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Abstract: This paper demonstrates the applicability of machine learning algorithms in sand produc-
tion problems with natural gas hydrate (NGH)-bearing sands, which have been regarded as a grave
concern for commercialization. The sanding problem hinders the commercial exploration of NGH
reservoirs. The common sand production prediction methods need assumptions for complicated
mathematical derivations. The main contribution of this paper was to introduce machine learning
into the prediction sand production by using data from laboratory experiments. Four main machine
learning algorithms were selected, namely, K-Nearest Neighbor, Support Vector Regression, Boosting
Tree, and Multi-Layer Perceptron. Training datasets for machine learning were collected from a sand
production experiment. The experiment considered both the geological parameters and the sand
control effect. The machine learning algorithms were mainly evaluated according to their mean
absolute error and coefficient of determination. The evaluation results showed that the most accurate
results under the given conditions were from the Boosting Tree algorithm, while the K-Nearest
Neighbor had the worst prediction performance. Considering an ensemble prediction model, the
Support Vector Regression and Multi-Layer Perceptron could also be applied for the prediction
of sand production. The tuning process revealed that the Gaussian kernel was the proper kernel
function for improving the prediction performance of SVR. In addition, the best parameters for both
the Boosting Tree and Multi-Layer Perceptron were recommended for the accurate prediction of sand
production. This paper also involved one case study to compare the prediction results of the machine
learning models and classic numerical simulation, which showed the capability of machine learning
of accurately predicting sand production, especially under stable pressure conditions.

Keywords: sand production prediction; natural gas hydrates; machine learning; k-nearest neighbor;
support vector regression; boosting tree; multi-layer perceptron

1. Introduction

Global energy demand has been rapidly increasing in recent years in both developed
and developing countries. Natural gas hydrate (NGH) has been widely treated as a clean
source of energy in the 21st century, producing fewer environmental pollutants compared
to traditional energy sources (fossil fuels). The reserved natural gas hydrate amounts to
2.6 × 1016~1.2 × 1017 m3 [1]. Hydrate reserves are classified into three major categories,
which are the pore filling, fractured, and massive/nodule categories [2]. NGH is mainly
reserved in terrestrial permafrost and continental margin marine sediments. More than
90% of the estimated NGH reserves are distributed in the ocean [3]. As a clean and highly
efficient energy source, NGH shows a bright future in terms of development and utilization.
Since NGH was discovered in 1967, some leading countries all around the world, including
the United States, Russia, Japan, Canada, and China, have found large NGH sediments
and have proposed in situ exploration schemes [4–7]. According to most commercial trials
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of the production of the NGH, it has been found that three main problems are hindering its
development, which are low productivity, sand problems, and poor economic efficiency [8].
Based on previous research and production in field trials, the low productivity comes
from two reasons. Firstly, the development of NGH relies on a phase change in the NGH,
which absorbs the heat continuously; the heat transfer causes a low-temperature zone
near the wellbore, which keeps expanding as the development process continues; the low
temperature slows down the natural gas hydrate’s gasification process [9]. Secondly, a huge
amount of sand that is formed flows into the wellbore and causes a blockage in it [10]. In
addition, the formation of secondary NGH increases the risk of blockage in the development
of NGH [11]. The wellbore blockage slows down—and sometimes even interrupts—the
NGH recovery process. The poor economic efficiency of NGH development also comes
from sand damage to the production facilities. The sand flowing from the formation into the
wellbore can also cause severe damage to sand control devices, such as filtering screens [12].
The produced sand that flows into the wellbore can cause direct damage to the submersible
pump, production tubing, and well head. Deng J. and Deng F. reported the failure of NGH
production was due to the huge amount of sand production in China [13,14]. Trials of the
production of offshore NGH in other countries also proved the negative effects of sand
production, such as in Japan and Canada [15,16].

Sand management and theoretical analysis heavily rely on sand prediction models.
Sand prediction models have two main methods: macro-level and micro-level methods. A
macro-level method focuses on the mechanical behavior of an NGH sediment by consid-
ering the strength of the formation [7,17]. A macro-level method needs to take the yield
criterion into consideration, such as the Mohr–Coulomb yield criterion [18], Tresca yield
criterion, Mises yield criterion [19], Drucker–Prager yield criterion [20], Hoek–Brown yield
criterion [21], or Lade–Duncan yield criterion [22]. The Mohr–Coulomb criterion is the
one that is mostly commonly used, but its comparison to other criteria still needs further
study. Micro-level sand prediction concerns the free-moving sand in NGH sediments. The
classic sand movement model, which was presented by Uchida et al., divided the sand
migration process into three main states—grain detachment, grain settling, and lifting [23].
The simulation of sand migration requires complicated mathematical derivations and some
necessary assumptions. For example, the rock particles were assumed to be incompressible
in the simulation models of Ataie-Ashtiani et al., Chang et al., and Yan et al. [12,24,25].
These assumptions can simplify the derivation process; however, they may reduce the
accuracy of the simulation. To overcome the main drawbacks of current sand production
simulation methods, machine learning is a novel method for sand prediction for uncon-
solidated NGH sediments. Based on a survey of the literature survey, it is difficult to
find current research that is trying to apply machine learning in the prediction of sand
production in the development of NGH reservoirs.

Machine learning has great advantages in terms of clustering, classification, and
regression. In comparison with traditional mathematical modeling, machine learning has
the capability of dealing with the growing complexity of data with few assumptions [26].
Among the various machine learning algorithms, several powerful and commonly used
algorithms were selected to predict sand production risks, namely, K-Nearest Neighbor
(KNN), Support Vector Regression (SVR), Boosting Tree (BT), and Multi-Layer Perceptron
(MLP). KNN and SVR were selected because of their robustness, which provides the
capacity to handle complex problems [27]. The Boosting Tree, which is also known as a tree-
based algorithm, has obvious advantages in dealing with distinct features and combinations
of features [28]. A tree-based algorithm can generate acceptable results that are not based
on the assumption of normality [29]. MLP, as a classic artificial neural network (ANN)
algorithm, has been proven to solve problems efficiently and accurately, and it has no
simple algorithmic solutions [30].
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2. Machine Learning Algorithms
2.1. K-Nearest Neighbor Learning Algorithm

The K-Nearest Neighbor (KNN) algorithm is a simple and commonly used supervised
learning method, and it was recognized as one of the top 10 algorithms [31]. KNN is mainly
used for classification. Figure 1 shows a schematic diagram of KNN. The working principle
of KNN is to find out the K training samples closest to a new test data point in the training
set by using some distance measurement, and then to use the label of the K similar points
to predict the test samples. In the progress of a regression, the average of the label values of
the K sample is used as the prediction result. The weighted average can also be based on the
distance, so the closer the sample weight is, the more accurate the prediction can be when
the sample distribution is uneven. The advantage of the KNN algorithm the avoidance of
the training process before classification. Instead of a training process, it simply saves the
samples and calculates the distance after receiving the samples to be predicted [32]. On the
other side of the coin, the time complexity of the prediction is large. In addition, the other
main challenges in KNN include the computation of K, nearest neighbor selection, nearest
neighbor search, and classification rule [33]. Despite these shortcomings, KNN is still an
efficient artificial intelligence (AI) algorithm according to the comparison of 16 different
algorithms by Li et al. [34].
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As mentioned above, K is an important super-parameter in KNN, and it determines the
precision of the prediction. The prediction results will be different when K takes different
values. The computation of K relies on the sample’s distribution [35]. The selection of K
can be based on either different sample subspaces [36] or different test samples [37]. Small
ranges of training samples are used for prediction if a small K value is selected. In this
way, the prediction error of KNN will be reduced if the sample size is large enough. This is
because only the training samples close to the samples to be predicted play a role in the
prediction results. Meanwhile, it is easier to overfit because the prediction results are very
sensitive to adjacent samples. The prediction makes mistakes quite easily if an adjacent
sample contains incorrect data. If a larger K value is selected, it is equivalent to using a
wide range of samples for prediction. The advantage is that it can reduce the possibility
of overfitting by the learner, but in this way, the training samples that are far away from
the samples to be predicted will also play a role in prediction, resulting in a decline in the
prediction accuracy. Generally, in practice, a K value with a smaller value is still selected.
On the other hand, if different distance calculation methods are used, the “neighbors”
found will be different, and the prediction results will, of course, be significantly different.
The most commonly used distance measure is the Lp distance or Minkowski distance.
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2.2. Support Vector Regression Algorithm

Support Vector Regression (SVR) is also commonly accepted as one of the standard
machine learning algorithms, and it falls under the category of supervised learning meth-
ods [38]. Its algorithmic principle can be summarized in the following two main points:
(1) Firstly, it is a linear fitting algorithm that is only suitable for linearly distributed data. For
data with a nonlinear distribution, a special nonlinear mapping is used to make their high-
dimensional distribution linear, and the linear algorithm is used in the high-dimensional
feature space to try to learn to fit the training data. (2) Secondly, the algorithm constructs an
optimal hyperplane in the whole feature space based on the theory of structural risk mini-
mization (including regularization). SVR is not a traditional regression fitting algorithm
based on its basic principle. The main advantage of the SVR algorithm is the capability of
achieving a global optimum and avoiding overfitting. The main feature of SVR comes from
the different kernel functions that are used to fit different types of data. The computational
complexity depends only on the number of support vectors. Therefore, a small number of
support vectors determine the final result, not the entire dataset.

In the given training sample set D = {(x1, y1), (x2, y2), . . . . . ., (xm, ym)}, yi ∈ R, the
objective is to have a regression model f (x) = ωTx + b that makes f as close as possible to
y. Both ω and b are the model parameters that need to be determined. For a certain sample
(x, y), traditional regression models usually calculate the loss based on the difference
between the model output f (x) and the real value y. The loss is zero only when f (x) and y
are exactly the same. In contrast, SVR can tolerate the maximum deviation between f (x)
and y. The loss is calculated only when the absolute value of the difference between f (x)
and y is greater than ε. The loss is not calculated for a sample with a prediction error falling
to ε, while the samples on and outside the spacer are called support vectors. Thus, the SVR
problem can be written as:

min
ω,b

1
2
‖ω‖2 + C

m

∑
i=1

lε( f (xi)− yi) (1)

where C is the regularization constant, which is a super-parameter; lε is the ε− insensitive
loss function, which can be determined with the following equation:

lε =

{
0, i f |z| ≤ ε

|z| − ε, otherwise

}
. (2)

Introducing slack variables ξi and ξ̂i and rewriting the above formula gives:

min
ω,b,ξi ,ξ̂i

1
2‖ω‖

2 + C
m
∑

i=1
(ξi + ξ̂i)

s.t. f (xi)− yi ≤ ε + ξi

yi− f (xi) ≤ ε + ξ̂i

ξi ≥ 0, ξ̂i ≥ 0, i = 1, 2, . . . , m

(3)

After introducing the Lagrange multiplier µi ≥ 0, µ̂i ≥ 0, αi ≥ 0, α̂i ≥ 0, the Lagrange
function of Equation (3) can be obtained with the Lagrange multiplier method:

L(ω, b, α, α̂, ξ, ξ̂, µ, µ̂)

= 1
2‖ω‖

2 + C
m
∑

i=1
(ξi + ξ̂i)−

m
∑

i=1
µiξi −

m
∑

i=1
µ̂i ξ̂i

+
m
∑

i=1
αi( f (xi)− yi − ε− ξi) +

m
∑

i=1
α̂i(yi − f (xi)− ε− ξ̂i).

(4)

Let the partial derivative of L(ω, b, α, α̂, ξ, ξ̂, µ, µ̂) to ω, b, ξi, and ξ̂i be zero:
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ω =
m

∑
i=1

(α̂i − αi)xi (5)

0 =
m

∑
i=1

(α̂i − αi) (6)

C = αi + µi (7)

C = α̂i + µ̂i (8)

Substituting Equations (5)–(8) into Equation (4), the dual form of SVR can be obtained:
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1

ˆ( ) ( )
m

T

i i i

i

f x x x b 
=

= − +
. 

(11) 

Applying the Karush–Kuhn–Tucker (KKT) conditions when searching for the opti-
mized value yields [39]: 

αi( f (xi)− yi − ε− ξi) = 0,

α̂i(yi − f (xi)− ε− ξ̂i) = 0,

αiα̂i = 0, ξi ξ̂i = 0,

(C− αi)ξi = 0, (C− α̂i)ξ̂i = 0

. (10)

Andreani et al. applied a sequential minimum optimization algorithm (SMO) to solve
the above optimization problem [40]. Substituting Equation (5) into Equation (10), the
solution of SVR is:

f (x) =
m

∑
i=1

(α̂i − αi)xT
i x + b. (11)

According to the KKT conditions in Equation (10), the samples falling in the ε−spacer
satisfy αi = 0 and α̂i = 0. Therefore, the samples of (α̂i − αi) 6= 0 in Equation (11) can be
the support vector of SVR, which falls outside the ε−spacing band. Obviously, the support
vector of SVR is only a part of the training samples, and its solution is still sparse.

In addition, it can also be seen from the KKT conditions (Equation (10)) that
(C− αi)ξi = 0 and αi( f (xi) − yi − ε − ξi) = 0 for each sample (xi, yi). Therefore, after
getting αi, it must be that ξi = 0 for 0 < αi < C, which yields:

b = yj + ε−
m

∑
i=1

(α̂i − αi)xT
i xj. (12)

In practical problems, multiple samples satisfying the condition 0 < αi < C are often
selected to solve b, and then the average is taken.

The sample is assumed to have a linear distribution in the above derivation; however,
data are often nonlinear in real applications [41]. For such problems, the samples can be
mapped from the original space to a higher-dimensional feature space so that they are
linearly distributed in this new space.

Let φ(x) denote the vector after mapping x to a high-dimensional space, so the corre-
sponding model of the linear regression equation in the new high-dimensional space is:

f (x) = ωTφ(x) + b. (13)
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So, the solution of SVR is:

f (x) =
m

∑
i=1

(α̂i − αi)φ(xi)
Tφ(x) + b (14)

b = yj + ε−
m

∑
i=1

(α̂i − αi)φ(xi)
Tφ(xj). (15)

However, there are still two problems: (1) Different data need different mapping func-
tions φ(x) for different scenarios, which makes it hard to predict how high the dimension
at which the original sample is to be mapped should be to create a linear distribution.
Therefore, the first problem comes from the selection of the mapping function φ(x). (2) The
solution involves the calculation of φ(xi)

Tφ(xj), which is the inner product of the sample xi
and xj mapped to a high-dimensional space. Since the dimension may be very high or even
infinite, a direct calculation is particularly difficult. A kernel function can help to solve these
problems. Kernel functions show good performance in solving the optimization problems
of increasing complexity [42,43]. In Equation (14), φ(xi)

T and φ(xj) always appear in pairs.
Then, the following relationship can be derived:

κ(xi, xj) =
〈
φ(xi), φ(xj)

〉
= φ(xi)

Tφ(xj). (16)

The inner product of xi and xj in a high–dimensional space is equal to the result
calculated with the function κ(xi, xj) in the original sample space. There is no need to pay
attention to the selection of mapping functions with such a function. Therefore, the inner
product in a high-dimensional or even infinite-dimensional feature space can be directly
calculated, which involves mapping the input data into a higher-dimensional space [44].
The most commonly used kernel functions are shown in Table 1.

Table 1. Commonly used kernel functions [44,45] (summarized from Daoud et al., and Bernal-de-
Lázaro et al.).

Kernel Expression Comments

Linear Kernel κ
(

xi, xj

)
= xT

i xj

Polynomial Kernel κ
(

xi, xj

)
=
(

xT
i xj

)d d ≥ 1, Number of polynomials

Gaussian Kernel κ
(

xi, xj

)
= exp

(
−‖xi−xj‖2

2σ2

) σ > 0, Bandwidth of the
Gaussian kernel

Sigmoid Kernel κ
(

xi, xj

)
= tanh

(
βxT

i xj + θ
) tanh is a hyperbolic tangent

function, β > 0, θ < 0

2.3. Boosting Tree Algorithm

Boosting is an integration method; within this category, the Boosting Tree is one
of the most commonly used algorithms. The principle of ensemble learning is to learn
repeatedly with a series of weak learners, which are later integrated into a strong learner
to get better generalization performance [46]. As the name implies, the Lifting Tree is an
algorithm that selects a weak learner as a decision tree and then integrates it. A weak
learner is a machine learning model with performance that is a little better than that of
chance. Some researchers used field datasets to prove that the Boosting Tree algorithm
was better than a neural network algorithm [47]. The Boosting Tree mainly comprises two
powerful algorithms, which are the Gradient Boosting Tree [48] and Extreme Gradient
Boosting [49]. According to a case study provided by Tixier et al., the Gradient Boosting
Tree (GBT) was proven to have better performance than that of other machine learning
methods, since it can determine nonlinear and local relationships [50]. Extreme Gradient
Boosting (XGB) is treated as an implementation of a Gradient Boosting Machine (GBM),
but it is more accurate and efficient [51]. Some researchers also found that XGB algorithms
could significantly reduce the risk of overfitting [52].
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Given the training sample set D = {(x1, y1), (x2, y2), . . . . . ., (xN , yN)}, yi ∈ R, a regres-
sion tree corresponds to a partition of the input space and the output value on all partition
units. Now, assuming that the space has been divided into M units R1, R2, . . . , RM, and
there is a fixed output value cm on each unit. The regression tree model can be expressed as:

f (x) =
M

∑
m=1

cm I(x ∈ Rm). (17)

In machine learning, the square error is applied to represent the prediction error of
the regression tree for the training data, and the minimum square error criterion is used to
solve the optimal output value on each unit, which is transformed into an optimization
problem [53]. The optimal value ĉm of cm on unit Rm is the mean of output yi corresponding
to all output instances xi on Rm:

ĉm = average(yi|xi ∈ Rm) (18)

The jth feature of the data (x(j)) and a certain value (or values) are assumed to be
selected as the segmentation variable and segmentation point. Two regions are defined
as follows:

R1(j, s) =
{

x
∣∣∣x(j) ≤ s

}
and R2(j, s) =

{
x
∣∣∣x(j) > s

}
(19)

Then, the optimal cut feature j and the optimal cut point s are found:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2
∑

xi∈R2(j,s)
(yi − c2)

2

 (20)

Traversing all features, the optimal segmentation features and optimal segmentation
points are found. According to this rule, the input space is divided into two regions. Then,
the above process is repeated for each region until the stop condition is satisfied, where
a regression decision tree can be generated. Combining Equation (18) with (17), the final
regression tree model is:

T(x; θ) = ĉm(x ∈ Rm) (21)

where the parameter θ = {(R1, ĉ1), (R2, ĉ2), . . . , (RM, ĉM)} represents the regional division
of the tree and the optimal value of each region; M is the number of leaf nodes of the
regression tree.

In the lifting tree, we use an additive model and a forward distribution algorithm.
First, the initial lifting tree f0(x) = 0 is set, and the model in step t is:

ft(x) = ft−1(x) + T(x; θt) (22)

which is the current model ft−1(x). The required solution is:

θ̂t = arg min
θt

N

∑
i=1

L(yi, ft−1(xi) + T(xi; θt)) (23)

The parameter θ̂t of the t-tree is determined through empirical risk minimization.
When the square error loss function is used,

L(y, f (x)) = (y− f (x))2 (24)

Then, the loss yields:

L(y, ft−1(x) + T(x; θt)) = (y− ft−1(x)− T(x; θt))
2

= (γ− T(x; θt))
2 (25)
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Here, γ is the residual of the predicted value of the t−1 tree:

γ = y− ft−1(x) (26)

So, the optimization goal of the t tree becomes:

θ̂t = arg min
θt

N

∑
i=1

(γ− T(xi; θt))
2 (27)

When the lifting tree solves the regression problem, it only needs to fit the residual
of the predicted value of the previous tree. This means that the algorithm becomes quite
simple, and the final model of the lifting tree can be expressed as an additive model.

fT(x) =
T

∑
t=1

T(x; θt) (28)

where T(x; θt) represents the decision tree, θt is the parameter of the decision tree, and T is
the number of decision trees.

2.4. Multi-Layer Perceptron

The neural network is a representative algorithm in machine learning, and it is the
most popular and widely used machine learning model [54]. A Multi-Layer Perceptron
(MLP) is a supplement to feed-forward neural networks [55]. Similarly to a biological neural
network, the most basic constituent unit of an artificial neural network is the ‘neuron’.
Each neuron is connected to other neurons. It multiplies the weight on each edge and
adds the bias of the neuron itself when it receives an input. The output of a neuron is
finally generated through an activation function, which is a nonlinear function, such as
a sigmoid function, arc-tangent function, or hyperbolic-tangent function [56]. A sigmoid
function with many excellent properties is often selected as the most common activation
function [57]. The perceptron model consists of two layers, which are the input layer
and output layer. However, the perceptron has only two layers and only one output
layer. One layer of functional neurons restricts the model to fitting data. To solve complex
problems, multi-layer functional neurons are needed. The neuron layer between the input
layer and the output layer is called the hidden layer. In other words, the Multi-Layer
Perceptron (MLP) is a neural network model with multiple hidden layers. Each layer of
neurons is completely connected to the next layer of neurons, and there are no connections
within the same layer or cross-layer connections. Some researchers proved that a neural
network with more than three layers could simulate any continuous function with arbitrary
accuracy [58,59]. The learning of MLP takes place by adjusting the weights and biases
between neurons according to the training data. An error back-propagation (BP) algorithm
is commonly used to train multi-layer neural networks. These are based on a gradient
descent strategy and are iterative optimization algorithms, which adjust the parameters
in the negative gradient direction of the target parameters [60]. According to the gradient
descent strategy, let the loss function be f and a pair of parameters be (ω, b). The initial
values (ω0, b0) are randomly selected; in the (n + 1)th iteration,

ωn+1 = ωn − α
∂ f
∂ω

∣∣
ωn ,bn (29)

bn+1 = bn − α
∂ f
∂b
∣∣
ωn ,bn (30)

where the learning rate α ∈ (0, 1) determines the update step size of each iteration of the
algorithm. The oscillation causes the model to be unable to converge normally if the value
of α is too large. The convergence speed of the algorithm is slow if too small of a value of α
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is used. The learning rate is usually set to 0.8 [60]. Newton’s method is applied for rapid
convergence [61]. Then, Equations (29) and (30) yield:

ωn+1 = ωn −
(

∂2 f
∂ω2

)−1
∂ f
∂ω

∣∣
ωn ,bn (31)

bn+1 = bn −
(

∂2 f
∂b2

)−1
∂ f
∂b
∣∣
ωn ,bn (32)

Loss functions (or objective functions) may have multiple local extremums, but there
is only one global minimum [62]. The global minimum value is the final objective of the
calculations. However, for the gradient descent algorithm, in each iteration, the gradient of
the loss function is calculated at a certain point, and then the optimal solution is determined
along the negative gradient direction [63]. The gradient at the current point is zero if the
loss function has reached the local minimum, where the updating of the parameters is
terminated. This leads to a local extremum in the parameter optimization. The local
minimum can be avoided through the following strategies in order to further approach
the global minimum [64–66]: (1) The neural network is initialized with multiple sets of
different parameters. The parameters with the loss function are the final solution after
training. This process is equivalent to starting from multiple different initial points for
optimization; then, we may fall into different local extremums, from which we can select
the results closer to the global minimum. (2) The random gradient descent method is used.
This method adds a random factor, and only one sample is used in each update. There will
be a certain possibility of making the direction deviate from the optimal direction so that it
can jump out of the local extremum.

2.5. Model Performance Evaluation

To evaluate machine learning models, several performance metrics are adopted and
calculated to judge their performance. Based on case studies from other researchers, the
mean absolute error (MAE) and coefficient of determination (R2 Score) are often selected
to evaluate the generalization ability of machine learning models [67]. The MAE is the
average difference between the true value and the predicted values, and it can be easily
calculated and compared. Some researchers even used some revised forms of the MAE,
such as the dynamic mean absolute error and mean absolute percentage error, to evaluate
the accuracy of a prediction model [68,69]. The more accurate the machine learning model
is, the smaller the MAE will be. A perfect model causes the MAE to be close to 0. Let f (x)
and y denote the predicted value and the true value, respectively. Then, the MAE can be
expressed as:

MAE =
1
m

m

∑
i=1
| f (xi)− yi| (33)

The MAE can intuitively measure the ‘gap’ between the predicted value and the real
value. However, it is difficult to compare a model’s effect when the equivalence dimensions
are different.

Since the dimensions of different datasets are different, it is difficult to compare them
by using a simple difference calculation. The coefficient of determination (R2 Score) can be
adopted to evaluate the degree of coincidence of the predicted values and true values [70].
Most recent research has proved the feasibility of using the R2 Score to evaluate mixed-effect
models, rather than just linear models [71]. The calculation of the R2 Score involves three
important performance judgment terms—the sum of squares for regression (SSR), sum of
squares for error (SSE), and sum of squares for total (SST) [72]:

SST = SSR + SSE (34)
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Based on the above relationship, the calculation method for the R2 Score can be defined
as [73]:

R2 = 1− ∑i( f (xi)− yi)
2

∑i(y− yi)
2 = 1− MSE( f (x), y)

Var(y)
= 1− SSE

SST
(35)

where MSE( f (x), y) is the mean square error between the predicted value f (x) and the
real value y; Var(y) is the variance of the real value y. Specifically, there are the following
situations in the analysis of the R2 Score:

1. If R2 ≈ 1, the performance metric MSE( f (x), y) is 0, indicating that the predicted
label value in the test sample is exactly the same as the true value. A perfect model
has been built to predict all of the test samples.

2. If R2 ≈ 0, the numerator is equal to the denominator, indicating that our predicted
values are all the mean values of the real values. In this situation, the prediction model
explains none of the variability of the response data around its mean. Sánchez et al.
(2019) also explained that, in this scenario, the inclusion of variables can be neglected,
and the built prediction model is not adequate [74].

3. If 0 < R2 < 1, the score is within the normal range. A value closer to 1 indicates a
better fit, while a value closer to 0 indicates a worse fitting effect.

4. For a bad scenario in which R2 < 0, the numerator is greater than the denominator,
that is, the error of the prediction data is greater than the variance of the real data.
This indicates that the error of the predicted value is greater than the dispersion of the
data, which indicates the misuse of a linear model for nonlinear data.

3. Prediction of Sand Production for an NGH Reservoir
3.1. Gravel-Filling Simulation Experiment

A sand control experiment was designed, as shown in Figure 2. The whole experimen-
tal process was carried out in a lab incubator to ensure safety. The key step when preparing
the experiment was to make NGH reservoir samples under lab conditions. According to a
survey of the literature, NGH samples for lab tests are mainly from field coring and lab
preparation [74,75]. The field coring method is very costly because of the high requirements
for temperature and pressure during transportation. In addition, some researchers have
found that the physical properties of NGH samples obtained with the coring method may
be changed in the sampling and transportation process [76]. Therefore, NGH samples were
prepared in lab conditions. The NGH lab preparation method for the experiment was an
in situ rapid preparation method that was proposed by Li et al. [77]. In the preparation,
different sizes of produced sand (0.05 m3) were added into a reactor to simulate NGH
reservoirs. The produced sand was mixed for a sand sieve analysis before being added into
the reactor. The purpose was to present the effect of the uniformity coefficient (UC).

To simulate a real production process, several sand control screens were adopted in
the experiment. The sand-retaining precision of the sand control screens was selected
according to the preferred gravel mesh. An experiment was used to measure the actual
sand production and sand content for the simulation experiment. Yu et al. [78]. designed
experiments to show that the proper selection of the median diameter ratio of gravel can
significantly reduce the risk of sand blockage in the exploitation and production of NGH.
Therefore, the selection of the precision of gravel packing was vital in both the experiment
and in field sand control. The criterion for the selection of the median gravel size was
obtained with Saucier’s method, with a gravel size of 5~6 × d50.

The purpose of the experiment was to use the changing variables as the independent
variable x and the measured sand production as the label y to establish a machine learning
model. The experiment contained eight characteristics: the well type, permeability (md),
shale content (%), sand diameter d50 (mm), effective porosity (%), hydrate saturation (%),
sand-retaining precision (the diameter of the mesh screen, mm), and uniformity coefficient
(d40/d90); sand production (g) was used as a label value. Table 2 illustrates the measured
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values, where xi represents the ith dataset, di represents the above features, and y represents
the label value of sand production.
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Table 2. Original data from the experiment.

d1 d2 d3 d4 d5 d6 d7 d8 y

x1 Horizontal Pipe 510.7 22.5 0.23 24.2 31.9 0.177 3.42 0.31
x2 Horizontal well 48.6 28.2 0.236 16 43.7 0.125 3.353 0.19
x3 Vertical Pipe 494.7 21.7 0.236 22.1 41.4 0.149 3.353 0.22
x4 Vertical Pipe 617.9 12 0.236 21.6 41.4 0.177 3.353 0.27
x5 Vertical Pipe 93.2 20.9 0.236 15.9 41.4 0.125 3.353 0.15
x6 Horizontal Pipe 863.7 9.7 0.31 22.4 41.4 0.21 5.34 0.31
x7 Horizontal Pipe 1047.6 7 0.252 23.02 41.4 0.177 3.27 0.22
x8 Horizontal Pipe 233 15.3 0.194 10.6 58.0 0.177 2.17 0.48
x9 Vertical Pipe 107.7 14.6 0.161 22.7 46.7 0.149 3.17 0.45
x10 Horizontal Pipe 442.4 0.9 0.237 22.4 35.3 0.21 2.85 0.51
x11 Horizontal Pipe 452.3 9.3 0.217 32.3 23.5 0.177 2.303 0.21
x12 Horizontal Pipe 452.3 16.8 0.289 31.8 16.3 0.177 1.897 0.41
x13 Vertical Pipe 452.3 13.9 0.203 26.6 55.5 0.149 1.854 0.42
x14 Vertical Pipe 452.3 0.1 0.19 29.7 61.5 0.149 1.876 0.4
x15 Horizontal Pipe 838.3 8.8 0.27 25.8 41.4 0.25 5.68 1.21
x16 Horizontal Pipe 130.3 12.5 0.283 21.2 41.4 0.297 6.4 1.32
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3.2. Modeling with Different Machine Learning Algorithms
3.2.1. Feature Selection and Data Pre-Processing

Feature selection is the first and vital step in the process of modeling with machine
learning. Proper feature selection can improve a machine learning model’s performance
by reducing overfitting and the curse of dimensionality [79]. For processes with large
amounts of data, feature selection has been shown to have a positive role in increasing the
calculation efficiency [80]. The main step in feature selection is the reduction of the feature
numbers by checking if a parameter is irrelevant or redundant [81]. Scatter diagrams of
each feature di and label y were drawn (Figures 3–10), which aimed at analyzing the impact
of each feature on the label value. Figure 3 roughly explains the effect of the well type.
The scatter plot (Figure 3) shows the effects of well types on sand production. In addition,
more significant sand production was observed in the horizontal well compared to that
in the vertical well. This relationship was verified by some other researchers, such as
Sparlin and Shang et al., who found that sand production was severe with long horizontal
sections [82,83]. Figure 4 shows the relationship between permeability and sand production.
Generally, the various permeability values caused different sand production levels, as was
also seen in previous research [84,85]. It was concluded that permeability was an effective
but not very significant feature in sand production. The effectiveness was because the
scatter points were concentrated in the middle and on the left side of the graph, while
the “not that significant” characterization came from the still two points located on the
right side. Figure 5 illustrates that the effect of the shale content had the same trend
as that of the effect of permeability on sand production. The scatter points in Figure 5
are slightly more concentrated than those of permeability in Figure 4. The preliminary
assessment showed that the median size of the produced sand was more relevant than the
shale content (Figure 6). As shown in Figure 7, the effective porosity was more obviously
relevant to sand production compared to the other parameters. Previous studies explained
that porosity could significantly affect sand production as a main transportation path for
flowing sand [86–88]. Based on the scatter points in Figure 8, the hydrate saturation was
less relevant to sand production compared to the porosity. Fang et al. designed experiments
to investigate the sand production behavior in an NGH sediment. In the above experiments,
the free sand mainly came from the dissociation of the hydrate, which caused the saturation
to affect sand production through the phase change [89]. Saturation could be treated as
an indirect factor by considering the changes in pressure and temperature. The pressure
and temperature were fixed in this experiment, which explained the lower relevance of
saturation as a feature to the output label value. The concentrated distributions of points in
Figures 9 and 10 prove the high relevance of sand-retaining precision and the uniformity
coefficient, respectively, to sand production.
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To summarize Figures 3–10, it seemed to be easier to produce more sand with hori-
zontal wells than with vertical wells. Wells with low permeability produced sand easily. A
large effective porosity value increased the amount of sand produced. A small uniformity
coefficient increased the sand risk. It was found that not all features had a simple linear
relationship with the label value. Based on this perception, a nonlinear algorithm was
adopted to fit the features. It must also be noted that there were two data points outside
the system for all features, which may have been for two reasons: (1) These were two noise
points coming from experimental error, and they should be abandoned; (2) the coverage
of the collected data was not wide enough. There were many data points between these
two outliers, and there were other data that were not collected. Since the amount of data
collected in this paper was small, the second reason could explain why the two points
seemed to be outliers.

The above scatter plots helped to intuitively and briefly show the relevance of each
feature to the output label. For a quantifiable verification, the correlations between features
were analyzed by using the correlation coefficients between them (as shown in Table 3). The
correlation coefficient is a special and important covariance that eliminates the influence
of dimension [90]. The closer the value is to 1, the more obvious the trend of positive
correlation between features is. On the other side of the coin, the closer the value is to
−1, the more obvious the trend of negative correlation between features is. A weaker the
correlation is found if the correlation coefficient gets closer to 0.

Table 3. Correlation coefficients between features.

d2 d3 d4 d5 d6 d7 d8

d2 1 −0.4673 0.426423 0.377929 −0.13718 0.259615 0.170625
d3 −0.4673 1 0.009319 −0.41641 −0.15977 −0.39754 0.015433
d4 0.426423 0.009319 1 0.108746 −0.50727 0.565289 0.612933
d5 0.377929 −0.41641 0.108746 1 −0.43826 0.110464 −0.19554
d6 −0.13718 −0.15977 −0.50727 −0.43826 1 −0.1836 −0.05787
d7 0.259615 −0.39754 0.565289 0.110464 −0.1836 1 0.730236
d8 0.170625 0.015433 0.612933 −0.19554 −0.05787 0.730236 1

It was obvious that there were strong positive correlations between sand-retaining
accuracy and uniformity coefficient, as well as between the median sand diameter and uni-
formity coefficient. This could be explained by the fact that the definition of the uniformity
coefficient was highly related to the median value of particle size. A greater value for these
features meant that a higher sand-retaining accuracy was required for sand production,



Energies 2022, 15, 6509 16 of 32

which validated the accuracy of the experimental results. According to Table 3, there were
no strong correlations between features on the whole. Since the number of features was
not very large, feature extraction methods, such as principal component analysis, were not
suitable for the data [91]. Random forest has the advantages of high accuracy and good
robustness [92]. The fitting effect of the nonlinear relationship was also good, and there was
no need for much debugging. The random forest method was used for feature selection in
this study. The base learner used 100 decision trees. The importance of each feature in the
random forests is shown in Figure 11.
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As shown in Figure 11, the uniformity coefficient and sand-retaining precision were the
two most important characteristics, the total importance of which exceeded 80%. According
to the characteristics of the random forest, the values of the contribution of other features
will decrease rapidly when one feature is selected. Therefore, the high importance values of
the uniformity coefficient and sand-retaining precision did not mean that the other features
were dispensable; however, it could provide a reference for the selection of features. The
top four features were chosen to train the model; these were the uniformity coefficient,
sand-retaining precision, effective porosity, and permeability. These four features are also
consistent with the professional knowledge of sand control. The four features were selected
and standardized with a standardized formula (Equation (36)). The standardized data
could eliminate the influence of each feature dimension. Furthermore, they helped to avoid
the interference of the model prediction without changing the distribution of the data
themselves [93].

x̂i =
xi −mean(x)

std(x)
(36)

where xi represents the original data; mean(x) is the mean of the feature; std(x) is the
standard deviation of the feature. The standardized data are shown in Table 4.
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Table 4. Standardized data for model training.

d2 d5 d7 d8 y

x1 0.21 0.21 −0.06 0.05 0.31
x2 −1.43 −1.27 −1.26 0.01 0.19
x3 0.15 −0.17 −0.7 0.01 0.22
x4 0.59 −0.26 −0.06 0.01 0.27
x5 −1.28 −1.29 −1.26 0.01 0.15
x6 1.46 −0.11 0.7 1.5 0.31
x7 2.11 0.01 −0.06 −0.06 0.22
x8 −0.78 −2.24 −0.06 −0.89 0.48
x9 −1.22 −0.06 −0.7 −0.14 0.45
x10 −0.04 −0.11 0.7 −0.38 0.51
x11 0.01 1.68 −0.06 −0.79 0.21
x12 0.01 1.58 −0.06 −1.1 0.41
x13 0.01 0.65 −0.7 −1.13 0.42
x14 0.01 1.21 −0.7 −1.12 0.4
x15 1.37 0.5 1.61 1.76 1.21
x16 −1.14 −0.33 2.69 2.3 1.32

3.2.2. Training and Testing

The pseudo-code for the KNN Algorithm 1 is shown below.

Algorithm 1. KNN pseudo-code.

# Importing the necessary libraries
# Read files to input pre-processed data and labels
Input original training data: train.csv
Input k
For i in training data
Distance (Euclidean) = square root of (sum of (point i2 − point i + 12))
Sort Distance
#Make Prediction;
For i in training data
Predict Point Distance i = square root of (sum of (test point2 − train point i2))
Determine the minimum Predict Distance

Predicted value = mean of minimum Predict Distance

The pseudo-code for the SVR Algorithm 2 is shown below.

Algorithm 2. SVR pseudo-code.

# Importing the necessary libraries
# Read files to input pre-processed data and labels
Input original training data: train.csv
# Calculate parameters w, b
For j = 1 in the training dataset
b = average [yj-sum(Lagrangian multiplier*yj*xj)]
w = sum(Lagrangian multiplier**yj*xj)
Check KKT conditions (continuing if satisfied)
Define Kernel Function (linear, sigmoid, polynomial, gaussian)
Assume d = 1
For i = 1 in the test dataset

Y_predicted = sign(sum(Lagrangian multiplier*x_test*Kernel Function + b

The pseudo-code for the Boosting Tree (XGBoost) Algorithm 3 is shown below.
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Algorithm 3. XGBoost pseudo-code.

# Importing the necessary libraries
# Read files to input pre-processed data and labels
Input original training data: train.csv
Input parameters I, d
Initial gain = 0
Define Gi = Sum of gi (i is the example number), Hj = Sum of hj (j is the nod number)
For i = 1
Initial predict value = 0, G1 = 0, H1 = 0
Predict Yi = Predict Yi – 1 + New Regression Function*Shrinkage
Objective function = Sum [(Predict Value-True Value)2] + Regularization Term
Determine the optimum w by minimizing objective function

Predict Y = 1/2*sum( G2

H+Complexity ) + Complexity*Node Number

The pseudo-code for the Multi-Layer Perceptron Algorithm 4 is shown below.

Algorithm 4. MLP pseudo-code.

# Importing the necessary libraries
# Read files to input pre-processed data and labels
Input original training data: train.csv
Input parameters w, b, n
For l = n − 1 to 1
For i in the training set
Y_predict_i = wixi + bi
Cost function_i = (Y_predict_i-Y_true)*Sigmoid function(Y_predict_i)
Back-propagation algorithm to calculate Cost Function_l with dw and db
Obtain New w, b
Calculate loss function = 1/2*sum(Y_predict − Y_true)2

Determine the minimum loss function

The pseudo-code for model performance is shown below (Algorithm 5).

Algorithm 5. MSE and R2 pseudo-code. (* means times itself).

#Calculate Accuracy (MSE & R2)
for row in range(0,actual_class_array_size):
Squared_Error = (abs((actual_array[row] − predicted_array[row])))
Squared_Error * = Squared_Error
Squared_Error_Array[row] = Squared_Error
MSE = mean(squared_error_array)
R2_Score = 1 −MSE/var(actual_array[row])

End

The data in Table 4 were randomly split into the training set and test set according to
the ratio of 7:3, namely, there were 11 training samples and 5 test samples. After training
the model with the training set, the MAE and R2 Score on the test set were calculated for
the model. The final optimized model would be built after fully tuning the parameters. To
avoid contingency, we randomly divided all of the data six times, which meant repeating
the above process six times and observing the results. The results are shown in Table 5 and
Figures 12–23.
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Table 5. Results of the modeling assessment.

First Training Second Training Third Training Fourth Training Fifth
Training Sixth Training

MAE R2 MAE R2 MAE R2 MAE R2 MAE R2 MAE R2

KNN 0.20 0.56 0.08 −0.03 0.26 0.33 0.20 0.58 0.08 0.30 0.19 0.57

SVR 0.13 0.86 0.11 −0.50 0.13 0.84 0.11 0.87 0.11 −0.23 0.08 0.96

Boosting Tree 0.09 0.94 0.07 0.30 0.10 0.92 0.08 0.94 0.08 −0.29 0.08 0.97

MLP 0.09 0.92 0.11 −0.65 0.13 0.86 0.09 0.91 0.11 −0.42 0.12 0.88
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Figure 23. Assessment of the sixth training with the test dataset.

It could be seen that the R2 Scores of the second and fifth training were negative, while
the other R2 Scores were positive. In addition, the values of MAE from the second and
fifth training were very close to those of other models. This indicated that the proposed
model had no problem in itself. Focusing on the training set and test set after dividing
the data each time, it was found that the second and fifth times divided the two outliers
into the training set, leading to two problems: (1) The outlier data were used in training,
but the test set did not have similar samples to predict, which led to large errors in the
model predictions. (2) There were no outliers in the test set, but the number of samples was
small, resulting in the concentration of the label value of y and a decrease in the variance.
This made the R2 Score smaller and even negative. In other partitions, the two outliers
were divided into the training set and test set so that the values were normal. Based on the
above analysis, the second and fifth R2 Scores were excluded when calculating the average
performance of the model, as shown in Table 6 and Figures 24 and 25.

Table 6. Average scores in the evaluation of model performance.

MAE R2 Score

KNN 0.17 0.51
SVR 0.11 0.88

Boosting Tree 0.08 0.94
MLP 0.11 0.89
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As shown in Figures 12–23, each algorithm could fit the training set well. Even though
the fitting effect of SVR was slightly insufficient compared to those of the other algorithms,
it still could help to learn the overall trend of data. Based on the training performance,
the second modeling and the fifth modeling performed poorly. The reason for the poor
performance was discussed in the previous section; it was mainly because the amount
of data was not large enough to cover a large sample space, and some samples, such as
outliers, were not fully learned.

Figures 24 and 25 show that the best generalization model was the Boosting Tree
(XGBoost), while the worst was KNN. SVR and MLP had similar performances. KNN
predicted the new samples according to the adjacent samples in its space. This would
require a large sample size, and the samples should be evenly distributed in the feature
space. The sample size in this paper was small and the feature space was ‘sparse’, which
decreased the algorithm’s performance. The Boosting Tree is an integrated learning method
that can be regarded as an additive model, and it is based on a residual learning mechanism.
It did not require too many calculations and did not have the problem of overfitting, making
it very excellent in this paper. SVR and MLP had many parameters, and they were also
able to show good performance when the parameters were adjusted properly. The two
algorithms had a very strong fitting ability for nonlinear data and very good performance
in the data processing used in this paper.

3.2.3. Tuning and Discussion

Based on the above training and testing, the Boosting Tree had the best performance
in the prediction of sand production. SVR and MLP had the second best performance
based on the MSE and R2 Score. One of the current popular applications of machine
learning is to build an ensemble machine learning model to increase the performance
and accuracy of prediction, classification, and clustering [94–96]. The main feature of
ensemble machine learning models is the building of a coupled model with different
machine learning algorithms. The final result of an ensemble machine learning model is
determined by voting with the built-in algorithms, and it is the most accurate model in a
specific scenario [97]. An ensemble machine learning model is built based on the important
knowledge that different algorithms have their own proper scenarios, causing the ensemble
model to significantly reduce the variance [98–100]. Therefore, the Boosting Tree (XGBoost),
SVR, and MLP should all be discussed in this study, rather than only focusing on the
best algorithm.

The main parameter in the SVR algorithm is the type of kernel function. Table 1 shows
the common kernel functions, including the linear kernel, polynomial kernel, Gaussian
kernel, and sigmoid kernel, which were all tested in the paper. The linear kernel is the
simplest of all of the kernel functions. The linear kernel function is determined by the
sum of the inner product of the training and true values (x,y) and an optional constant
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c [101]. The polynomial kernel function is a non-stationary kernel, which works well for
normalized training data [102]. The Gaussian kernel is a radial basis function [103]. Some
researchers, such as Lin et al., pointed out that, as a radial basis function, the Gaussian
kernel was better than the sigmoid kernel [104]. The tuning process in this paper also
compared the prediction performance when using different kernel functions (Figure 26). It
could be seen that the Gaussian kernel had a low MSE and high R2 Score. Therefore, the
Gaussian kernel was recommended in the model for the prediction of sand production
based on the SVR algorithm.
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Figure 26. Tuning results of different kernel functions for the SVR algorithm.

The main parameters of XGBoost were tested in the proper range, which was sim-
ilar to those used by Pan et al. and Parsa; the ranges are shown in the following table
(Table 7) [105,106]. The tuning results are illustrated in Figures 27–31. Figure 27 proves
that the proper value of the maximum depth of tree was around 5, with a low MAE and
high R2 Score. According to Figure 28, the recommended value of gamma was around 1
in order to achieve a proper MSE and R2 Score. Figure 29 shows that the sampling rate
of the training sample should be 0.9 for a low MSE and a high R2 Score at the same time.
The tuning process also found that both the regular term of weight L1 and regular term of
weight L2 had little effect on the prediction performance (Figures 30 and 31).

Table 7. Ranges of parameters in the tuning process of the XGBoost algorithm.

Parameter Range Type

Maximum Depth of Tree [4, 7] with a step of 1 Integer

Gamma [0, 4] with a step of 0.2 Floating

Sampling Rate of Training Sample [0.7, 1.0] with a step of 0.05 Floating

Regular Term of Weight L1 [0, 0.3] with a step of 0.05 Floating

Regular Term of Weight L2 [0, 0.3] with a step of 0.05 Floating
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The number of hidden layers in the MLP algorithm is usually recommended to be
two in some case studies [107]. The main parameter for MLP tuning was the node number
of the hidden layer. The potential range of the node number was [10,38] with a step of 1.
Figure 32 illustrates the tuning results for the node number. It was shown that the proper
node number for the hidden layer was 14 (Figure 32).

3.3. Case Study with Machine Learning Algorithms

This paper also involved one case study in order to validate the model and to show
the application potential of the proposed model. The case study compared the results of the
numerical simulation and those of the proposed model with machine learning algorithms.
Uchida et al. built a mathematical model to predict sand production by investigating sand
migration [23]. The results of the comparison are shown in Figure 33. The training data
were selected at every 6 h in the interval of the 2nd day to the 7th day in Uchida’s results.
It was concluded that the three machine algorithms (SVR, XGBoost, MLP) performed well
and could match most of the simulation results, especially at the stable-pressure stage. The
main drawback of the machine learning algorithms was displayed in the early stage of
sand production. There were still some gaps between the results of the simulation and the
machine learning predictions. However, it should be noticed that the XGBoost algorithm
provided more matching results compared to the other two machine learning algorithms.
The case study’s results also supported the point that XGBoost could provide the most
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accurate results among the three algorithms. The case study also validated the feasibility of
applying machine learning in the prediction of sand production.
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4. Conclusions

The comparison of four machine learning algorithms for application to laboratory-scale
sand production tests revealed the following results:

(1) This paper built a machine learning model to predict the sand production in an
unconsolidated NGH reservoir with four different algorithms, which were KNN, SVR,
Boosting Tree (XGBoost), and MLP. The input data for the model were provided by a
sand production experiment.

(2) As shown by the comparison of the four different algorithms, KNN had the worst
performance, while XGBoost provided prediction results with the lowest MSE value
and a high R2 Score. The final algorithms selected for building further ensemble
models were SVR, XGBoost, and MLP.

(3) The tuning process showed that the kernel function had a great impact on the perfor-
mance of SVR. The kernel function recommended for the sand prediction model was
the Gaussian kernel. The best parameters for the XGBoost algorithm were tested and
provided; these included the maximum depth of tree, gamma, sampling rate of the
training sample, regular term of weight L1, and regular term of weight L2.

(4) The three selected machine learning algorithms were also applied to the results of
a rigorous numerical simulation (Uchida et al., 2016), and all of them were able to
give results that reasonably matched with those of the numerical solution. XGBoost
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performed better and was recommended for the prediction of sand production in the
early sand production stage.
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