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Abstract: With the increasing awareness of environmental protection and the support of national
policy, as well as the maturing of solar power generation technology, solar power generation has
become one of the most promising renewable energies. However, due to changes in external factors
such as season, time, weather, cloud cover, etc., solar radiation is uncertain, and it is difficult to predict
energy output, even for the next hour. This inherent instability is a particularly difficult issue for the
prediction of energy output in the effective operation of solar power systems. This paper proposes a
grey wolf optimization (GWO)-based general regression neural network (GRNN), which is expected
to provide more accurate predictions with shorter computational times. Therefore, a self-organizing
map (SOM) is utilized to realize the weather clustering and the training of the GRNN with a GWO
model. The performance of the proposed model is investigated using short-term and ultra-short-term
forecasting in different seasons. It is very important to accurately predict the PV power output.
Moreover, the numerical results demonstrate that the proposed approach can significantly enhance
the prediction accuracy of PV systems.

Keywords: solar power forecasting; general regression neural network; grey wolf optimization;
power generation system

1. Introduction

In recent years, due to the rising awareness of environmental protection in the world,
the development of diversified clean energy sources has gradually become a requirement.
Wind and solar energy are currently the most popular natural energy sources. Especially
in urban areas with poor wind conditions, photovoltaic power generation has gradually
become the mainstream of renewable energy due to the inexhaustible, clean and pollution-
free characteristics of solar energy. Therefore, high-tech countries across the world have
focused on investment in research and development with incentives to promote solar
photovoltaic systems. The compound growth rate of the global solar cell market has
reached 35.5% in the past decade. It has clearly become an emerging hot industry, as
indicated by the many solar roof projects and large-scale photovoltaic modules under
active construction in various countries [1]. However, photovoltaic power generation
depends upon solar irradiance and weather factors; its power generation is a non-steady
random process. Many factors could affect the amount of photovoltaic power generated.
In order to understand the changes and the impact of photovoltaic power generation, it is
necessary to conduct regional installation simulations of photovoltaic power plants and
on-site analysis of photovoltaic power generation data. In order to reduce the uncertainty
of photovoltaic power generation and supply the power generation of other units to the
power company as a reference for power dispatching, it is necessary to analyze the forecast
of photovoltaic power generation.
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Solar radiation is affected by various random factors, such as the sun’s altitude, at-
mospheric conditions, sunshine duration, and date. With technological development in
the meteorological field, many models and methods of physical significance have been
presented in the study of solar radiation, such as the solar radiation model, the half-sine
model, and the Collares-Pereira and Rabl model. However, these models do not consider
the changes in surface solar radiation caused by complex weather and environmental influ-
ences; the difference between the calculated results and the actual values is often very high.
In addition, it is still very difficult to provide accurate ground solar radiation and power
generation forecasts, although current weather forecasting systems have accumulated a
huge database. Therefore, it is necessary to further apply artificial intelligence and statistical
theories for the analysis of photovoltaic (PV) forecasting. That is, solar power forecasting
has been the focus in this study. The related solar-forecasting literature presents numerous
models for forecasting solar power generation, and different mathematical models and hy-
brid mathematical models have been increasingly shown in photovoltaic power simulation.
For example, genetic programming (GP) with time series has been presented to predict the
power generation of a system; regression analysis has been discussed for the estimation
of solar photovoltaic power generation models; and the Montenegro carrot method has
been widely used to establish a mathematical model for solving photovoltaic and wind
power generation with uncertain climate factors. Forecasts include short-, medium- and
long-term solar photovoltaic power generation and wind power generation. Based on
historical data, stepwise regression and the group method of data handling (GMDH) have
been employed to construct a prediction model of photovoltaic power generation to predict
the power generation of a photovoltaic system. At present, many correlation modeling
methods such as moving average (MA), auto-regression moving average (ARMA), and
autoregressive integrated moving average (ARIMA) can be derived for simulation and
analysis from the time series data related to solar photovoltaic power generation [2]. Time
series analysis mainly studies the decomposition and prediction of a time series, using the
linear auto-regression model (AR) and sliding level of the time series. Traditional time
series methods cannot deal with non-linear photovoltaic power generation in a complex
and changeable large environment due to the high uncertainties of the environment and
climate. Therefore, this paper is mainly focused on various types of neural network-like
prediction technologies, which can greatly improve the accuracy of photovoltaic power
generation forecasts. The forecast models of photovoltaic power generation can be roughly
divided into physical models, statistical models, artificial intelligence models, and hybrid
models. Among them, artificial intelligence models are chiefly based on various types
of neural networks, such as backpropagation neural networks (BPNN) [3,4], radial basis
function neural networks (RBFN) [5,6], and recurrent neural networks (RNN) [7]. Statistical
models include the regression model, transfer function model, autoregressive integrated
moving average model (ARIMA) [8], Markov chain model [9], and gray model [10]. The
main hybrid models for a light radiation prediction are described in the literature [4,11],
and related prediction models include the combination of neural networks with wavelet
analysis [12], and fuzzy logic [13]; hybrid models such as statistical models and compre-
hensive models combine short-term and mid-term forecasts. Typical artificial intelligence
prediction models are suggested by using artificial neural networks (ANN) and prediction
models that combine neural and fuzzy systems [14,15]. In this paper, a new general regres-
sion neural network (GRNN) prediction scheme based on grey wolf optimization (GWO) is
proposed to more accurately predict PV power generation.

The main contributions of this paper are as follows:

(1) The PV output power of next hours is verified to improve the prediction performance
of PV systems.

(2) A SOM framework combined with the GWO_GRNN algorithm is proposed to obtain
a prediction model that could provide short-term predictions of PV power output.
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(3) The effectiveness of the proposed method is validated by taking real PV data of
Taichung, Taiwan. A real variable and SOM variable are used to perform the GRNN
with GWO modeling.

2. Data Processing

The photovoltaic modeling data set for predicting solar photovoltaic power generation
is shown in Figure 1. It shows solar irradiance and energy across four seasons of the year.
Rainy and cloudy weather affect photovoltaic power generation, so solar irradiance will
draw proportionally. This section shows the proposed data preprocessing method.
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Figure 1. Solar power historical data: (a) solar power in spring; (b) solar power in summer; (c) solar
power in autumn; (d) solar power in winter.

The data range is from January 2018 to December 2020. There are approximately
52,560 records each year and in total about 157,680 records in the database. Each data
item has atmospheric parameters such as wind speed, temperature, relative humidity,
and rainfall. The reasons we selected these main variables are: wind speed affects the
movement of clouds, temperature reflects the solar insolation, humidity is related to the
water vapor in the space, and ultraviolet will be changed to solar irradiance. The other
variables ignored generally have little effect.

It is necessary to first determine the year Y and date D to forecast using the database.
For example, for a forecast date of 15 April 2020: Y = 2020, and D = 15 April. N1 and N2
represent column and row, in which the row indicates the date (such as 15 April). For
example, N1 = 3 indicates the date from D − 3 to D + 3 (a total of seven days from 12 April
to 18 April). Column represents the year N2 = 2 indicates the year from 2020 to 2020 − 2
(from 2020 to 2018). Numbers of N1 and N2 can be variable, as seen in Table 1.
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Table 1. Iterative strategy for pattern aggregation.

Y, D − 3 Y, D − 2 Y, D − 1 Y, D Y, D + 1 Y, D + 2 Y, D + 3

Y − 1, D − 3 Y − 1, D − 2 Y − 1, D − 1 Y − 1, D Y − 1, D + 1 Y − 1, D + 2 Y − 1, D + 3

Y − 2, D − 3 Y − 2, D − 2 Y − 2, D − 1 Y − 2, D Y − 2, D + 1 Y − 2, D + 2 Y − 2, D + 3

2.1. Weather Clustering

The data group analysis of the second layer is divided into Layers Z21–Z24, as shown
in Figure 2. For the topology of Layers Z21–Z24, T and N3 are the time and time interval
of input data, respectively. [T − N3] represents six data items in one hour, and T + N3
represents one data item only one hour in the future; that is, one input includes eight data
items [T − 6, T − 5, T − 4, T − 3, T − 2, T − 1, T, T + 6].
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Figure 2. Data group analysis.

Four topological structures (Layer Z21–Layer Z24) are constructed in Layer 2, labeled
Z21–Z24, and four classification parameters Z21–Z24 are the integer. Z2 is the expected
number of classifications. For example, Z2 = 8 means that the above data could be divided
into eight data groups.

2.1.1. Self-Organizing Map Algorithm Flow

Step 1: Initialization.

Link the value vector wj(0) and set its value in a random manner. All N initial values
of the link value vector should be different, and N is the number of class neurons.

Step 2: Input example feature vector.

For time step n, input vector x = (x1, x2, . . . , xm)
T . The input data are wind, tempera-

ture, humidity, and rainfall.

Step 3: Find the winner neuron.

By the smallest Euclidean distance, find out the winner neuron j∗ at time step n using
the following formula:

j∗ = argminjx(n)− wj, j = 1, 2, . . . , N2

Step 4: Adjust the link value vector.

Use the following formula to adjust the link value vector of all neuron types:

wj(n + 1) =
{

wj(n) + η(n)[x(n)− wj(n)], j ∈ Nj∗(n)
wj(n), j /∈ Nj∗(n)
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where η(n) is the learning rate parameter and Nj∗(n) is the neighbor of winner neuron j∗.

Step 5: Go to step two. The algorithm will not be terminated until the feature map is
formed. The SOM framework is shown in Figure 3 [16,17].
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2.1.2. Photovoltaic Power Generation Model

Solar energy is highly intermittent. Although forecasting is an extremely difficult
problem, it is inseparable from the preparations for building solar forecasting models. In
this study, the input variables are wind, temperature, humidity, and rainfall, while the
output variables are the magnitude of solar power in the next period. A self-organizing map
(SOM) is used for one-hour solar power predictions and one-day solar power predictions.
Figure 4 shows the building process of the proposed model. Five input styles are included
in the prediction model: (i) wind; (ii) temperature; (iii) humidity; (iv) rainfall; and (v)
solar irradiance.
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After the data group analysis of Layer Z1 and Layers Z21–Z24, each piece of data
receives a grouping code such as [4, 8, 3, 2, 1] with five integers (1 to 8), representing Input
2 (SOM variable). The predictive model in this paper uses Input 1 + Input 2 to perform the
GWO algorithm and GRNN modeling.

(1) Input 1 (real variable) represents the actual value (generally the parameter size, weight,
and spacing difference of each datum are different).

(2) Input 2 (SOM variable) represents the value of each data group (which can be clearly
classified as the Layer Z1 and Layer Z2) and uses Input 1 + Input 2, as shown in
Figure 4.

2.2. Performance Evaluation

The mean relative error (MRE), mean absolute error (MAE), the mean bias error
(MBE), root mean squared error (RMSE), mean absolute percent error (MAPE), normalized
mean bias error (nMBE), and coefficient of determination (R2) are widely adopted to
assess the performance of solar power forecasting. The evaluation criteria are defined as
follows [18,19]:

MRE =
1
N

N

∑
i=1

∣∣∣Preal
i − Ppred

i

∣∣∣
Pcapacity

PV

× 100% (1)

where N is the number of samples; Preal
i is the actual power; and Ppred

i is the predicted power.
MAE and MBE represent the accuracy in the same data unit, which helps to conceptu-

alize the size of the error. It is expressed by the following equation:

MAE =
1
N

N

∑
i=1

∣∣∣Ppred
i − Preal

i

∣∣∣ (2)

MBE =
1
N

N

∑
i=1

(Ppred
i − Preal

i ) (3)

RMSE is easier to interpret, as it is expressed in the same units as the predictor variable:

RMSE =

√√√√ 1
N

N

∑
i=1

(Ppred
i − Preal

i )
2

(4)

MAPE and nMBE express the accuracy as a percentage error. Since this number is
a percentage, it may be easier to understand than other measurement formulas. It is
expressed by the following equation:

MAPE =
1
N

N

∑
i=1

∣∣∣Ppred
i − Preal

i

∣∣∣
Preal

i
× 100% (5)

nMBE =

N
∑

i=1
(Ppred

i − Preal
i )

N
∑

i=1
Preal

i

× 100% (6)
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For the coefficient of determination, the range of R2 is between 0 and 1. The closer R2

is to 1, the more efficient and accurate the predictive model is, as well as providing better
generalization performance.

R2 = 1−

N
∑

i=1
(Preal

i − Ppred
i )

2

N
∑

i=1
(Preal

i − Pavg)
2

, ·Pavg =
1
N

N

∑
I=1

Preal
i (7)

3. Proposed General Regression Neural Network with Grey Wolf Optimization
3.1. Generalized Regression

GRNN is proposed by Specht as an alternative to the well-known backpropagation
training algorithm for feedforward neural networks. This neural network, like other
probabilistic neural networks, only needs to backpropagate a small part of the training
samples required by the neural network [20–23]. The data obtained from the measurements
of an operating system are usually not enough for backpropagation neural networks.
Therefore, the use of probabilistic neural networks is particularly advantageous since they
can converge to the underlying function of the data, and a few training samples are enough.
There is relatively little additional knowledge required to obtain the fit in a satisfactory
manner, and it can be completed without additional input from the user.

3.2. Grey Wolf Optimization

In grey wolf optimization (GWO), the optimization solution is alpha (α), beta (β), and
delta (δ). The GWO algorithm can be represented by [24–26]

X(t + 1) =
[X1(t) + X2(t) + X3(t)]

3
(8)

where X(t + 1) = σ is a smoothness parameter, and X1(t), X2(t) and X3(t) represent
position vectors α, β, and δ in the current population, respectively.

X1(t) = |α(t)− R1(t) · [M1(t) · α(t)− X(t)]| (9)

X2(t) = |β(t)− R2(t) · [M2(t) · β(t)− X(t)]| (10)

X3(t) = |δ(t)− R3(t) · [M3(t) · δ(t)− X(t)]| (11)

where α(t), β(t), and δ(t) stand for the three vectors as the three best solutions. R1(t),
R2(t), R3(t), and M1(t), M2(t), M3(t) can be calculated as follows:

R1(t) = R2(t) = R3(t) = 2c(t)γ1 − d(t) (12)

M1(t) = M2(t) = M3(t) = 2γ2 (13)

where γ1 and γ2 are two random vectors in [0,1]. The updated numbers of two adjusted
factors, c(t) and d(t), control the tradeoff between exploration and exploitation. Two
exponential-functional adjustable factors, c(t) and d(t), express the updated values at
iteration according to the following equations:

c(t) = 2e−t/at1 (14)

d(t) = 2e−t/at2 (15)

where t indicates the iteration number, and at1 and at2 describe the total number of iterations
allowed for the optimization. Finally, X(t + 1) = σ indicates the best solution in connection
with the smoothness parameter of the GRNN. The flowchart of GRNN with the GWO
algorithm is shown in Figure 5.
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4. Numerical Results

The rated power of the PV power plant was 200 kW and the solar power data sets were
taken from January 2018 to December 2020 from the Taiwan Power Company’s website [27].
The simulation was examined using a computer with an Intel Core i7-3770k 3.5 GHz CPU,
8 GB RAM, and MATLAB R2018a. The data are publicly available for researchers on the
Taiwan Central Weather Bureau Automatic Weather Station’s website [28].

The GWO_GRNN model is compared with three other models, namely the long short-
term memory (LSTM) [29–31], support vector machine (SVM) [32], and GRNN [30], for
solar power prediction. Data regression combined with the SOM model was investigated
for solar power forecasting.

4.1. Short Term Solar Power Forecasting (Hours)

The one-hour solar power forecasting results are presented in Figure 6. Figure 6b
shows the one-hour forecast results for summer. It can be seen from the results that the
solar energy had a higher output power, and the summer’s prediction was smoother than
that in other seasons. The average output power of the proposed algorithm in the four
seasons was higher than that of the other strategies, and the solar power in autumn was
greater compared with the other seasons, as shown in Figure 6a,b,d. Furthermore, the
GWO_GRNN model provided a better performance than the other methods.

4.2. Ultra-Short-Term Solar Forecasting (10 min)

The forecasting results of the proposed method for 10 min solar power are shown in
Figure 7. It can be seen from Figure 7 that there was little difference between the GRNN
model and the GWO_GRNN model. The forecast was considered from January 2018 to De-
cember 2020 during all four seasons. For the ultra-short-term, the proposed GWO_GRNN
model had better results than the other models. The proposed model performance in
minutes is depicted in Figure 7, having great advantages in improving prediction accuracy.
The method effectively combines the advantages of different methods and greatly improves
the accuracy of the solar power prediction.
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4.3. Stability and Robustness of the Forecasting Model

Numerous simulations were performed on the prediction model to ensure the pro-
posed method could provide stable and reliable prediction results [31]. Figures 8 and 9
present the related error bars of RMSE and MAE in the spring, summer, autumn, and winter.
As the cyclic architecture and storage unit were determined, the RMSE and MAE of the
four seasons were obtained from the proposed method and maintained a low error within
the prediction range because the adjacent power data in each prediction process were used.
Table 2 shows the MAE and RMSE of the predicted power output of the all-season forecast.
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Mean
Error Total Data min LSTM SVM GRNN GWO_GRNN

MAE
(kW)

4032 10 1.549 1.621 1.555 1.469
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448 90 1.889 2.274 1.846 1.502
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(kW)

4032 10 3.534 3.736 3.573 3.333
1344 30 4.100 4.716 3.840 3.484
672 60 4.356 5.154 3.844 3.533
448 90 4.534 5.506 4.105 3.539
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The results showed that our method could provide reliable prediction results for
photovoltaic power generation. Therefore, from the numerical results, we can easily
conclude that the proposed method exhibited the prediction performance of an ideal
photovoltaic power generation.

5. Discussion

The performance evaluation of the solar power forecasting used seven evaluation indi-
cators, MAE, RMSE, MAPE, MRE, MBE, nMBE, and R2, as shown in Table 3. MAE, RMSE,
MAPE, MRE, MBE, nMBE, and R2 have been widely presented to evaluate the performance
of solar power forecasting models [19,29–31,33]. The results shown in Figures 6 and 7
and Table 3 were taken from a 24 h period in each season, i.e., 3 December (winter),
3 March (spring), 3 June (summer), and 3 September (autumn). According to the one-hour
ahead forecast error, both the forecast errors during each season and the average forecast
error were reduced by 0.011%, 0.006%, 0.005%, and 0.027%, respectively. The results in Ta-
ble 3 show that the prediction accuracy of the GWO_GRNN model was significantly better
than that of GRNN, LSTM and SVM. Taking into account the accuracy of GWO_GRNN
on average, forecasting accuracy was improved by 13.46%, 17.04% and 28.33% in MAE
compared to the preceding three methods based on GRNN, LSTM, and SVM, respectively.
Similarly, the RMSE was improved by 7.28%, 18.1% and 30.71%, respectively. The solar
power forecasting errors in all four seasons can be clearly observed. Table 4 shows the
average error of the predicted power value of the all-season ultra-short-term forecast. It
can be seen that GWO_GRNN improved the search capability and guaranteed the global
optimum as far as possible. In Table 4, the GWO_GRNN algorithm showed higher accuracy,
while the MAE, RMSE, MAPE, MRE, MBE, nMBE, and R2 were greater than those in LSTM,
SVM, and GRNN.
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Table 3. Comparison of performance evaluation for the one-hour-ahead forecasting between the
GWO_GRNN and three different methods (Hours).

Seasons Error LSTM SVM GRNN GWO_GRNN

Spring
(1 March 2020~7 March 2020)

Data 168

MAE (kW) 2.0299 2.302 1.966 1.743
RMSE (kW) 4.041 4.557 3.889 3.558
MAPE (%) 0.0177 0.033 0.023 0.011
MRE (%) 1.0085 1.151 0.983 0.871

MBE (kW)
nMBE (%)

R2

0.5506
0.0083
1.0358

0.214
0.0090
1.1148

1.120
0.0166
1.8870

0.929
0.0079
0.9598

Summer
(1 June 2020~7 June 2020)

Data 168

MAE (kW) 2.7282 3.302 2.641 2.133
RMSE (kW) 6.2856 7.910 5.414 4.687
MAPE (%) 0.0103 0.040 0.009 0.006
MRE (%) 1.365 1.651 1.321 1.067

MBE (kW)
nMBE (%)

R2

1.5336
0.1052
0.3162

2.420
0.1152
1.1776

0.473
0.2119
2.0036

0.654
0.1004
0.9479

Autumn
(1 September 2020~7 September 2020)

Data 168

MAE (kW) 2.9177 3.304 2.795 2.489
RMSE (kW) 6.0528 6.871 5.384 5.190
MAPE (%) 0.031 0.018 0.028 0.005
MRE (%) 1.4345 1.652 1.398 1.245

MBE (kW)
nMBE (%)

R2

0.6653
0.0564
1.8784

1.028
0.0509
1.1051

−0.337
0.0982
2.1548

0.346
0.0464
0.9600

Winter
(1 December 2020~7 December 2020)

Data 168

MAE (kW) 1.408 1.607 1.309 1.172
RMSE (kW) 3.4116 4.054 2.794 2.776
MAPE (%) 0.04 0.050 0.003 0.027
MRE (%) 0.7189 0.803 0.655 0.586

MBE (kW)
nMBE (%)

R2

0.1171
−0.0958
1.1328

−0.645
−0.0656
1.0164

0.385
−0.1292
1.9329

0.863
−0.0586
0.9523

Average

MAE (kW) 2.2709 2.6287 2.177 1.884
RMSE (kW) 4.9477 5.848 4.370 4.052
MAPE (%) 0.0247 0.0352 0.015 0.012
MRE (%) 1.1317 1.3142 1.089 0.942

MBE (kW)
nMBE (%)

R2

0.7166
0.0185
1.0908

0.7542
0.0273
1.1034

0.410
0.049
1.994

0.698
0.024
0.955

Table 4. Comparison of ultra-short-term errors for all seasons between the GWO_GRNN and three
different methods.

Mean Error LSTM SVM GRNN GWO_GRNN

MAE (kW) 2.271 2.134 2.041 1.907
RMSE (kW) 4.948 4.652 4.315 4.101
MAPE (%) 0.025 0.002 0.002 0.002
MRE (%) 1.132 1.067 1.021 0.953

MBE (kW) 0.717 0.617 0.518 0.653
nMBE (%) 0.0185 0.0274 0.0494 0.0240

R2 (%) 1.0908 1.1035 1.9946 0.9550

The simulation results showed that the proposed method based on GWO effectively
enhanced the prediction accuracy of short-term solar power generation. In addition, the
proposed GWO_GRNN algorithm achieved two goals: improving the accuracy of solar
forecasting and reducing its computational cost. Some cases were optimized to illustrate the
effectiveness of the algorithm and the results were compared with the results of previous
studies. It can be seen from the results that the proposed method was achievable, robust,
and more effective than many previously established algorithms.
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Furthermore, GRNN had only one parameter having the faster modeling. It has
advantages that with GWO it is easier to search for the best parameters to improve the
computing performance of the GRNN modeling. It does not mean that the modeling of
LSTM and SVM is not as good as that of GRNN, but the size of the solution space is different,
so GWO will waste more time and increase the difficulty of finding the best parameters
due to other modeling methods requiring more parameters. The more parameters, the
larger the solution space and the higher the difficulty. The parameters for the above three
methods were adjusted as: (1) GRNN with one parameter, (2) SVM with two parameters,
and (3) LSTM more than three parameters.

6. Conclusions

This paper proposed a method to accurately predict short-term photovoltaic power
generation due to the intermittent nature of solar power generation. The hybrid method of
a data pre-processor based on SOM theory and the GRNN model with GWO was suggested
to predict the solar power output within a 24 h time range. The results showed that the
prediction accuracy and computational efficiency of this model were better than other
models. Predictors and supervised models are useful in many predictions or classification
situations, especially when the input data are incomplete or irregular. In order to expand the
application of this model, future studies should focus on small-scale power generation, and
predict photovoltaic power output using combined global climate, weather and geographic
data. The total solar power output could be managed more reasonably and enhance the
operational planning and maintenance of photovoltaic power generation. Additionally, the
database was used to find clustered data and the SOM was conducted to classify the data
cluster in a digital way. This methodology would have better robustness in modeling and
effectively avoid large-scale modeling methods. Since the traditional modeling mode has
the phenomenon of decimal point or the analogy data interval is too large, the modeling
of SOM would classify and convert the analogy data group into a digital data group
in the image space so that robustness would be better. Finally, the GRNN model with
GWO in comparison with other modeling methods showed better prediction accuracy and
computational efficiency in the simulation of photovoltaic power generation.

Author Contributions: C.-S.T. performed the simulations, conducted the concept and application
of software. W.-C.T. management activities to annotate (produce metadata), scrub data and main-
tain research data for initial use and later re-use as well as prepared the revised version. C.-M.H.
contributed to the development algorithm and prepared the original draft of the manuscript to be
submitted and the revised version. W.-M.L. assisted with analysis of algorithms. All authors have
read and agreed to the published version of the manuscript.

Funding: The project was supported by Scholar Research Funds of Xiamen University Tan Kah Kee
College (JG2022SRF03 and JG2019SRF05).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

PV Photovoltaic
GP Genetic Programming
GMDH Group Method of Data Handling
GRNN General Regression Neural Network
BPNN Backpropagation Neural Network
RBFN Radial Basis Function Neural Network
RNN Recurrent Neural Networks
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ANN Artificial Neural Networks
GWO Grey Wolf Optimization
GWO_GRNN General Regression Neural Network with Grey Wolf Optimization
AR Auto-Regression
MA Moving Average
ARMA Auto-Regression Moving Average
ARIMA Autoregressive Integrated Moving Average
SOM Self-Organizing Map
MRE Mean Relative Error
MAE Mean Absolute Error
MBE Mean Bias Error
RMSE Root Mean Squared Error
MAPE Mean Absolute Percent Error
nMBE Normalized Mean Bias Error
R2 Coefficient of Determination
LSTM Long-Short Term Memory
SVM Support Vector Machine

Parameters

Preal
i The actual power

Ppred
i The predicted power

Pavg The average power
X(t + 1) Smoothness parameter
r1, r2 Two random vectors
c(t), d(t) The updated values at iteration
t The iteration number
at1, at2 The total number of iterations
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