−4
x+y+4

)
z−2

(7)

Hq(z) = qb0+qb1z−1+qb2z−2

1−a1z−1−a2z−2

=

(
k·y

x+y+4

)
+2
(

k·y
x+y+4

)
z−1+

(
k·y

x+y+4

)
z−2

1−
(

2(4−y)
x+y+4

)
z−1−

(
x−y−4
x+y+4

)
z−2

(8)

in which the coefficients x and y are separately expressed as

x = 2kωnTs, y = (ωnTs)
2 (9)

where Ts is the sampling period.
Once the orthogonal signal is generated, the Q and D components on the rotating

reference frame can be obtained through the park transform, while the Q component is then
fed to the loop filter, which controls the VCO of the PLL. Therefore, the PLL is a closed-loop
system with a control mechanism to reduce any phase error, and its lock can be achieved
when the phase difference between the two signals is zero. The coefficient of the PI loop
filter kp and ki, as shown in Figure 1, can be adjusted as follows:

ωl f =
1
ts

log( 1
δ
√

1−ξ2
)

kp = 2ξωl f

ki =
kpωl f

2ξ

(10)
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where ωlf is the nominal frequency of the loop filter in radians, ts is the build-up time, ξ
is the damping ratio, and δ is the width of the error band. In this work, these parameters
were, respectively, set as ts = 50 ms, ξ = 0.7, and δ = 0.01.

2.3. The Dynamic Tracking Error of PLL Due to the Amplitude Fluctuation of Input Signal

For an input signal with steady frequency and amplitude, a PLL quickly converges
and accurately tracks its frequency. However, when the amplitude or frequency of the input
signal fluctuates, the “locked” state of the PLL is aborted and transferred into convergence
transients, which of course affects the accuracy and dynamic performance of the RSH-based
speed estimation.

As an example, for a well-tuned SOGI-PLL, we set a 100 Hz input signal with an initial
amplitude of 1 V but suddenly changed it to 0.2 V, and its frequency tracking result is
shown in Figure 3. It is clear that the sudden amplitude change in the input signal caused
significant frequency tracking errors.
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Furthermore, for the primary rotor slot harmonic signal, the synthesis of ft1− and ft1
components results in a variation in the time-domain amplitude or modulation of PSH and
causes errors affecting the dynamic performance of the PLL. This is illustrated in Figure 4,
in which a 105 Hz signal was added to the original 100 Hz signal at 0.4 s, with the signal
amplitude of each component kept steady. It can be seen that the synthesized signal was of
periodic fluctuated amplitude, which led to significant frequency tracking errors.
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3. Harmonic Separation Speed Estimation Method for Multiphase IMs

In order to improve the frequency tracking accuracy of PLLs, a novel frequency
separation was proposed in this study to preprocess the PSH signal, so that the ft1− and ft1+
components can be adaptively distributed into two independent signals. In this way, the
amplitude modulation characteristics are eliminated, and the SOGI-PLL can be utilized
to track the frequency of ft1− and ft1+ in real time, with satisfying accuracy and dynamic
response time.

According to Equations (2) and (3), the ft1− and ft1+ components can be extracted by
directly using a passband filter with the central pass frequency of ft1− and ft1+. Meanwhile,
there is always a frequency separation of 2f 1 between the two components, which limits
the passband of the filters. While the slip ratio sm is unknown, its value is actually close
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to 0 in most working conditions and can be omitted in the following harmonic separation.
Therefore, the central frequencies of the harmonic separation filters are designed as

fhd_t1n = (
Z2

p
− 1) f1 (11)

fhd_t1p = (
Z2

p
+ 1) f1 (12)

and the passband of the harmonic separation filters should be lower than 2f 1, so as to
avoid the aliasing error between the ft1− and ft1+ components. As f 1 decreases along with
the speed, a too-narrow passband appears in the low-speed range. In this case, there is
a tradeoff between the high order for filter design and the complete separation of PSHs.
In addition, the embedded frequency separation filters also introduce time delay into the
speed estimation, which is illustrated in Figure 5, in which it1 the PSH signal in the phase
current signal measured by current sensors, and it1− and it1+ are, respectively, the ft1−
and ft1+ components separated by the frequency separation filters mentioned above. As
Figure 6 shows, the amplitude it1 keeps fluctuating and approaches zero periodically, but
the amplitude of it1− and it1+ are almost steady after the frequency separation processing.
This benefits the following frequency identification through SOGI-PLL and results in more
accurate speed estimation. However, the implementation of frequency separation filters,
through either analog or digital ways, adds time or phase delay to the signal processing of
PSH. As an example, a time delay of about 0.02 s is caused by the bandpass Butterworth
IIR filter with the order of 4.

Energies 2022, 15, x FOR PEER REVIEW 6 of 15 
 

 

3. Harmonic Separation Speed Estimation Method for Multiphase IMs 
In order to improve the frequency tracking accuracy of PLLs, a novel frequency separa-

tion was proposed in this study to preprocess the PSH signal, so that the ft1− and ft1+ compo-
nents can be adaptively distributed into two independent signals. In this way, the amplitude 
modulation characteristics are eliminated, and the SOGI-PLL can be utilized to track the fre-
quency of ft1− and ft1+ in real time, with satisfying accuracy and dynamic response time. 

According to Equations (2) and (3), the ft1− and ft1+ components can be extracted by 
directly using a passband filter with the central pass frequency of ft1− and ft1+. Meanwhile, 
there is always a frequency separation of 2f1 between the two components, which limits 
the passband of the filters. While the slip ratio sm is unknown, its value is actually close to 
0 in most working conditions and can be omitted in the following harmonic separation. 
Therefore, the central frequencies of the harmonic separation filters are designed as 

2
_ 1 1( 1)hd t n

Zf f
p

= −  (11) 

2
_ 1 1( 1)hd t p

Zf f
p

= +  (12) 

and the passband of the harmonic separation filters should be lower than 2f1, so as to avoid 
the aliasing error between the ft1− and ft1+ components. As f1 decreases along with the speed, 
a too-narrow passband appears in the low-speed range. In this case, there is a tradeoff 
between the high order for filter design and the complete separation of PSHs. In addition, 
the embedded frequency separation filters also introduce time delay into the speed esti-
mation, which is illustrated in Figure 5, in which it1 the PSH signal in the phase current 
signal measured by current sensors, and it1− and it1+ are, respectively, the ft1− and ft1+ com-
ponents separated by the frequency separation filters mentioned above. As Figure 6 
shows, the amplitude it1 keeps fluctuating and approaches zero periodically, but the am-
plitude of it1− and it1+ are almost steady after the frequency separation processing. This 
benefits the following frequency identification through SOGI-PLL and results in more ac-
curate speed estimation. However, the implementation of frequency separation filters, 
through either analog or digital ways, adds time or phase delay to the signal processing 
of PSH. As an example, a time delay of about 0.02 s is caused by the bandpass Butterworth 
IIR filter with the order of 4. 

Frequency 
Distribtuion

Filters

it1 SOGI-PLL1

SOGI-PLL2
ft1+it1+

+
+ kn

Motor 
speed

IM

Invertor

Current 
sensor

f1

fR ft1+

2f1

ft1+

ft1−it1−

ft1−ft1−  
Figure 5. The diagram of the PLL-based speed estimation method for IMs based on harmonic sepa-
ration. 
Figure 5. The diagram of the PLL-based speed estimation method for IMs based on harmonic separation.

Energies 2022, 15, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 6. The harmonic separation results of the PSH signal (n = 973 r/min, s = 0.026). 

4. Simulation and Experimental Results 
4.1. Experiment Platform Setup 

A nine-phase IM platform was established in this study to verify the proposed speed 
estimation method. The multiphase induction motors are fit for ship electric propulsion 
and other electrical transportation applications. Its fault-tolerant capability and reduced 
bus voltage level are the main merits of this method when compared with the usual three-
phase ones. As shown in Figure 7, the platform consisted of a nine-phase squirrel-cage 
induction motor, a multiphase inverter, a coaxially connected DC generator, and a re-
sistance load box. A rotatory transformer was installed with an accuracy of no less than 
0.1 r/min. 

Inverter 9-Phase IM and 
DC generator LoadDC

Bus

RS485
Communication

Data 
Acquisition System

 
Figure 7. The nine-phase induction motor platform. 

As the RSH is an inherent property of each phase current, it is convenient to use one 
single-phase current sensor to obtain the RSH signal for an induction motor with three or 
more phases. Comparatively, the conventional model-based method needs more sensors 
and computation burden, especially for multiphase induction motors. The PSH signal was 
obtained from the stator current, which was measured through a LEM LA-25P current 
sensor. The proposed speed estimation method was carried out through the 
TMS320F28335 DSP. Differential signal measurement and a sigma-delta ADC sample 
were utilized to improve the SNR. The main parameters of the platform are listed in Table 
1. 

Table 1. Main parameters of nine-phase induction motor platform. 

Symbol Parameter Value 
PN Rated motor power 8 kW 
m Phase number 9 
fN Rated power supply frequency 50 Hz 
p Pole pairs 2 

nN Rated speed 1477 r/min 

0 0.02 0.04 0.06 0.08 0.1
 t /s

-0.2
0

0.2

i t 1
 /A

 

0 0.02 0.04 0.06 0.08 0.1
 t /s

-0.05
0

0.05

i t 1
- /

A
 

0 0.02 0.04 0.06 0.08 0.1
 t /s

-0.05
0

0.05

i t 1
+

 /A
 

Figure 6. The harmonic separation results of the PSH signal (n = 973 r/min, s = 0.026).

4. Simulation and Experimental Results
4.1. Experiment Platform Setup

A nine-phase IM platform was established in this study to verify the proposed speed
estimation method. The multiphase induction motors are fit for ship electric propulsion and
other electrical transportation applications. Its fault-tolerant capability and reduced bus
voltage level are the main merits of this method when compared with the usual three-phase
ones. As shown in Figure 7, the platform consisted of a nine-phase squirrel-cage induction
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motor, a multiphase inverter, a coaxially connected DC generator, and a resistance load box.
A rotatory transformer was installed with an accuracy of no less than 0.1 r/min.
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Figure 7. The nine-phase induction motor platform.

As the RSH is an inherent property of each phase current, it is convenient to use one
single-phase current sensor to obtain the RSH signal for an induction motor with three or
more phases. Comparatively, the conventional model-based method needs more sensors
and computation burden, especially for multiphase induction motors. The PSH signal was
obtained from the stator current, which was measured through a LEM LA-25P current
sensor. The proposed speed estimation method was carried out through the TMS320F28335
DSP. Differential signal measurement and a sigma-delta ADC sample were utilized to
improve the SNR. The main parameters of the platform are listed in Table 1.

Table 1. Main parameters of nine-phase induction motor platform.

Symbol Parameter Value

PN Rated motor power 8 kW
m Phase number 9
f N Rated power supply frequency 50 Hz
p Pole pairs 2

nN Rated speed 1477 r/min
IN Rated phase current 12.87 A
Z2 Rotor slot number 54

4.2. Simulated Speed Estimation Results under Different Speed and Load Conditions

According to the parameters presented in Table 1, the proposed PLL-based position
estimation method through harmonic distribution was firstly verified through simulations
in MATLAB, in which a PSH signal was generated in reference to Equations (1) and (2).
As the key to the realization of the RSH-based speed estimation method is to accurately
identify the frequency of the RSH signal, the effectiveness of the proposed method was di-
rectly compared with the conventional PLL method. For the conventional PLL method, the
PSH signal was directly processed through a SOGI-PLL. As can be seen from Figures 8–13,
the proposed method through harmonic separation achieved much better estimation ac-
curacy than the conventional PLL method, within a wide speed range from 200 r/min
to 1500 r/min. In these figures, the blue line represents the actual value, and the red
line represents the estimated value.However, the harmonic separation process indeed
introduced unexpected time delay and transients at the beginning of the estimation, but
then the estimated speed quickly converged to the actual value, and the convergence was
maintained later.
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Figure 8. The simulated speed estimation results (n = 193 r/min, s = 0.033, the blue line: the actual
value, the red line: the estimated value, same for Figures 8–13).
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Figure 9. The simulated speed estimation results (n = 389 r/min, s = 0.028).
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Figure 10. The simulated speed estimation results (n = 681 r/min, s = 0.027).

Energies 2022, 15, x FOR PEER REVIEW 9 of 15 
 

 

  
(a) Conventional PLL method (b) Improved PLL method 

Figure 10. The simulated speed estimation results (n = 681 r/min, s = 0.027). 

  
(a) Conventional PLL method (b) Improved PLL method 

Figure 11. The simulated speed estimation results (n = 978 r/min, s = 0.023). 

  
(a) Conventional PLL method (b) Improved PLL method 

Figure 12. The simulated speed estimation results (n = 1266 r/min, s = 0.022). 

0 0.2 0.4 0.6 0.8 1
 t /s

690
700
710
720
730

n
 /(

r/m
in

) 

0 0.2 0.4 0.6 0.8 1
 t /s

0

20

40

er
r

 /(
r/m

in
) 

0 0.5 1 1.5 2
 t /s

660

680

n
 /(

r/m
in

) 

0 0.5 1 1.5 2
 t /s

-20
-10

0
10

er
r

 /(
r/m

in
) 

0 0.2 0.4 0.6 0.8 1
 t /s

980
1000
1020
1040

n
 /(

r/m
in

) 

0 0.2 0.4 0.6 0.8 1
 t /s

20

40

60

er
r

 /(
r/m

in
) 

0 0.5 1 1.5 2
 t /s

970

980

990

n
 /(

r/m
in

) 

0 0.5 1 1.5 2
 t /s

-10

0

10

er
r

 /(
r/m

in
) 

0 0.2 0.4 0.6 0.8
 t /s

1260
1280
1300
1320
1340

n
 /(

r/m
in

) 

0 0.2 0.4 0.6 0.8 1
 t /s

20

40

60

80

er
r

 /(
r/m

in
) 

0 0.5 1 1.5 2
 t /s

1265
1270
1275
1280
1285

n
 /(

r/m
in

) 

0 0.5 1 1.5 2
 t /s

-10

0

10

er
r

 /(
r/m

in
) 

Figure 11. The simulated speed estimation results (n = 978 r/min, s = 0.023).
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Figure 12. The simulated speed estimation results (n = 1266 r/min, s = 0.022).
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Figure 13. The simulated speed estimation results (n = 1469 r/min, s = 0.019).

4.3. Online Speed Estimation Results under Different Speed and Load Conditions

Based on the simulation verification, the online speed estimation was further carried
out through the established platform shown in Figure 7. The performance comparisons
of the conventional and improved PLL methods, along with the original measured phase
current and its frequency analysis results, are given under different working conditions
of speed 239–1396 rpm and slip ratios ranging from 0.02 to 0.04, respectively, shown in
Figures 14–19. It is obvious that the improved PLL method with harmonic separation
performed much better in terms of estimation accuracy. In more detail, if the PLL was
directly used to process the PSH signal, significant estimation errors appeared in the
estimation results, including not only high-frequency dynamic errors but also unacceptable
static errors. Static errors made the estimated speed much smaller than the actual one,
and the error became more severe as the speed decreased, which indicates that the PLL
actually failed to track the value of the PSH signal in real time. Furthermore, the unideal
properties of the filters, other motor harmonics, and sensor noises are the main reasons for
the increased fluctuation in experimental results compared with simulated ones.
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Figure 14. The experimental speed estimation results (n = 240 r/min, sm =0.044, the blue dotted line:
the actual value, the red line: the estimated value, same for Figures 15–19).
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Figure 15. The experimental speed estimation results (n = 450 r/min, sm =0.022 blue dotted line: the
actual value, red line: the estimated value).
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Figure 16. The experimental speed estimation results (n = 685 r/min, sm =0.022).
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Figure 17. The experimental speed estimation results (n = 930 r/min, sm =0.021).
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Figure 18. The experimental speed estimation results (n = 1251 r/min, sm =0.038).
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Figure 19. The experimental speed estimation results (n = 1464 r/min, sm = 0.024).

As for the estimation results of the improved PLL method, as shown in Figures 14d,
15d and 16d, etc., the PLL performed well due to the steady signal amplitude after the
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harmonic separation process. There were more dynamic errors in the experiment compared
with the simulation results, which were mainly caused by unfiltered harmonics and noise,
but the steady error could always be kept within ±10 r/min in a wide speed range. More
high-frequency dynamic errors could be detected when the motor speed exceeded 900
r/min, as shown in Figures 17d, 18d and 19d. This is because of the included harmonics
close to the PSH components as the passband width at high speed became larger, as
mentioned in Section 3.

The speed estimation accuracy of the conventional PLL method and the proposed
method are listed in Table 2, with both the absolute and relative error calculated. It is
obvious that the proposed method performed much better with a relative error smaller
than 1%.

Table 2. The estimation error of the conventional PLL method and the proposed method.

Speed n
(r/min)

Slip Ratio
sm

Steady Error of the
Conventional Method (r/min)

Steady Error of the
Proposed Method (r/min)

240 0.044 19.8 (8.25%) 1.8 (0.75%)
450 0.022 32.3 (7.18%) 2.2 (0.49%)
685 0.022 40.9 (5.97%) 2.0 (0.29%)
930 0.021 51.2 (5.51%) 5.9 (0.63%)
1251 0.038 60.5 (4.84%) 7.4 (0.59%)
1464 0.024 69.1 (4.72%) 8.1 (0.55%)

5. Conclusions

In this paper, an improved PLL-based speed estimation method embedded with the
harmonic separation method was proposed to cope with properties such as amplitude
fluctuation and side-frequency components in the time domain and frequency domain,
respectively. Through simulations and experiments, it was proved that the proposed
method can effectively estimate the speed of IMs online in a wide speed range, with
satisfying accuracy and convergence time.

Since rotor slot harmonics are universal in most induction motors as the rotor is
generally slotted regardless of the phase number, the proposed method can be utilized in
both the usual three-phase motors as well as specific multiphase motors. The introduced
harmonic separation processing helps improve the performance of speed estimation. A
reamining problem of the proposed method is that the passbands of the filters for harmonic
separation become very narrow in a low-speed range. Meanwhile, in the actual case,
besides the PSH and noises, the harmonics are also included in the speed estimation, thus
causing high-frequency dynamic errors. These problems still need to be solved in our
future works.
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