
Citation: Lim, S.-C.; Huh, J.-H.; Kim,

J.-C. Deep Feature Based Siamese

Network for Visual Object Tracking.

Energies 2022, 15, 6388. https://

doi.org/10.3390/en15176388

Academic Editor: Oscar Barambones

Received: 19 July 2022

Accepted: 18 August 2022

Published: 1 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Deep Feature Based Siamese Network for Visual
Object Tracking
Su-Chang Lim 1, Jun-Ho Huh 2,* and Jong-Chan Kim 1,*

1 Department of Computer Engineering, Sunchon National University, Suncheon 57992, Korea
2 Department of Data Science, (National) Korea Maritime and Ocean University, Busan 49112, Korea
* Correspondence: 72networks@kmou.ac.kr (J.-H.H.); seaghost@sunchon.ac.kr (J.-C.K.)

Abstract: One of the most important and challenging research subjects in computer vision is visual
object tracking. The information obtained from the first frame consists of limited and insufficient
information to represent an object. If prior information about robust representation that can represent
an object well is not sufficient, object tracking fails when not robustly responding to changes in
features of the target object according to various factors, namely shape, illumination variation, and
scene distortion. In this paper, a real-time single object tracking algorithm is proposed based on
a Siamese network to solve this problem. For the object feature extraction, we designed a fully
convolutional neural network that removes a fully connected layer and configured a convolution
block consisting of a bottleneck structure that preserves the information in a previous layer. This
network was designed as a Siamese network, while a regional proposal network was combined at the
end of the network for object tracking. The ImageNet Large-Scale Visual Recognition Challenge 2017
dataset was used to train the network in the pre-training phase. Then, in the experimental phase, the
object tracking benchmark dataset was used to quantitatively evaluate the network. The experimental
results revealed that the proposed tracking algorithm produced more competitive results compared
to other tracking algorithms.

Keywords: object tracking; convolution neural network; AI; siamese network; image similarity;
CUDA; Python; PyTorch; computer vision

1. Introduction

Visual Object Tracking (VOT) is one of the categories in computer vision and plays an
important role in various tasks. VOT is widely used in video analysis application programs
such as factory automation monitoring, autonomous driving, intruder monitoring, and
drone tasks [1–4]. In particular, more recently, VOT analyzes a relationship between similar
pixels in different frames. The information of the tracking target is initialized using the
information of ground truth of the first frame in the image sequence. The output result of
the tracking algorithm provides a boundary box that displays the size and location of the
target for a specific frame in the image sequence [5–7].

However, it has a constraint of using only limited information obtained in the first
frame. This constraint causes a tracker to drift in the image sequence and tracking failure to
increase if prior information about robust representation that can represent an object well is
not sufficient [8,9]. Despite there being studies conducted on performance improvements
of VOT algorithms, many difficulties still need to be overcome. In the tracking process,
situations of failing to robustly respond to changes in features of the target object occur
due to various factors, namely shape, illumination variation, and scene distortion that are
applied to a video sequence. This results in object tracking failure as a discrepancy between
the current target and the original template takes effect [10,11].

A number of various approaches have been proposed to solve these problems in
object tracking. A tracker extracts the distinctive robust feature, which is the main key

Energies 2022, 15, 6388. https://doi.org/10.3390/en15176388 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15176388
https://doi.org/10.3390/en15176388
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6735-6456
https://orcid.org/0000-0002-8219-4501
https://doi.org/10.3390/en15176388
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15176388?type=check_update&version=1

Energies 2022, 15, 6388 2 of 21

feature, from the target to the extent that the target attributes can be expressed. Using this
feature, an appearance is modeled to find the target from the image frame area and remove
the external noise elements. To capture a change in the target shape during the tracking
process, ultimately an effective feature for object tracking should be designed. Generally,
attributes that change in the object’s appearance model over time should be reflected or
unique features that can represent the object should be extracted.

As methods based on features, there are the correlation filter-based approach and the
deep neural network approach. A tracking algorithm based on a correlation filter generates
a filter through appearance modeling using the extracted object’s features. Filter weight
is updated to run training from image samples of the object region that are continuously
inputted while tracking progress. This training is performed in the Fourier domain using a
fast Fourier transform (FFT) [12,13]. The correlation filter-based method has the advantage
of fast operation speed by being computationally efficient. However, its drawback is that
image information is represented inaccurately as its information is disturbed, which is
caused by a boundary effect [14].

Recent study methods have focused on deep features based on deep learning, shift-
ing from existing hand-crafted methods. A deep feature extraction method offers many
advantages of being more apt to encode multi-layer information through multiple layers
and being more invariant to changes in target shapes than a hand-crafted feature extraction
method. Thus, it is regarded as the key element to overcome the limitation of traditional
tracking algorithms. To robustly track an object using deep features, a correlation filter
approach is used [15,16]. However, a correlation filter method has to continuously update
an appearance model in the tracking process, because even if robust features are added, the
original template model gets corrupted by the surrounding background. A deep network
provides a generalization capability that captures various features by various training
datasets and many parameters in a network. However, a drawback of this is that it cannot
adaptively respond to appearance changes, deformation, occlusion, etc.

In this paper, unique features of the target object are extracted using a convolutional
neural network (CNN) and then used in the object tracking algorithm. Using high-level
features extracted in a CNN, we regard a tracking problem as a similarity comparison
problem that finds a specific object within the image. Calculating image similarity entails
finding feature compatibility in an image patch and comparing the features of the target
object and the features of objects in the image plane. To do this, we created a customized
CNN with a Siamese network, which is an architecture with a Y-shaped branch of two same
CNNs. This network outputs similar feature information because the same operation is
applied to the target object image and an image containing the object using the same weight.
We conducted feature extraction and similarity comparison with one-shot learning through
this network. A region proposal network (RPN) was used to infer a region where the
target object was present from the region with the highest similarity. Using the proposed
tracker, deep features of the object were extracted in real time, thereby emphasizing the
distinctiveness between objects themselves or between object and background through the
feature similarity comparison. Through this, we could improve the tracking algorithm’s
performance. In particular, we have shown a robust performance in appearance change
and distraction factors. There are three contributions to this work.

We analyze features for object tracking using CNNs trained on large image datasets to
find important properties. The features of CNNs show better results than traditional track-
ing algorithms using hand-crafted features, helping to design effective CNN-based trackers.

We propose a method to combine two CNNs with the same structure to form a Siamese
network to handle sudden appearance changes and track target objects through similarity
comparison between two images.

The proposed tracking algorithm greatly mitigates object drift. We improved the
tracking accuracy by introducing the anchor box concept that estimates the object area
through similarity comparison between feature maps extracted from CNN. The evaluation

Energies 2022, 15, 6388 3 of 21

of popular tracking benchmarks shows that the proposed method handles a variety of
challenging problems well and has good tracking performance.

The present paper is organized as follows: In Section 2, studies on Siamese networks
and correlation tracking are summarized, while in Section 3, a fully convolutional Siamese
network is described for object tracking. Then, in Section 4, the performance comparison of
experimental results between the proposed tracking algorithm and other latest tracking
algorithms is presented. Lastly, in Section 5, the conclusion of this study and future research
direction are presented.

2. Related Works
2.1. Correlation Filter-Based Tracking Algorithm

A correlation filter-based tracking method is a technique to train a discriminative
classifier that can estimate an object’s displacement between continuous frames. Learning
samples are generated using the circular correlation characteristics around the target, and
a correlation filter is trained by extracting shapes from the samples. This method has
achieved a very effective improvement in various challenging tasks and benchmarks owing
to its high computational efficiency and kernel trick method in the Fourier domain [17].
This method consists of a form of circular shifts of input signals to a target Gaussian
function, which does not need hand-crafted features of the target. Generally, a correlation
filter generates a correlation peak in each interested patch of the frame and produces a
low response in the background region. This is used as a reference filter to identify a
specific target. Using this filter, a tracking problem can be solved, but the filter has to be
trained in real time. Due to this limitation, it is not suitable for online tracking; however,
the minimum output sum of squared error (MOSSE) methodology has been researched to
propose a new direction [12]. Studies on various algorithms, to which the adaptive learning
method theory proposed by MOSSE was applied, have been conducted. The MOSSE
filter was improved by exploiting the circulant structure with kernels [18]. The channel
and spatial reliability concepts were applied to the discriminative correlation filter (DCF)
tracking, with the spatial reliability map being used for the filter adjustment in the partial
region of the target object [19]. The improved kernelized correlation filters employed multi-
channel features, and are the most widely used filters based on their overall outstanding
performance and high frame-per second rate [20]. A spatially regularized discriminative
correlation filter (SRDCF) tracker imposes constraints on the correlation filter coefficients
according to locations, using a spatial regularization component in training to induce
boundary effects [13]. An MCCTH-Staple tracker combines various types of features and
configures various experts through DCF for independently tracking the target object by
each expert [21].

2.2. CNN-Based Tracking Algorithm

Deep learning has been used to obtain technical features as an emerging technology
and has proven its excellent capability in various works in computer vision and pattern
recognition such as image and video classification as well as object recognition [22,23].
For example, a CNN has been used in various computer vision problems such as image
classification, semantic segmentation, and motion recognition due to its improved per-
formance. More recently, studies on the application of CNN’s advantages in tracking
algorithms have been conducted. These tracking algorithms have combined deep feature
maps with correlation filter trackers to improve tracking performance for better identifica-
tion. DeepSRDCF [24] and FCNT [25] are used in object-tracking processes by extracting
deep feature maps of many layers from the pre-trained model such as VGG or AlexNet.
To ensure the accuracy and robustness of VOT, deep feature maps at different layers were
used [26]. DeepTrack configures a number of CNN classifiers at instances of different
objects to exclude noise samples during the model update, which is finely performed by
adjusting a deep model online [27]. The key point that is noticeably shared by the above
CNN-based trackers is as follows. First, the features produced in the last layer finely express

Energies 2022, 15, 6388 4 of 21

the information represented in the object, and second, they are useful to accurately predict
the object’s location even if environmental changes inside the image occur. To use features
at many CNN hierarchies to the highest extent, studies on designing a dual structure have
been conducted to use hierarchical features at different layers in a deep model and obtain a
better shape representation from various streams.

2.3. Siamese Network

A Siamese network shows excellent performance in the problem solving of face
recognition and image matching, which is the similarity comparison area [28,29]. The
structure of the Siamese network is shown in Figure 1.

Energies 2022, 15, x FOR PEER REVIEW 4 of 21

used [26]. DeepTrack configures a number of CNN classifiers at instances of different ob-
jects to exclude noise samples during the model update, which is finely performed by
adjusting a deep model online [27]. The key point that is noticeably shared by the above
CNN-based trackers is as follows. First, the features produced in the last layer finely ex-
press the information represented in the object, and second, they are useful to accurately
predict the object’s location even if environmental changes inside the image occur. To use
features at many CNN hierarchies to the highest extent, studies on designing a dual struc-
ture have been conducted to use hierarchical features at different layers in a deep model
and obtain a better shape representation from various streams.

2.3. Siamese Network
A Siamese network shows excellent performance in the problem solving of face

recognition and image matching, which is the similarity comparison area [28,29]. The
structure of the Siamese network is shown in Figure 1.

Figure 1. Standard Architecture of the Siamese Network.

The research on the application of the Siamese network to object-tracking problems,
which is similar to the solution of the image similarity problem, has gained traction. Much
attention has been paid to a Siamese network due to its tracking accuracy and speed bal-
ance performance. The tracking problem can be defined as a problem matching the ap-
pearance of the target object with the template image in the search region. For the input
data used in a Siamese network, generally, the template image of the target object and
images with or without the target object are used. The target object template is normally
initialized at the first frame, with the same template used in continuous frames.

The pioneering works of the Siamese network tracker are SINT and SiamFC [30,31].
These two algorithms defined the tracking problem as the measurement of the target sim-
ilarities between the first and current frames. SINT defined the tracking problem as the
verification work to learn the similarity between inputs. These approaches have gained
many important points due to the inherent performance of Siamese networks. However,
if a network is trained with a small dataset, the overfitting problem may occur. A SiamFC
used an embedded CNN model to extract input image features and fused them using a
correlation layer to generate a response map. Follow-up studies have been conducted to
improve the SiamFC, with CFNet [32] acting as an enhanced version of SiamFC, which is
a closed-form solution. A correlation filter layer is applied within the template branch to
improve the information that is contained in feature maps.

3. Proposed Method
In this section, the proposed network for tracking as shown in Figure 2 is described.

The proposed network employs two images as the input specified as target object and

Figure 1. Standard Architecture of the Siamese Network.

The research on the application of the Siamese network to object-tracking problems,
which is similar to the solution of the image similarity problem, has gained traction. Much
attention has been paid to a Siamese network due to its tracking accuracy and speed balance
performance. The tracking problem can be defined as a problem matching the appearance
of the target object with the template image in the search region. For the input data used in
a Siamese network, generally, the template image of the target object and images with or
without the target object are used. The target object template is normally initialized at the
first frame, with the same template used in continuous frames.

The pioneering works of the Siamese network tracker are SINT and SiamFC [30,31].
These two algorithms defined the tracking problem as the measurement of the target
similarities between the first and current frames. SINT defined the tracking problem as the
verification work to learn the similarity between inputs. These approaches have gained
many important points due to the inherent performance of Siamese networks. However, if
a network is trained with a small dataset, the overfitting problem may occur. A SiamFC
used an embedded CNN model to extract input image features and fused them using a
correlation layer to generate a response map. Follow-up studies have been conducted to
improve the SiamFC, with CFNet [32] acting as an enhanced version of SiamFC, which is
a closed-form solution. A correlation filter layer is applied within the template branch to
improve the information that is contained in feature maps.

3. Proposed Method

In this section, the proposed network for tracking as shown in Figure 2 is described.
The proposed network employs two images as the input specified as target object and
searches images. The object region coordinates them, and information about the presence
of the target object are extracted as the inputs pass through the fully CNN-based backbone
network and RPN. The backbone network that extracts object features was designed
with a customized structure and modified into a Siamese network form. In Figure 2b,
weight sharing means that each kernel of the convolution layer has the same weight. Two

Energies 2022, 15, 6388 5 of 21

images input to the network pass through the same network and output a value indicating
similarity. At this time, if the weights are not shared, it is structurally the same network,
but it is difficult to obtain the correct result for the input data because different weights are
learned. Therefore, the network is learned using the loss value output in Figure 2c, and the
weights have the same value in this process.

Energies 2022, 15, x FOR PEER REVIEW 5 of 21

searches images. The object region coordinates them, and information about the presence
of the target object are extracted as the inputs pass through the fully CNN-based backbone
network and RPN. The backbone network that extracts object features was designed with
a customized structure and modified into a Siamese network form. In Figure 2b, weight
sharing means that each kernel of the convolution layer has the same weight. Two images
input to the network pass through the same network and output a value indicating simi-
larity. At this time, if the weights are not shared, it is structurally the same network, but
it is difficult to obtain the correct result for the input data because different weights are
learned. Therefore, the network is learned using the loss value output in Figure 2c, and
the weights have the same value in this process.

Figure 2. Proposed Tracking Algorithm with Siamese Network: (a) Target image and search region,
(b) Siamese network consisting of convolution blocks used in feature extraction and highlighting
the region of interest, (c) RPN for object region and bounding box coordinate prediction, (d) Track-
ing result marked by the green box.

3.1. Convolution Block for Feature Extraction
The most in-demand part of computation in a CNN is a fully connected layer, with

the network proposed in this study shown as a full CNN, in which fully connected layers
are removed and replaced with convolution layers. The computation amount in convolu-
tion layers increases with the number of kernels used for feature extraction. A convolution
layer was designed by converting it to a bottleneck layer structure to reduce the compu-
tation amount. A bottleneck layer structure is effective in reducing the number of param-
eters by changing the internal structure of the network. In Equation (1), the number of
parameters in the network is calculated. Figure 3 shows comparison of the No. of Param-
eters in a convolution layer. Parameters = In Channels × Out Channels × Kernel Width × Kernel Height (1)

Figure 3. Comparison of the No. of Parameters in a Convolution Layer; Above: Standard convolu-
tion, Below: Bottleneck structured convolution.

Figure 2. Proposed Tracking Algorithm with Siamese Network: (a) Target image and search region,
(b) Siamese network consisting of convolution blocks used in feature extraction and highlighting the
region of interest, (c) RPN for object region and bounding box coordinate prediction, (d) Tracking
result marked by the green box.

3.1. Convolution Block for Feature Extraction

The most in-demand part of computation in a CNN is a fully connected layer, with the
network proposed in this study shown as a full CNN, in which fully connected layers are
removed and replaced with convolution layers. The computation amount in convolution
layers increases with the number of kernels used for feature extraction. A convolution layer
was designed by converting it to a bottleneck layer structure to reduce the computation
amount. A bottleneck layer structure is effective in reducing the number of parameters by
changing the internal structure of the network. In Equation (1), the number of parameters
in the network is calculated. Figure 3 shows comparison of the No. of Parameters in a
convolution layer.

Parameters = In Channels×Out Channels×Kernel Width×Kernel Height (1)

Energies 2022, 15, x FOR PEER REVIEW 5 of 21

searches images. The object region coordinates them, and information about the presence
of the target object are extracted as the inputs pass through the fully CNN-based backbone
network and RPN. The backbone network that extracts object features was designed with
a customized structure and modified into a Siamese network form. In Figure 2b, weight
sharing means that each kernel of the convolution layer has the same weight. Two images
input to the network pass through the same network and output a value indicating simi-
larity. At this time, if the weights are not shared, it is structurally the same network, but
it is difficult to obtain the correct result for the input data because different weights are
learned. Therefore, the network is learned using the loss value output in Figure 2c, and
the weights have the same value in this process.

Figure 2. Proposed Tracking Algorithm with Siamese Network: (a) Target image and search region,
(b) Siamese network consisting of convolution blocks used in feature extraction and highlighting
the region of interest, (c) RPN for object region and bounding box coordinate prediction, (d) Track-
ing result marked by the green box.

3.1. Convolution Block for Feature Extraction
The most in-demand part of computation in a CNN is a fully connected layer, with

the network proposed in this study shown as a full CNN, in which fully connected layers
are removed and replaced with convolution layers. The computation amount in convolu-
tion layers increases with the number of kernels used for feature extraction. A convolution
layer was designed by converting it to a bottleneck layer structure to reduce the compu-
tation amount. A bottleneck layer structure is effective in reducing the number of param-
eters by changing the internal structure of the network. In Equation (1), the number of
parameters in the network is calculated. Figure 3 shows comparison of the No. of Param-
eters in a convolution layer. Parameters = In Channels × Out Channels × Kernel Width × Kernel Height (1)

Figure 3. Comparison of the No. of Parameters in a Convolution Layer; Above: Standard convolu-
tion, Below: Bottleneck structured convolution.

Figure 3. Comparison of the No. of Parameters in a Convolution Layer; Above: Standard convolution,
Below: Bottleneck structured convolution.

The bottleneck structure consists of a three-step cycle of output compression, feature
extraction using convolution, and output expansion. The output compression employs a
1 × 1 convolution. A kernel a size of 1 × 1 is used when adjusting the number of input
feature maps. The output feature map in the previous layer is used as the input in the next

Energies 2022, 15, 6388 6 of 21

layer. If feature maps are extracted using a smaller number of kernels than the number of
input feature maps, the number of feature maps is reduced, thereby significantly decreasing
the computation amount. In the feature extraction step, convolution is conducted using a
kernel with a size of N × N. In the last output expansion step, the dimension is increased
from a 1 × 1 to 3 × 3 convolution. Since the amount of computation and the number of
parameters that are linked between layers are significantly reduced if a layer is designed
with the bottleneck structure, a deeper network can be designed and learned with the same
computing and time resource. Figure 4 shows the convolution block used in the proposed
network, in which each block is composed of one or more bottleneck layers.

Energies 2022, 15, x FOR PEER REVIEW 6 of 21

The bottleneck structure consists of a three-step cycle of output compression, feature
extraction using convolution, and output expansion. The output compression employs a
1 × 1 convolution. A kernel a size of 1 × 1 is used when adjusting the number of input
feature maps. The output feature map in the previous layer is used as the input in the next
layer. If feature maps are extracted using a smaller number of kernels than the number of
input feature maps, the number of feature maps is reduced, thereby significantly decreas-
ing the computation amount. In the feature extraction step, convolution is conducted us-
ing a kernel with a size of N × N. In the last output expansion step, the dimension is in-
creased from a 1 × 1 to 3 × 3 convolution. Since the amount of computation and the number
of parameters that are linked between layers are significantly reduced if a layer is de-
signed with the bottleneck structure, a deeper network can be designed and learned with
the same computing and time resource. Figure 4 shows the convolution block used in the
proposed network, in which each block is composed of one or more bottleneck layers.

Figure 4. Structure of Convolution Block.

The bottlenecks were arranged reflecting the CNN’s characteristic that extracts sig-
nificant features in the bottlenecks near the input layer, followed by semantic features
more and more near the end. To extract more semantic features, a convolution block struc-
ture consisting of bottlenecks was iterated to increase the number of kernels, aiming to
extract feature information to the highest extent. If the continuous bottleneck structure is
used, it is likely for there to be a loss of information. Thus, if more than two structures are
iterated, the information flow is preserved by connecting the information in the input fea-
ture map to the output feature map.

3.2. Siamese Network Architecture
A Siamese network is a neural network architecture consisting of two or more of the

same networks. A Siamese network shares the same parameters and weights. The param-
eter update can be performed by mirroring two sub-networks. Figure 5 shows the basic
structure diagram of a Siamese network. By comparing feature vectors extracted from two
input images, parameters are trained to find the similarity. In a general neural network, a
method to predict many classes is trained. If a new class is added or removed to/from a
dataset, a problem occurs. In such a case, the neural network has to be updated and the
entire dataset should be re-trained. A large amount of data is needed to train a neural
network, whereas a Siamese network can train a similarity function to verify whether the
appearances of two images are the same.

Figure 4. Structure of Convolution Block.

The bottlenecks were arranged reflecting the CNN’s characteristic that extracts signifi-
cant features in the bottlenecks near the input layer, followed by semantic features more
and more near the end. To extract more semantic features, a convolution block structure
consisting of bottlenecks was iterated to increase the number of kernels, aiming to extract
feature information to the highest extent. If the continuous bottleneck structure is used, it
is likely for there to be a loss of information. Thus, if more than two structures are iterated,
the information flow is preserved by connecting the information in the input feature map
to the output feature map.

3.2. Siamese Network Architecture

A Siamese network is a neural network architecture consisting of two or more of
the same networks. A Siamese network shares the same parameters and weights. The
parameter update can be performed by mirroring two sub-networks. Figure 5 shows the
basic structure diagram of a Siamese network. By comparing feature vectors extracted from
two input images, parameters are trained to find the similarity. In a general neural network,
a method to predict many classes is trained. If a new class is added or removed to/from a
dataset, a problem occurs. In such a case, the neural network has to be updated and the
entire dataset should be re-trained. A large amount of data is needed to train a neural
network, whereas a Siamese network can train a similarity function to verify whether the
appearances of two images are the same.

Figure 5 shows the network structure used to solve the tracking problem. To increase
the number of kernels that extract features, a convolution block is layered in the design.
The final output feature map in the tracking object region is 18 × 18 × 256 in size, while
the final output feature map in the search region is 34 × 34 × 256 in size.

Energies 2022, 15, 6388 7 of 21Energies 2022, 15, x FOR PEER REVIEW 7 of 21

Figure 5. Proposed Siamese Network Architecture.

Figure 5 shows the network structure used to solve the tracking problem. To increase
the number of kernels that extract features, a convolution block is layered in the design.
The final output feature map in the tracking object region is 18 × 18 × 256 in size, while the
final output feature map in the search region is 34 × 34 × 256 in size.

3.3. Region Proposal Network
The RPN is known as a very effective method for object detection. The main purpose

of this network is to infer specific objects and regions that are present in the images. This
network was introduced in the paper “Faster R-CNN: Towards Real-Time Object Detec-
tion with Region Proposal Networks” [33]. The region proposal is conducted by regress-
ing the center coordinate of the anchor box in the regions where the object is likely to exist
inside the image.

For the object region, a feature map that can be obtained in the last layer in the CNN
is used, with Figure 6 showing the structure of the RPN. An anchor box is arranged in
every cell of the feature map with a size of N × N. The number of anchor boxes used in the
region proposal can be selected by a user, and the use of anchor boxes of various sizes has
an advantage of inferring accurate regions. On the other hand, as the number of anchor
boxes increases, so does the number of computations.

Figure 6. Anchor Box Shapes in the RPN.

Figure 5. Proposed Siamese Network Architecture.

3.3. Region Proposal Network

The RPN is known as a very effective method for object detection. The main purpose
of this network is to infer specific objects and regions that are present in the images. This
network was introduced in the paper “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks” [33]. The region proposal is conducted by regressing the
center coordinate of the anchor box in the regions where the object is likely to exist inside
the image.

For the object region, a feature map that can be obtained in the last layer in the CNN
is used, with Figure 6 showing the structure of the RPN. An anchor box is arranged in
every cell of the feature map with a size of N × N. The number of anchor boxes used in the
region proposal can be selected by a user, and the use of anchor boxes of various sizes has
an advantage of inferring accurate regions. On the other hand, as the number of anchor
boxes increases, so does the number of computations.

Energies 2022, 15, x FOR PEER REVIEW 7 of 21

Figure 5. Proposed Siamese Network Architecture.

Figure 5 shows the network structure used to solve the tracking problem. To increase
the number of kernels that extract features, a convolution block is layered in the design.
The final output feature map in the tracking object region is 18 × 18 × 256 in size, while the
final output feature map in the search region is 34 × 34 × 256 in size.

3.3. Region Proposal Network
The RPN is known as a very effective method for object detection. The main purpose

of this network is to infer specific objects and regions that are present in the images. This
network was introduced in the paper “Faster R-CNN: Towards Real-Time Object Detec-
tion with Region Proposal Networks” [33]. The region proposal is conducted by regress-
ing the center coordinate of the anchor box in the regions where the object is likely to exist
inside the image.

For the object region, a feature map that can be obtained in the last layer in the CNN
is used, with Figure 6 showing the structure of the RPN. An anchor box is arranged in
every cell of the feature map with a size of N × N. The number of anchor boxes used in the
region proposal can be selected by a user, and the use of anchor boxes of various sizes has
an advantage of inferring accurate regions. On the other hand, as the number of anchor
boxes increases, so does the number of computations.

Figure 6. Anchor Box Shapes in the RPN. Figure 6. Anchor Box Shapes in the RPN.

The key of the RPN is to infer a coordinate of the anchor box through regression and
determine whether an object is present. An anchor box includes four values of centerX,
centerY, width, and height. The number of anchor boxes used in the inference is determined
according to the box scale and aspect ratio. For example, if the scale is three, and the aspect
ratio is three, nine anchor boxes are created. The created anchor boxes are positioned in
each cell of the feature map. CenterX and centerY are fixed for each anchor box while the

Energies 2022, 15, 6388 8 of 21

width and height are determined by a ratio of the bounding box width and height of the
target object.

A probability of object existence is assigned to each created anchor box. If this is
zero, no object is present, while a one means that the object is present. The number of
probabilities is proportional to the number of anchor boxes. Let us assume that nine anchor
boxes are assigned to a feature map of 17 × 17 in size. Then, the number of coordinates to
be inferred is calculated as 17 × 17 × 9 × 4 = 10,404, and the number of anchor boxes to be
created as 17 × 17 × 9 = 2601. Whether the object is present is determined using the final
2601 probabilities. The final region is assigned by combining anchor boxes where the object
is present. In this study, one scale and five sizes of aspect ratios were designated, and the
final number of anchor boxes was five.

Figure 7 shows the proposed RPN structure. For its input, a target object feature map
of 18 × 18 × 256 in size, which was extracted through the Siamese network, and a search
region feature map with a size of 34 × 34 × 256, were used. These feature maps were
converted into four feature maps via the convolution layer, which extracts regression and
object existence probability values.

Energies 2022, 15, x FOR PEER REVIEW 8 of 21

The key of the RPN is to infer a coordinate of the anchor box through regression and
determine whether an object is present. An anchor box includes four values of centerX,
centerY, width, and height. The number of anchor boxes used in the inference is deter-
mined according to the box scale and aspect ratio. For example, if the scale is three, and
the aspect ratio is three, nine anchor boxes are created. The created anchor boxes are po-
sitioned in each cell of the feature map. CenterX and centerY are fixed for each anchor box
while the width and height are determined by a ratio of the bounding box width and
height of the target object.

A probability of object existence is assigned to each created anchor box. If this is zero,
no object is present, while a one means that the object is present. The number of probabil-
ities is proportional to the number of anchor boxes. Let us assume that nine anchor boxes
are assigned to a feature map of 17 × 17 in size. Then, the number of coordinates to be
inferred is calculated as 17 × 17 × 9 × 4 = 10,404, and the number of anchor boxes to be
created as 17 × 17 × 9 = 2601. Whether the object is present is determined using the final
2601 probabilities. The final region is assigned by combining anchor boxes where the ob-
ject is present. In this study, one scale and five sizes of aspect ratios were designated, and
the final number of anchor boxes was five.

Figure 7 shows the proposed RPN structure. For its input, a target object feature map
of 18 × 18 × 256 in size, which was extracted through the Siamese network, and a search
region feature map with a size of 34 × 34 × 256, were used. These feature maps were con-
verted into four feature maps via the convolution layer, which extracts regression and
object existence probability values.

Figure 7. Proposed RPN Architecture.

At first, feature maps for the anchor box regression values for 256 feature maps were
extracted for the target object. The number of obtained output feature maps was calcu-
lated as 256 × 5 × 4 = 5120. The values for determining whether the object is present for the
same feature map were extracted. Then, 256 × 5 × 2 = 2560 values could be obtained. In the
search region, the same numbers of input and output feature maps were applied and com-
puted for the coordinate regression and object existence.

4. Experiments
4.1. Experimental Environment Configuration

The hardware specifications used in the experiment are as follows: the central pro-
cessing unit used was the Intel Core i7 8-generation 8700 K series, and the graphic card
was the NVIDIA TITAN X Pascal 12 GB series consisting of 3840 compute-unified device
architecture (CUDA) cores. The read access memory and hard disk were a DDR4 48 GB
and solid-state drive, respectively, so as to guarantee fast input and output. Table 1 indi-
cates the detailed hardware specifications used in the experiment.

Figure 7. Proposed RPN Architecture.

At first, feature maps for the anchor box regression values for 256 feature maps were
extracted for the target object. The number of obtained output feature maps was calculated
as 256 × 5 × 4 = 5120. The values for determining whether the object is present for the
same feature map were extracted. Then, 256 × 5 × 2 = 2560 values could be obtained. In
the search region, the same numbers of input and output feature maps were applied and
computed for the coordinate regression and object existence.

4. Experiments
4.1. Experimental Environment Configuration

The hardware specifications used in the experiment are as follows: the central pro-
cessing unit used was the Intel Core i7 8-generation 8700 K series, and the graphic card
was the NVIDIA TITAN X Pascal 12 GB series consisting of 3840 compute-unified device
architecture (CUDA) cores. The read access memory and hard disk were a DDR4 48 GB and
solid-state drive, respectively, so as to guarantee fast input and output. Table 1 indicates
the detailed hardware specifications used in the experiment.

Table 1. Hardware Specifications.

Detailed Specifications

CPU/RAM Intel I7-8700K 3.7 GHz/DDR4 16 G
GPU Geforce Titan Xp 12 GB 3840 CUDA cores

Storage Samsung 512 G SSD

Energies 2022, 15, 6388 9 of 21

The operating system was Windows 10, along with the CUDA toolkit 11.1 version and
the CUDA deep neural network library 8.0 version. To implement the tracking algorithm,
Python 3.8 version was used and the deep learning framework used in the network design
was PyTorch 1.8 version. Table 2 indicates the detailed software specifications used in
the experiment.

Table 2. Software Specifications.

Detailed Specifications

OS Windows 10
Language Python 3.8

GPU-accelerated libraries CUDA 11.1/cuDNN 8.0
Deep Learning Framework PyTorch 1.8

4.2. Dataset Configuration

In this study, the ILSVRC2017 VID dataset and object tracking benchmark (OTB)
dataset were used. The datasets were divided into two parts, according to their purpose.
The ILSVRC2017 VID dataset was used as the learning data to train the neural network of
the proposed tracking algorithm, while the OTB dataset was employed to quantitatively
evaluate the performance of the tracking algorithm [34,35].

4.2.1. ILSVRC 2017 VID Dataset

A variety of video-based datasets was proposed for various visual applications in the
computer vision field. The ILSVRC 2017 VID dataset was the most represented benchmark
dataset. This dataset is divided into train and validation sets consisting of 3862 video
snippets and 555 video snippets, respectively. Figure 8a shows the train set in the ILSVRC
VID dataset. Images extracted from each video snippet at a unit of one frame are used for
training purposes. Figure 8b shows the frames extracted from each snippet video, with the
number of frames being different from video to video.

Energies 2022, 15, x FOR PEER REVIEW 9 of 21

Table 1. Hardware Specifications.

 Detailed Specifications
CPU/RAM Intel I7-8700K 3.7 GHz/DDR4 16 G

GPU Geforce Titan Xp 12 GB 3840 CUDA cores
Storage Samsung 512 G SSD

The operating system was Windows 10, along with the CUDA toolkit 11.1 version
and the CUDA deep neural network library 8.0 version. To implement the tracking algo-
rithm, Python 3.8 version was used and the deep learning framework used in the network
design was PyTorch 1.8 version. Table 2 indicates the detailed software specifications used
in the experiment.

Table 2. Software Specifications.

 Detailed Specifications
OS Windows 10

Language Python 3.8
GPU-accelerated libraries CUDA 11.1/cuDNN 8.0

Deep Learning Framework PyTorch 1.8

4.2. Dataset Configuration
In this study, the ILSVRC2017 VID dataset and object tracking benchmark (OTB) da-

taset were used. The datasets were divided into two parts, according to their purpose. The
ILSVRC2017 VID dataset was used as the learning data to train the neural network of the
proposed tracking algorithm, while the OTB dataset was employed to quantitatively eval-
uate the performance of the tracking algorithm [34,35].

4.2.1. ILSVRC 2017 VID Dataset
A variety of video-based datasets was proposed for various visual applications in the

computer vision field. The ILSVRC 2017 VID dataset was the most represented benchmark
dataset. This dataset is divided into train and validation sets consisting of 3862 video snip-
pets and 555 video snippets, respectively. Figure 8a shows the train set in the ILSVRC VID
dataset. Images extracted from each video snippet at a unit of one frame are used for train-
ing purposes. Figure 8b shows the frames extracted from each snippet video, with the
number of frames being different from video to video.

Figure 8. Information of ILSVRC 2017 VID Datasets: (a) Video snippets, (b) Extracted image frame
of snippets.

Figure 8. Information of ILSVRC 2017 VID Datasets: (a) Video snippets, (b) Extracted image frame
of snippets.

The training and validation videos are extracted at a unit of frame. Each frame was
matched with a 1:1 annotation, and videos can be controlled through this annotation. The
key elements in the annotation are size and bndbox. The size refers to the size of the frame.
Using this information, a conversion is conducted into a certain ratio size suitable for
learning. “bndbox” has four attributes and refers to the location information of the object

Energies 2022, 15, 6388 10 of 21

present in the frame. “xmin” and “ymin” refer to the upper left corner of the rectangular
bounding box, while “xmax” and “ymax” refer to the lower right corner.

4.2.2. Object Tracking Benchmark Dataset

The OTB dataset consists of three datasets, namely OTB-2013, OTB-50, and OTB-
100. OTB-2013 is composed of 50 video sequences for the quantitative evaluation of VOT
algorithms. OTB-100 contains an additional 50 videos in addition to the OTB-2013 dataset,
resulting in 100 videos. OTB-50 is produced by selectively extracting 50 videos whose
tracking is relatively difficult out of the OTB-100 dataset.

The video sequences included in the OTB benchmark dataset include 11 types of
different attributes such as illumination variation (IV), scale variation (SV), and occlusion
(OCC). A video may have multiple attributes instead of a single one. Table 3 presents the
detailed description of each attribute, and Figure 9 shows the video distribution graph
about attributes. The count in the lower end indicates the number of videos assigned to
each attribute.

Table 3. Sequence Attribute Table for Algorithm Evaluations.

Attribute Description

Illumination variation (IV) Illumination variation in the target object region
Scale variation (SV) Scale variation in the tracking object

Occlusion (OCC) Occlusion generated in the target object region
Deformation (DEF) Non-rigid deformation of the object
Motion blur (MB) Motion blur occurred in the target object
Fast motion (FM) Fast motion of the object detected

In-plane rotation (IPR) Object rotation detected in the image
Out-of-plane rotation (OPR) Object rotation detected outside the image

Out-of-view (OV) A region of the object moved outside the image
Background clutters (BC) Color or texture created similar to the object

Low resolution (LR) The low resolution of the object

Energies 2022, 15, x FOR PEER REVIEW 10 of 21

The training and validation videos are extracted at a unit of frame. Each frame was
matched with a 1:1 annotation, and videos can be controlled through this annotation. The
key elements in the annotation are size and bndbox. The size refers to the size of the frame.
Using this information, a conversion is conducted into a certain ratio size suitable for
learning. “bndbox” has four attributes and refers to the location information of the object
present in the frame. “xmin” and “ymin” refer to the upper left corner of the rectangular
bounding box, while “xmax” and “ymax” refer to the lower right corner.

4.2.2. Object Tracking Benchmark Dataset
The OTB dataset consists of three datasets, namely OTB-2013, OTB-50, and OTB-100.

OTB-2013 is composed of 50 video sequences for the quantitative evaluation of VOT algo-
rithms. OTB-100 contains an additional 50 videos in addition to the OTB-2013 dataset,
resulting in 100 videos. OTB-50 is produced by selectively extracting 50 videos whose
tracking is relatively difficult out of the OTB-100 dataset.

The video sequences included in the OTB benchmark dataset include 11 types of dif-
ferent attributes such as illumination variation (IV), scale variation (SV), and occlusion
(OCC). A video may have multiple attributes instead of a single one. Table 3 presents the
detailed description of each attribute, and Figure 9 shows the video distribution graph
about attributes. The count in the lower end indicates the number of videos assigned to
each attribute.

Table 3. Sequence Attribute Table for Algorithm Evaluations.

Attribute Description
Illumination variation (IV) Illumination variation in the target object region

Scale variation (SV) Scale variation in the tracking object
Occlusion (OCC) Occlusion generated in the target object region

Deformation (DEF) Non-rigid deformation of the object
Motion blur (MB) Motion blur occurred in the target object
Fast motion (FM) Fast motion of the object detected

In-plane rotation (IPR) Object rotation detected in the image
Out-of-plane rotation (OPR) Object rotation detected outside the image

Out-of-view (OV) A region of the object moved outside the image
Background clutters (BC) Color or texture created similar to the object

Low resolution (LR) The low resolution of the object

Figure 9. Sequence Distribution Graph about Attributes. Figure 9. Sequence Distribution Graph about Attributes.

Figure 10 shows the JSON file format in the OTB dataset used in the evaluation.
“video_dir” refers to the dataset folder name; “init_rect” refers to the initial region coor-
dinate; “img_names” refers to the image file name in the folder; “gt_rect” refers to the
coordinate value designated in the manual; and “attr” refers to the attribute of the video.

Energies 2022, 15, 6388 11 of 21

Energies 2022, 15, x FOR PEER REVIEW 11 of 21

Figure 10 shows the JSON file format in the OTB dataset used in the evaluation.
“video_dir” refers to the dataset folder name; “init_rect” refers to the initial region coor-
dinate; “img_names” refers to the image file name in the folder; “gt_rect” refers to the
coordinate value designated in the manual; and “attr” refers to the attribute of the video.

Figure 10. Annotation Format of OTB Dataset.

4.3. Network Training and Testing
4.3.1. Data Preprocessing and Labeling

The ILSVRC 2017 training dataset was used to train the proposed network model.
This training dataset consisted of 3862 videos and 1,122,397 images that were extracted
from the videos at a unit of frame. Each frame was defined by time-series image data, and
the network employed four label parameters of target image, search region, normalized
bounding box coordinate, and object existence. Each data should be processed to be used
as the input in the network. Two videos that were randomly chosen from each video frame
in the training dataset were extracted as a pair. Since training was conducted through a
comparison of similarities between objects in the network, the chronological order of the
images was ignored in the data load process. Additionally, each image was used as a
search region and a target image after preprocessing.

Figure 11 shows a pair of preprocessed training images. The target object is located
on the left side of the images in Figure 11a,b. The preprocessing procedure of the image is
as follows: for the target image, a margin of 15 to 25% in the object region area is randomly
added to expand the image. The image boundary is set to the maximum margin. In the
search region, the area of the object region and height are randomly reduced or expanded
within a ratio of 90 to 110% of the original size.

Figure 10. Annotation Format of OTB Dataset.

4.3. Network Training and Testing
4.3.1. Data Preprocessing and Labeling

The ILSVRC 2017 training dataset was used to train the proposed network model.
This training dataset consisted of 3862 videos and 1,122,397 images that were extracted
from the videos at a unit of frame. Each frame was defined by time-series image data, and
the network employed four label parameters of target image, search region, normalized
bounding box coordinate, and object existence. Each data should be processed to be used
as the input in the network. Two videos that were randomly chosen from each video frame
in the training dataset were extracted as a pair. Since training was conducted through a
comparison of similarities between objects in the network, the chronological order of the
images was ignored in the data load process. Additionally, each image was used as a search
region and a target image after preprocessing.

Figure 11 shows a pair of preprocessed training images. The target object is located on
the left side of the images in Figure 11a,b. The preprocessing procedure of the image is as
follows: for the target image, a margin of 15 to 25% in the object region area is randomly
added to expand the image. The image boundary is set to the maximum margin. In the
search region, the area of the object region and height are randomly reduced or expanded
within a ratio of 90 to 110% of the original size.

Energies 2022, 15, x FOR PEER REVIEW 11 of 21

Figure 10 shows the JSON file format in the OTB dataset used in the evaluation.
“video_dir” refers to the dataset folder name; “init_rect” refers to the initial region coor-
dinate; “img_names” refers to the image file name in the folder; “gt_rect” refers to the
coordinate value designated in the manual; and “attr” refers to the attribute of the video.

Figure 10. Annotation Format of OTB Dataset.

4.3. Network Training and Testing
4.3.1. Data Preprocessing and Labeling

The ILSVRC 2017 training dataset was used to train the proposed network model.
This training dataset consisted of 3862 videos and 1,122,397 images that were extracted
from the videos at a unit of frame. Each frame was defined by time-series image data, and
the network employed four label parameters of target image, search region, normalized
bounding box coordinate, and object existence. Each data should be processed to be used
as the input in the network. Two videos that were randomly chosen from each video frame
in the training dataset were extracted as a pair. Since training was conducted through a
comparison of similarities between objects in the network, the chronological order of the
images was ignored in the data load process. Additionally, each image was used as a
search region and a target image after preprocessing.

Figure 11 shows a pair of preprocessed training images. The target object is located
on the left side of the images in Figure 11a,b. The preprocessing procedure of the image is
as follows: for the target image, a margin of 15 to 25% in the object region area is randomly
added to expand the image. The image boundary is set to the maximum margin. In the
search region, the area of the object region and height are randomly reduced or expanded
within a ratio of 90 to 110% of the original size.

Figure 11. Preprocessed Training Dataset. (a) Original target image, (b) Original search region,
(c) Converted target image, (d) Converted search image.

Figure 11c,d show the final images after preprocessing. They are reconfigured so that
the center point in the object region is positioned at the center of the image. The target
image and search region were converted to 127 × 127 and 255 × 255 in size, respectively,

Energies 2022, 15, 6388 12 of 21

for network inputs. In the size conversion, the margin was cut while maintaining the image
ratio to preserve the shape of the object.

In the preprocessing procedure, the object coordinates in the original image and recon-
figured image were changed. Reprocessing was conducted by reflecting the preprocessed
image coordinate information in the normalized bounding box coordinate and object
existence labels.

The four-dimensional score map was the final output of the network (4D) (N, 20, 17,
17). The first dimension refers to the mini arrangement size, the second dimension to the
anchor box coordinate, and the third and fourth dimensions to the size of the score map.

In the labeling work, 2D, 3D, and 4D data were used. The 2D anchor box coordinate
data consisted of 20 records. Each of the four coordinates of x, y, width, and height had five
anchor boxes. The 3D and 4D score map size was 17 × 17 in size with 1445 anchor boxes
in total. The anchor box label for regression was also made with the same size as that of
the score map. The coordinate of each anchor box can be acquired by calculating the target
image coordinate in the scale-adjusted search region and anchor box coordinate.

Regressionx =
GTx − anchorx

anchorw
(2)

Regressiony =
GTy − anchory

anchorh
(3)

Regressionw = ln
(

GTw

anchorw

)
(4)

Regressionh = ln
(

GTh
anchorh

)
(5)

Equations (2) to (5) show the normalized anchor box coordinates to be estimated
in the network [36]. Equations (2) and (3) are formulas for normalizing the center point
coordinates of the anchor box, Equations (4) and (5) are formulas for normalizing the width
and height of the anchor box. The normalized coordinates are used as labels, and the
network is trained by applying the smooth L1 loss function to this value.

The classification label was used to determine whether the target object existed inside
the anchor box. If the object did exist, a one, otherwise zero, and other than that, −1 was
assigned. The object’s existence was determined according to the intersection ratio result
between each anchor box and ground truth (GT) region.

The intersection over union (IOU) was used to calculate the overlap rate. If the IOU
was more than 50%, it would determine that the object did exist, thereby assigning a 1 to
the anchor box. If the IOU was less than 40%, it would determine that the object did not
exist in the anchor box, thereby assigning a 0 to the anchor box. If the IOU was between
40% and 50%, it determined that the object’s existence was unclear. In that case, a −1 was
assigned to not affect the weight training. The created number of classification labels was
1445, which is the same as the number of anchor boxes. Each label was used to train the
weight in the network. To train the proposed network, the following values were used as
hyper-parameters. The optimizer used Adam and set learning rate = 0.001, coefficient for
primary momentum = 0.9, coefficient for secondary momentum = 0.999, and epsilon = 10−8,
weight_decay = 0.01.

4.3.2. Loss Function for Network Training

Two types of loss functions were used in the calculation for the network model, which
was the key to the tracking algorithm. One was the classification loss to determine whether
a tracking object was present inside the anchor box and the other was the regression loss
of the anchor box coordinates to estimate the object region. The classification loss only
classifies whether objects are included without specific classification of what class the
anchor box is. If the object exists, 1 is assigned as positive, and 0 is assigned as negative

Energies 2022, 15, 6388 13 of 21

if it does not exist. The regression loss predicts the coordinates of the anchor box. The
coordinates are x and y, which are the center coordinates of the box, as well as width
and height, which are the box size. The proposed network uses five anchor boxes. The
classification labels obtain 2 (positive, negative) × 5 (anchor box) = 10 values, and the
regression labels obtain 4 (x,y,w,h) × 5 (anchor box) = 20 values. Each value is assigned
to each grid of the last feature map. Each of the loss functions was calculated using the
prediction value and label in the network. To determine the object’s existence, it was
assumed as a classification problem to use the cross-entropy function. Equation (6) presents
the cross-entropy function.

losscls = −log
(

exp(x[class])
∑j exp(x[j])

)
= −x[class] + log

(
∑j exp(x[j])

) (6)

In Equation (6), the anchor box is classified whether or not objects are included without
specific classification. If the object exists, 1 is assigned as positive, and 0 is assigned as
negative if it does not exist.

SmoothL1Loss was used for the regression loss of the anchor box coordinate.
Equation (7) presents the SmoothL1Loss equation. In this equation, β refers to the hy-
perparameter, which is generally defined as one.

SmoothL1−reg =

{
0.5(xn−yn)

2

β , i f |xn − yn| < β

|xn − yn| − 0.5× β, otherwise
(7)

In Equation (7), |xn − yn| value is smaller than β term, so a square term is used.
Otherwise, the following L1−reg term is used. Due to this characteristic, it is less sensitive
to abnormal values and prevents gradient exploding. The final loss function is calculated
by summing Equations (6) and (7), which are expressed in Equation (8).

losstot = losscls + SmoothL1−reg (8)

4.4. Quantitative Evaluation Index

OTB-50 and OTB-100 tracking benchmark datasets were used for performance eval-
uations. OTB-50 consisted of 50 videos and 29,500 frames. OTB-100 had an additional
50 videos compared to OTB-50, and included 100 videos and 50,000 frames. The videos
included in the benchmark had various attributes. For the quantitative evaluation of the
proposed algorithm, the one-pass evaluation (OPE) index was used.

In the OPE, two types of evaluation indices were present, namely precision and success
plots. In the precision plot, the center position error was calculated. The center position was
used by the reference of the GT coordinate provided in the manual. The coordinate center
position produced by the tracking algorithm was calculated, and the calculated value was
compared with the GT’s center position.

The success plot refers to an overlap rate of bounding boxes that surrounded the object
region. To calculate an overlap rate, manual-coordinate GT and object-coordinate system
truth (ST) extracted through the tracking algorithm were used. The coordinate format
consisted of four values indicated by x and y coordinates, which indicated the left top,
width, and height. These coordinate values were used to calculate the overlap rate of the
bounding boxes.

As shown in Figure 12, GT_Box refers to a bounding box region consisting of GT
coordinates, and ST_Box refers to a bounding box region of the object produced by tracking
with the user’s tracking algorithm. The overlap rate is calculated by Equation (9) below.

IoU(GT_Box, ST_Box) =
Area(GT_Box∩ ST_Box)
Area(GT_Box∪ ST_Box)

(9)

Energies 2022, 15, 6388 14 of 21

Energies 2022, 15, x FOR PEER REVIEW 14 of 21

As shown in Figure 12, GT_Box refers to a bounding box region consisting of GT
coordinates, and ST_Box refers to a bounding box region of the object produced by track-
ing with the user’s tracking algorithm. The overlap rate is calculated by Equation (9) be-
low. 𝐼𝑜𝑈(GT_Box, ST_Box) = (_ ∩ _)(_ ∪ _) (9)

Figure 12. Calculation Method of Intersection Ratio Using Bounding Boxes. (a) Intersection, (b) Un-
ion, (c) Applied Image, (d) Numerical Change of Overlap Rate in the Overlap Region.

The denominator in Equation (9) is a union region of GT_Box and ST_Box in Figure
12b. The numerator is an intersection region of GT_Box and ST_Box in Figure 12a. The
result of IOU is the region filled with the green-color box in Figure 12c. To express the
performance rank, the area under a curve was used.

4.5. Experimental Results
In this study, the performance of the tracking algorithm was evaluated using two

quantitative evaluation indicators, success plot and precision plot. The success plot
measures the overlap ratio of the bounding box suggested by the algorithm and the GT
box area measured by the manual method. The precision plot measures the distance dif-
ference between the center point of the bounding box presented by the algorithm and the
center point of the GT box measured by the manual method. This metric indicates the
accuracy with which the tracking algorithm continuously tracks the object. To quantita-
tively compare the performance of the proposed tracking algorithm, four tracking algo-
rithms, namely BACF [9], CSRDCF-LP [19], DCF [20], and MCCTH-Staple [21] were used.
The colors in the produced graph were red, green, magenta, yellow, and sky blue from
the first to fifth ranks, respectively. The line shapes in the graph comprised a line, dash,
dot, line, and dash, in that order. To ensure the statistical validity of the tracking results,
the proposed algorithm and comparison algorithm were tested using the same experi-
mental environment described in Section 4.1.

Figure 13 and Table 4 present the performance evaluation results using the OTB-50
benchmark dataset, with the proposed algorithm achieving the highest scores of 0.572 and
0.799.

Figure 12. Calculation Method of Intersection Ratio Using Bounding Boxes. (a) Intersection, (b) Union,
(c) Applied Image, (d) Numerical Change of Overlap Rate in the Overlap Region.

The denominator in Equation (9) is a union region of GT_Box and ST_Box in Figure 12b.
The numerator is an intersection region of GT_Box and ST_Box in Figure 12a. The result of
IOU is the region filled with the green-color box in Figure 12c. To express the performance
rank, the area under a curve was used.

4.5. Experimental Results

In this study, the performance of the tracking algorithm was evaluated using two
quantitative evaluation indicators, success plot and precision plot. The success plot mea-
sures the overlap ratio of the bounding box suggested by the algorithm and the GT box
area measured by the manual method. The precision plot measures the distance difference
between the center point of the bounding box presented by the algorithm and the center
point of the GT box measured by the manual method. This metric indicates the accuracy
with which the tracking algorithm continuously tracks the object. To quantitatively com-
pare the performance of the proposed tracking algorithm, four tracking algorithms, namely
BACF [9], CSRDCF-LP [19], DCF [20], and MCCTH-Staple [21] were used. The colors in the
produced graph were red, green, magenta, yellow, and sky blue from the first to fifth ranks,
respectively. The line shapes in the graph comprised a line, dash, dot, line, and dash, in that
order. To ensure the statistical validity of the tracking results, the proposed algorithm and
comparison algorithm were tested using the same experimental environment described in
Section 4.1.

Figure 13 and Table 4 present the performance evaluation results using the OTB-50
benchmark dataset, with the proposed algorithm achieving the highest scores of 0.572
and 0.799.

Table 4. Overall Performance Evaluation Results of OTB-50.

Proposed BACF MCCTH-Staple DCF CSRDCF-LP

Success 0.572 0.55 0.549 0.408 0.502
Precision 0.799 0.757 0.713 0.606 0.662

Energies 2022, 15, 6388 15 of 21

Energies 2022, 15, x FOR PEER REVIEW 15 of 21

Figure 13. Evaluation Graph of OTB-50 for All Attributes (a) Success Plots Graph of OTB-50, (b)
Precision Plots Graph of OTB-50.

Table 4. Overall Performance Evaluation Results of OTB-50.

 Proposed BACF MCCTH-Staple DCF CSRDCF-LP
Success 0.572 0.55 0.549 0.408 0.502

Precision 0.799 0.757 0.713 0.606 0.662

Figure 14 and Table 5 present the performance evaluation results using the OTB-100
benchmark dataset. The proposed algorithm exhibited the highest scores as it achieved
0.633 and 0.847. Tables 6 and 7 summarize all the results using the OTB dataset. The bold
font was used for the highest values. Table 6 presents the results using the OTB-50 dataset.
The success plot result, which showed an overlap rate with the OTB-50 dataset, achieved
0.572. This result was higher than that of the DCF algorithm, which showed the lowest
result, by 0.164. It showed a slight difference (0.022) compared to BACF, which achieved
the second-highest result. The precision plot achieved 0.799, which showed the center er-
ror. This result was higher than that of the DCF algorithm, which showed the lowest re-
sult, by 0.193. The BACF algorithm, which achieved the second-highest value as the same
as shown in the success plot result, exhibited 0.757.

Figure 14. Evaluation Graph of OTB-100 for All Attributes (a) Success Plots Graph of OTB-100, (b)
Precision Plots Graph of OTB-100.

Figure 13. Evaluation Graph of OTB-50 for All Attributes (a) Success Plots Graph of OTB-50, (b) Pre-
cision Plots Graph of OTB-50.

Figure 14 and Table 5 present the performance evaluation results using the OTB-100
benchmark dataset. The proposed algorithm exhibited the highest scores as it achieved
0.633 and 0.847. Tables 6 and 7 summarize all the results using the OTB dataset. The bold
font was used for the highest values. Table 6 presents the results using the OTB-50 dataset.
The success plot result, which showed an overlap rate with the OTB-50 dataset, achieved
0.572. This result was higher than that of the DCF algorithm, which showed the lowest
result, by 0.164. It showed a slight difference (0.022) compared to BACF, which achieved
the second-highest result. The precision plot achieved 0.799, which showed the center error.
This result was higher than that of the DCF algorithm, which showed the lowest result,
by 0.193. The BACF algorithm, which achieved the second-highest value as the same as
shown in the success plot result, exhibited 0.757.

Energies 2022, 15, x FOR PEER REVIEW 15 of 21

Figure 13. Evaluation Graph of OTB-50 for All Attributes (a) Success Plots Graph of OTB-50, (b)
Precision Plots Graph of OTB-50.

Table 4. Overall Performance Evaluation Results of OTB-50.

 Proposed BACF MCCTH-Staple DCF CSRDCF-LP
Success 0.572 0.55 0.549 0.408 0.502

Precision 0.799 0.757 0.713 0.606 0.662

Figure 14 and Table 5 present the performance evaluation results using the OTB-100
benchmark dataset. The proposed algorithm exhibited the highest scores as it achieved
0.633 and 0.847. Tables 6 and 7 summarize all the results using the OTB dataset. The bold
font was used for the highest values. Table 6 presents the results using the OTB-50 dataset.
The success plot result, which showed an overlap rate with the OTB-50 dataset, achieved
0.572. This result was higher than that of the DCF algorithm, which showed the lowest
result, by 0.164. It showed a slight difference (0.022) compared to BACF, which achieved
the second-highest result. The precision plot achieved 0.799, which showed the center er-
ror. This result was higher than that of the DCF algorithm, which showed the lowest re-
sult, by 0.193. The BACF algorithm, which achieved the second-highest value as the same
as shown in the success plot result, exhibited 0.757.

Figure 14. Evaluation Graph of OTB-100 for All Attributes (a) Success Plots Graph of OTB-100, (b)
Precision Plots Graph of OTB-100.
Figure 14. Evaluation Graph of OTB-100 for All Attributes (a) Success Plots Graph of OTB-100,
(b) Precision Plots Graph of OTB-100.

Table 5. Overall performance evaluation results of OTB-100.

Proposed BACF MCCTH-Staple DCF CSRDCF-LP

Success 0.633 0.602 0.616 0.482 0.585
Precision 0.847 0.817 0.799 0.694 0.764

Energies 2022, 15, 6388 16 of 21

Table 6. Overall Performance Evaluation Results for Attributes of OTB-50 Benchmark Dataset.

Proposed BACF MCCTH-Staple DCF CSRDCF-LP

Total
Success 0.572 0.550 0.549 0.408 0.502

Precision 0.799 0.757 0.713 0.606 0.662

IPR
Success 0.518 0.540 0.514 0.398 0.462

Precision 0.741 0.748 0.683 0.572 0.607

OCC
Success 0.564 0.516 0.552 0.389 0.464

Precision 0.801 0.708 0.715 0.581 0.608

OV
Success 0.548 0.483 0.491 0.328 0.435

Precision 0.760 0.704 0.671 0.443 0.624

IV
Success 0.557 0.587 0.549 0.451 0.466

Precision 0.766 0.792 0.724 0.688 0.607

LR
Success 0.520 0.437 0.571 0.255 0.486

Precision 0.821 0.695 0.834 0.543 0.711

BC
Success 0.578 0.585 0.517 0.437 0.445

Precision 0.772 0.797 0.679 0.640 0.575

FM
Success 0.569 0.534 0.524 0.407 0.536

Precision 0.746 0.749 0.646 0.567 0.693

MB
Success 0.570 0.542 0.492 0.422 0.535

Precision 0.767 0.756 0.625 0.589 0.692

SV
Success 0.563 0.506 0.525 0.366 0.470

Precision 0.786 0.710 0.680 0.569 0.622

DEF
Success 0.536 0.514 0.530 0.413 0.493

Precision 0.751 0.710 0.692 0.612 0.688

OPR
Success 0.541 0.518 0.536 0.394 0.432

Precision 0.762 0.719 0.694 0.573 0.562

Table 7. Overall Performance Evaluation Results for Attributes of OTB-100 Benchmark Dataset.

Proposed BACF MCCTH-Staple DCF CSRDCF-LP

Total
Success 0.633 0.602 0.616 0.482 0.585

Precision 0.847 0.817 0.799 0.694 0.764

IPR
Success 0.558 0.567 0.565 0.471 0.534

Precision 0.783 0.792 0.754 0.678 0.716

OCC
Success 0.616 0.560 0.595 0.441 0.527

Precision 0.825 0.756 0.756 0.619 0.671

OV
Success 0.595 0.483 0.491 0.328 0.435

Precision 0.796 0.704 0.671 0.443 0.624

IV
Success 0.642 0.627 0.592 0.484 0.564

Precision 0.828 0.830 0.755 0.727 0.721

LR
Success 0.501 0.446 0.572 0.264 0.495

Precision 0.829 0.729 0.851 0.584 0.743

Energies 2022, 15, 6388 17 of 21

Table 7. Cont.

Proposed BACF MCCTH-Staple DCF CSRDCF-LP

BC
Success 0.636 0.646 0.610 0.513 0.553

Precision 0.843 0.863 0.788 0.724 0.715

FM
Success 0.614 0.572 0.580 0.464 0.593

Precision 0.790 0.782 0.713 0.632 0.759

MB
Success 0.628 0.584 0.570 0.470 0.584

Precision 0.807 0.777 0.705 0.614 0.732

SV
Success 0.598 0.538 0.585 0.397 0.537

Precision 0.808 0.766 0.766 0.623 0.710

DEF
Success 0.596 0.555 0.586 0.450 0.544

Precision 0.811 0.777 0.779 0.645 0.747

OPR
Success 0.596 0.518 0.536 0.394 0.432

Precision 0.816 0.719 0.694 0.573 0.562

Table 7 presents the results using the OTB-100 dataset, which achieved a 0.621 in the
success plot as the highest result. The algorithm that exhibited the lowest result was also
the DCF algorithm, which was the same as the result of the OTB-50 dataset. The algorithm
that exhibited the second-highest result with a 0.633 achieved was MCCTH-Staple, which
was different from that using the OTB-50 dataset. BACF, which achieved the second-highest
value using the OTB-50, showed the third-highest result with a 0.602.

The proposed algorithm achieved the highest result with a 0.847 in the precision plot.
In contrast to the success plot, the BACF algorithm achieved the second-highest result with
a 0.817.

The MB attribute showed high success plot results out of 11 attributes in the OTB-50
and OTB-100 datasets. Figure 15 shows the first frame in the Tiger1 video with the MB
attribute, and this video contains the IV and FM attributes as well. Overall, these three
attributes showed good results in the OTB-50 and OTB-100 datasets.

Energies 2022, 15, x FOR PEER REVIEW 17 of 21

Precision 0.828 0.830 0.755 0.727 0.721

LR
Success 0.501 0.446 0.572 0.264 0.495

Precision 0.829 0.729 0.851 0.584 0.743

BC
Success 0.636 0.646 0.610 0.513 0.553

Precision 0.843 0.863 0.788 0.724 0.715

FM
Success 0.614 0.572 0.580 0.464 0.593

Precision 0.790 0.782 0.713 0.632 0.759

MB
Success 0.628 0.584 0.570 0.470 0.584

Precision 0.807 0.777 0.705 0.614 0.732

SV
Success 0.598 0.538 0.585 0.397 0.537

Precision 0.808 0.766 0.766 0.623 0.710

DEF
Success 0.596 0.555 0.586 0.450 0.544

Precision 0.811 0.777 0.779 0.645 0.747

OPR
Success 0.596 0.518 0.536 0.394 0.432

Precision 0.816 0.719 0.694 0.573 0.562

Table 7 presents the results using the OTB-100 dataset, which achieved a 0.621 in the
success plot as the highest result. The algorithm that exhibited the lowest result was also
the DCF algorithm, which was the same as the result of the OTB-50 dataset. The algorithm
that exhibited the second-highest result with a 0.633 achieved was MCCTH-Staple, which
was different from that using the OTB-50 dataset. BACF, which achieved the second-high-
est value using the OTB-50, showed the third-highest result with a 0.602.

The proposed algorithm achieved the highest result with a 0.847 in the precision plot.
In contrast to the success plot, the BACF algorithm achieved the second-highest result
with a 0.817.

The MB attribute showed high success plot results out of 11 attributes in the OTB-50
and OTB-100 datasets. Figure 15 shows the first frame in the Tiger1 video with the MB
attribute, and this video contains the IV and FM attributes as well. Overall, these three
attributes showed good results in the OTB-50 and OTB-100 datasets.

Figure 15. MB Attribute—First Frame of Tiger 1 Sequence.

Figure 16 depicts the frame that includes all MB, IV, and FM attributes. Although
afterimages caused by sudden object changes and blurring of pixels were found, it showed
a robust tracking result even in the MB, IV, and FM attributes.

Figure 15. MB Attribute—First Frame of Tiger 1 Sequence.

Figure 16 depicts the frame that includes all MB, IV, and FM attributes. Although
afterimages caused by sudden object changes and blurring of pixels were found, it showed
a robust tracking result even in the MB, IV, and FM attributes.

Energies 2022, 15, 6388 18 of 21Energies 2022, 15, x FOR PEER REVIEW 18 of 21

Figure 16. Frame Comprising the MB, IV, and FM Attributes.

Figure 17 shows five sequences, including attributes other than MB, IV, and FM. Fig-
ure 17a–e show the sequences of Box, BlurCar4, BlurOwl, Bird2, and Coke. As shown in
Figure 17, sequences a, d, and e include an occlusion attribute that hides the target object.
The proposed tracking algorithm (red bounding box) exhibited good tracking without any
drift that missed the object.

Figure 17. Tracking Results of Various Tracking Sequences. (a) Box Tracking Result, (b) BlurCar4
Tracking Result, (c) BlurOwl Tracking Result, (d) Bird2 Tracking Result, (e) Coke Tracking Result.

Figure 16. Frame Comprising the MB, IV, and FM Attributes.

Figure 17 shows five sequences, including attributes other than MB, IV, and FM.
Figure 17a–e show the sequences of Box, BlurCar4, BlurOwl, Bird2, and Coke. As shown in
Figure 17, sequences a, d, and e include an occlusion attribute that hides the target object.
The proposed tracking algorithm (red bounding box) exhibited good tracking without any
drift that missed the object.

Energies 2022, 15, x FOR PEER REVIEW 18 of 21

Figure 16. Frame Comprising the MB, IV, and FM Attributes.

Figure 17 shows five sequences, including attributes other than MB, IV, and FM. Fig-
ure 17a–e show the sequences of Box, BlurCar4, BlurOwl, Bird2, and Coke. As shown in
Figure 17, sequences a, d, and e include an occlusion attribute that hides the target object.
The proposed tracking algorithm (red bounding box) exhibited good tracking without any
drift that missed the object.

Figure 17. Tracking Results of Various Tracking Sequences. (a) Box Tracking Result, (b) BlurCar4
Tracking Result, (c) BlurOwl Tracking Result, (d) Bird2 Tracking Result, (e) Coke Tracking Result.

Figure 17. Tracking Results of Various Tracking Sequences. (a) Box Tracking Result, (b) BlurCar4
Tracking Result, (c) BlurOwl Tracking Result, (d) Bird2 Tracking Result, (e) Coke Tracking Result.

Energies 2022, 15, 6388 19 of 21

However, in Figure 17a, CSRDCF-LP, DCF, BACF, and MCCTH-Staple algorithms
failed to track at 496 frames. In frame 455, it can be seen that the target object area is mostly
obscured by obstacles. In the process of updating the object-appearance model based on
the object area of this frame, it is judged that tracking failed because the appearance model
was contaminated by noise (e.g., obstacle image information, background information)
rather than by the target object. A similar situation can be seen in Figure 17d. In frame 63,
it can be seen that all tracking algorithms localize an area other than the green GT area. In
frame 95, the DCF and BACF algorithms showed the result of tracking failure, but it can be
seen that the proposed algorithm tracks normally. When contamination by noise occurs in
the external model, the value is continuously accumulated, so it is difficult to guarantee
reliability in the comparison process. On the other hand, since the proposed algorithm
is tracked through similarity comparison, re-tracking is possible when a place with high
similarity between regions reappears. Figure 17b,c are images with blur caused by camera
shake. In the case of Figure 17b, since the target object area is wider than in Figure 17c, it can
be seen that all algorithms track relatively robustly even when blurring occurs. However,
Figure 17c is more affected by the damage of the surrounding background caused by fast
motion because the target object area is small. As a result, the DCF algorithm, which is
highly affected by noise, failed to track. On the other hand, it shows that the proposed
algorithm tracks the object well even if the object and the surrounding background are
corrupted due to blurring caused by camera shake.

5. Conclusions

This study proposed a real-time single object tracking algorithm based on a Siamese
network from two viewpoints of object tracking overlap accuracy and center tracking
error rate. The tracking algorithm was a full CNN structure where the fully connected
layers were removed to maintain spatial feature information, which was designed as a
customized network. The Siamese network for feature extraction obtained the production
of various feature maps using kernels 1 × 1 and 3 × 3 in size in the convolution layer. It
was devised not to stop the feature flow by preventing a feature loss while the feature map
produced in the bottleneck structure and input feature maps were connected and merged.
The RPN estimated the object’s location through the supervised learning method and
determined whether the object was present in the bounding box. Through this mechanism,
the potential location of the target object could be identified in the entire image frame. The
experiment showed that the proposed algorithm achieved competitive results in some
video attributes compared to other tracking algorithms. However, for low resolution and
scale variation attributes, the proposed algorithm still had its limitations. To solve this
object-tracking problem, future research is needed to overcome this drawback. To do this,
studies on performance improvements are on track to be conducted by implementing
feature representation techniques as additional functions that can finely extract detailed
regions rather than large appearance areas.

Author Contributions: Conceptualization, S.-C.L., J.-H.H. and J.-C.K.; Data curation, S.-C.L. and
J.-C.K.; Formal analysis, S.-C.L. and J.-H.H.; Investigation, S.-C.L., J.-H.H. and J.-C.K.; Methodology,
S.-C.L. and J.-C.K.; Project administration, S.-C.L., J.-H.H. and J.-C.K.; Resources, S.-C.L., J.-H.H. and
J.-C.K.; Software, S.-C.L., J.-H.H. and J.-C.K.; Supervision, S.-C.L. and J.-C.K.; Validation, S.-C.L. and
J.-C.K.; Visualization, S.-C.L., J.-H.H. and J.-C.K.; Writing—original draft, S.-C.L., J.-H.H. and J.-C.K.;
Writing—review and editing, S.-C.L., J.-H.H. and J.-C.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of Education (No. 2021R1I1A1A01044223).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Energies 2022, 15, 6388 20 of 21

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kim, S.H.; Lim, S.C.; Kim, D.Y. Intelligent Intrusion Detection System Featuring a Virtual Fence, Active Intruder Detection,

Classification, Tracking. Ann. Nucl. Energy 2018, 112, 845–855. [CrossRef]
2. Koubâa, A.; Qureshi, B. DroneTrack: Cloud-Based Real-Time Object Tracking Using Unmanned Aerial Vehicles over the Internet.

IEEE Access 2018, 6, 13810–13824. [CrossRef]
3. Lee, S.J.; Lee, M.C. A Vision Based People Tracking and Following for Mobile Robots Using CAMSHIFT and KLT Feature Tracker.

J. Korea Multimed. Soc. 2014, 17, 787–796. [CrossRef]
4. Laurense, V.A.; Goh, J.Y.; Gerdes, J.C. Path-Tracking for Autonomous Vehicles at the Limit of Friction. In Proceedings of the

American Control Conference IEEE, Seattle, WA, USA, 24–26 May 2017; pp. 5586–5591.
5. Ma, C.; Huang, J.B.; Yang, X.; Yang, M.H. Hierarchical convolutional features for visual tracking. In Proceedings of the IEEE

International Conference on Computer Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015; pp. 3074–3082.
6. Li, B.; Wu, W.; Wang, Q.; Zhang, F.; Xing, J.; Yan, J. Siamrpn++: Evolution of siamese visual tracking with very deep networks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 15–20 June
2019; pp. 4282–4291.

7. Wang, N.; Shi, J.; Yeung, D.Y.; Jia, J. Understanding and diagnosing visual tracking systems. In Proceedings of the IEEE
International Conference on Computer Vision 2019, Seoul, Korea, 27–28 October 2019; pp. 3101–3109.

8. Du, X.; Clancy, N.; Arya, S.; Hanna, G.B.; Kelly, J.; Elson, D.S.; Stoyanov, D. Robust Surface Tracking Combining Features, Intensity
and Illumination Compensation. Int. J. Comput. Assist. Radiol. Surg. 2015, 10, 1915–1926. [CrossRef] [PubMed]

9. Kiani Galoogahi, H.; Fagg, A.; Lucey, S. Learning Background-Aware Correlation Filters for Visual Tracking. In Proceedings of
the IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017; pp. 1135–1143.

10. Song, Z.; Sun, J.; Yu, J. Object Tracking by a Combination of Discriminative Global and Generative Multi-Scale Local Models.
Information 2017, 8, 43. [CrossRef]

11. Li, P.; Wang, D.; Wang, L.; Lu, H. Deep visual tracking: Review and experimental comparison. Pattern Recognit. 2018, 76, 323–338.
[CrossRef]

12. Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2010, San Francisco, CA, USA, 13–18 June
2010; pp. 2544–2550.

13. Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Learning spatially regularized correlation filters for visual tracking. In
Proceedings of the IEEE International Conference on Computer Vision 2015, Santiago, Chile, 7–13 December 2015; pp. 4310–4318.

14. Kiani Galoogahi, H.; Sim, T.; Lucey, S. Correlation filters with limited boundaries. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition 2015, Boston, MA, USA, 7–12 June 2015; pp. 4630–4638.

15. Danelljan, M.; Robinson, A.; Khan, F.S.; Felsberg, M. Beyond correlation filters: Learning continuous convolution operators for
visual tracking. In Proceedings of the European Conference on Computer Vision 2016, Munich, Germany, 8–14 September 2016;
pp. 472–488.

16. Danelljan, M.; Bhat, G.; Shahbaz Khan, F.; Felsberg, M. Eco: Efficient convolution operators for tracking. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 6638–6646.

17. Hadfield, S.J.; Lebeda, K.; Bowden, R. The visual object tracking VOT2014 challenge results. In Proceedings of the European
Conference on Computer Vision (ECCV) Visual Object Tracking Challenge Workshop 2014, Zurich, Switzerland, 6–7 and 12
September 2014.

18. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the Circulant Structure of Tracking-by-Detection with Kernels. In
Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Volume 7575, pp. 702–715.

19. Lukezic, A.; Vojir, T.; Cehovin Zajc, L.; Matas, J.; Kristan, M. Discriminative correlation filter with channel and spatial reliability.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July
2017; pp. 6309–6318.

20. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal.
Mach. Intell. 2015, 37, 583–596. [CrossRef] [PubMed]

21. Wang, N.; Zhou, W.; Tian, Q.; Hong, R.; Wang, M.; Li, H. Multi-cue correlation filters for robust visual tracking. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition 2018, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4844–4853.

22. Liu, T.; Tao, D.; Song, M.; Maybank, S.J. Algorithm-dependent generalization bounds for multi-task learning. In Proceedings of
the IEEE Transactions on Pattern Analysis and Machine Intelligence 2016, Washington, WA, USA, 3 March 2016; IEEE Computer
Society: Pittsburgh, PA, USA, 2016; Volume 39, pp. 227–241.

23. Kim, J.-C.; Lim, S.-C.; Choi, J.; Huh, J.-H. Review for Examining the Oxidation Process of the Moon Using Generative Adversarial
Networks: Focusing on Landscape of Moon. Electronics 2022, 11, 1303. [CrossRef]

24. Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Convolutional features for correlation filter based visual tracking. In
Proceedings of the IEEE International Conference on Computer Vision Workshops, ICCV 2015, Santiago, Chile, 7–13 December
2015; pp. 58–66.

http://doi.org/10.1016/j.anucene.2017.11.026
http://doi.org/10.1109/ACCESS.2018.2811762
http://doi.org/10.9717/kmms.2014.17.7.787
http://doi.org/10.1007/s11548-015-1243-9
http://www.ncbi.nlm.nih.gov/pubmed/26100122
http://doi.org/10.3390/info8020043
http://doi.org/10.1016/j.patcog.2017.11.007
http://doi.org/10.1109/TPAMI.2014.2345390
http://www.ncbi.nlm.nih.gov/pubmed/26353263
http://doi.org/10.3390/electronics11091303

Energies 2022, 15, 6388 21 of 21

25. Wang, L.; Ouyang, W.; Wang, X.; Lu, H. Visual tracking with fully convolutional networks. In Proceedings of the IEEE
International Conference on Computer Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015; pp. 3119–3127.

26. Qi, Y.; Zhang, S.; Qin, L.; Yao, H.; Huang, Q.; Lim, J.; Yang, M.H. Hedged deep tracking. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 4303–4311.

27. Li, H.; Li, Y.; Porikli, F. Deeptrack: Learning discriminative feature representations by convolutional neural networks for visual
tracking. In Proceedings of the British Machine Vision Conference 2014, Nottingham, UK, 1–5 September 2014; Volume 1, p. 3.

28. Brandao, P.; Mazomenos, E.; Stoyanov, D. Widening siamese architectures for stereo matching. Pattern Recognit. Lett. 2019, 120,
75–81. [CrossRef] [PubMed]

29. Lin, T.Y.; Cui, Y.; Belongie, S.; Hays, J.; Tech, C. Learning Deep Representations for Ground-to-Aerial Geolocalization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015, Boston, MA, USA, 7–12 June 2015;
pp. 5007–5015.

30. Tao, R.; Gavves, E.; Smeulders, A.W. Siamese Instance Search for Tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 1420–1429.

31. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-Convolutional Siamese Networks for Object Tracking. In
Proceedings of the European Conference on Computer Vision 2016, Munich, Germany, 8–14 September 2016; pp. 850–865.

32. Xu, H.; Gao, Y.; Yu, F.; Darrell, T. End-To-End Learning of Driving Models from Large-Scale Video Datasets. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, ICCV 2017, Venice, Italy, 22–29 October 2017; pp. 2174–2182.

33. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
Adv. Neural Inf. Processing Syst. 2015, 28, 91–99. [CrossRef] [PubMed]

34. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

35. Wu, Y.; Lim, J.; Yang, M.-H. Online object tracking: A benchmark. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition 2013, Portland, OR, USA, 23–28 June 2013; pp. 2411–2418.

36. Lim, S.C. Visual Object Tracking Algorithm Using Partial Fourier Siameses Network with Fully CNN-RPN. Ph.D. Thesis, Sunchon
National University, Sunchon, Korea, 2022; pp. 1–132.

http://doi.org/10.1016/j.patrec.2018.12.002
http://www.ncbi.nlm.nih.gov/pubmed/31007321
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1007/s11263-015-0816-y

	Introduction
	Related Works
	Correlation Filter-Based Tracking Algorithm
	CNN-Based Tracking Algorithm
	Siamese Network

	Proposed Method
	Convolution Block for Feature Extraction
	Siamese Network Architecture
	Region Proposal Network

	Experiments
	Experimental Environment Configuration
	Dataset Configuration
	ILSVRC 2017 VID Dataset
	Object Tracking Benchmark Dataset

	Network Training and Testing
	Data Preprocessing and Labeling
	Loss Function for Network Training

	Quantitative Evaluation Index
	Experimental Results

	Conclusions
	References

