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Abstract: Dual three–phase synchronous reluctance motors (DTP–SynRM) have the advantages of
simple structure, high power density, fast dynamic response, and small torque ripple, and have
broad application prospects in flywheel batteries. However, the synchronous reluctance motor has no
permanent magnet, and the inductance value will change with the current change in actual operation.
Direct torque control (DTC) is more suitable for the control strategy of dual three–phase synchronous
reluctance motors because of its low dependence on motor parameters. However, traditional direct
torque control uses a large vector control motor within one control period, which can not suppress
the inherent 5th and 7th current harmonics in the motor. A new harmonic suppression method is
proposed in this paper: that is, using a low harmonic vector to replace a large vector in traditional
direct torque control, which can be synthesized by adjusting the action time and order of three
adjacent large vectors within one control period. Through this improvement, torque control can
have a harmonic suppression effect. The three vector synthesis method can make full use of the
existing space voltage vector, and to adapt to different working conditions, two synthesis methods
of switching frequency reduction and constant torque response are proposed. An improved direct
torque control strategy is obtained by optimizing the design of the switch table using a new vector
synthesis method. Finally, the suppression effect of traditional DTC and improved DTC on current
harmonics is compared and analyzed. The results show that the direct torque control with low
harmonic vector can suppress the harmonic current in x–y subspace, and the current harmonic
content is greatly reduced.

Keywords: flywheel battery; dual three–phase synchronous reluctance motor; direct torque control;
harmonic suppression; three–vector synthesis

1. Introduction

Electric vehicles have the advantages of no pollution, low noise and high efficiency [1],
but the power batteries and fuel cells used in electric vehicles have low power density,
poor regenerative braking effect, low safety factor, and short cycle life defects [2], which
hinder the further promotion of electric vehicles. The flywheel battery has the advantages
of no pollution, fast response, high transmission efficiency, and high power density [3].
In combination with high specific energy batteries, it can make up for the shortcomings
of traditional power batteries and further improve the performance of electric vehicles.
The DTP–SynRM is also called a six–phase synchronous reluctance motor. The stator and
rotor magnetic core structure is shown in Figure 1. The motor winding design adopts a
double–layer winding structure, as shown in Figure 2. The rotor is a multi–layer magnetic
barrier structure without permanent magnets. Its main advantages are simple structure,
high reliability, small torque ripple and high power density [4]. The DTP–SynRM can
realize low–voltage and high–power operation [5], which overcomes the shortcoming of
the permanent magnet synchronous motor that produces a large flywheel standby loss and
the shortcoming of the switched reluctance motor’s large torque ripple. It can improve
the overall efficiency and dynamic response performance of the flywheel battery, and is
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suitable as a flywheel motor. Synchronous reluctance motors have been used in flywheel
batteries, which have obvious advantages over asynchronous motors and show application
prospects [6].
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The DTP–SynRM selected in this paper has an asymmetrical winding structure, and the
5th and 7th harmonic magnetomotive forces during operation are cancelled to generate the
5th and 7th current harmonics [7,8]. This harmonic problem is inherent to the asymmetric
winding structure and can only be compensated by a control strategy. At present, the
control strategies for dual three–phase motors mainly include vector control [9–12] and
direct torque control [13–17]. Because there is no permanent magnet on the rotor of a dual
three–phase synchronous reluctance motor, the magnetic saturation of the d–axis has a great
influence on its inductance; its value will decrease with the increase in current. By contrast,
direct torque control is less affected by the variation in motor parameters. Therefore, it is
more suitable for dual three–phase synchronous reluctance motors.

Compared with the three–phase motor, the dual three–phase motor has 64 space
voltage vectors, which have the characteristics of multi–dimensional sub–planes. The com-
bination of space vectors is more flexible, which helps to reduce flux and torque pulsation.
The direct torque control in Refs. [13,14] is only controlled in the fundamental wavelet
plane, which has the problem of a large harmonic component of current. Literature [15]
introduced a disturbance observer to suppress harmonics, but the observer design relies
on the mathematical model of the motor. In Refs. [16,17], the closed–loop strategy of
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SVPWM is used to suppress harmonics, and the calculation amount and complexity of the
system are greatly increased. Refs. [18–20] proposed a harmonic suppression strategy for
a dual–phase permanent magnet synchronous machine (PMSM) based on a proportional
resonance controller and quasi–proportional resonance (QPR) cascade PI, but the control
system is too complex. Refs. [21,22] use current predictive control to suppress harmonics,
but the control effect depends on an accurate discrete mathematical model.

Although the above control strategy suppresses the harmonics, it does not consider
the influence of the improved scheme on the dynamic response of the motor. At the
same time, it increases the system complexity and the amount of calculation, depends on
the motor parameters, and loses the advantages of simple structure, high reliability, and
little influence from motor parameters. In this paper, an improved direct torque control
strategy is proposed, which retains the advantages of simple structure and good dynamic
performance while suppressing the stator current harmonics. By optimizing the switching
table and making full use of the space voltage vector, both the harmonic suppression effect
and the dynamic response performance of the motor are considered. Improved schemes
suitable for high–speed and high–performance control are proposed, respectively.

The structure of this article is as follows. The second section describes the mathematical
model of the motor using the vector space decoupling (VSD) technology and analyzes
the mechanism of harmonic generation. The third section introduces the traditional DTC
scheme. In Section 4, by analyzing the influence of inverter vectors on torque generation and
stator flux linkage in different subspaces, an improved switching table and vector synthesis
scheme are proposed. In Section 5, simulation results are given to verify the effectiveness of
the proposed strategy. In Section 6, the effectiveness of the proposed harmonic suppression
strategy is verified by experiments. Finally, the seventh part summarizes the conclusion.

2. Harmonic Mechanism Analysis

The DTP–SynRM is equivalent to a six–dimensional system that has the characteristics
of high–order, nonlinear and strong coupling. By employing the VSD technique, the
original six–dimensional system can be decomposed into three two–dimensional uncoupled
subspaces: α–β, x–y, and o1–o2. The fundamental components of the machine variables
(voltage, current, or flux) and the harmonics of order k = 12m ± 1 (m = 1, 2, 3, . . . ) are
mapped to the α–β subspace, while the harmonics with k = 6m ± 1 (m = 1, 3, 5, . . . ) are
transformed into the x–y subspace. The zero–sequences with k = 3m (m = 1, 3, 5, . . . ) are
located in the o1–o2 subspace to form the classical zero sequence components.

For ease of study, the motor windings are assumed to have a sinusoidal distribution,
ignoring magnetic saturation, leakage inductance, and core losses. At this time, the DTP–
SynRM model in the rotating coordinate system can be described. The voltage equation in
the α–β subspace is[

ud
uq

]
=

[
R 0
0 R

]
·
[

id
iq

]
+ ωe

[
−Lqiq
Ldid

]
+

[
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· d

dt
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The voltage equation in the x–y subspace is[
ux
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]
=

[
R 0
0 R

]
·
[

ix
iy

]
+
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]
· d

dt

[
ix
iy

]
(2)

The electromagnetic torque is

Te = 3pnidiq
(

Ld − Lq
)

(3)

The mechanical equation is

TL = Te + Bω + J
dω

dt
(4)
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where Ld, Lq are d–axis and q–axis inductances. R is the stator resistance. pn is the number
of pole pairs. ωe is the electrical angular velocity. Te is the electromagnetic torque. TL is the
load torque. J is the moment of inertia. B is the viscous friction coefficient.

The DTP–SynRM with phase shift of 30◦ is adopted in this paper. The neutral point
isolation of two sets of three–phase windings has a difference of 30◦ in space, as shown in
Figure 3.
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The spatial distribution of the 5th harmonic magnetomotive force in the motor differs
by 150◦ electrical angle, as shown in Figure 4. Because the phase difference between the two
sets of winding currents of the double three–phase motor is 30◦, the space–time distribution
of the 5th harmonic magnetomotive forces is 180◦ and offsets each other. Similarly, the
phase difference in the spatial distribution of the 7th harmonic magnetomotive force, which
is opposite to the rotation direction of the 5th harmonic magnetomotive force, is also a 150◦

electrical angle. The phase difference of the two sets of winding currents of the double
three–phase motor is 30◦, and the electrical angle also causes the space–time distribution
difference of the 7th harmonic magnetomotive forces to be 180◦ and offset each other. In the
DTP–SynRM, there will be no 5th and 7th harmonic rotating magnetic field, corresponding
to the x–y subspace; the 5th and 7th harmonic impedance is very small. However, there
are the 5th and 7th harmonics in the phase voltage of the winding, which will make
the stator current of the motor contain a large number of 5th and 7th harmonics. These
harmonic currents will cause additional losses to reduce the overall operating efficiency of
the flywheel battery.
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3. Traditional DTC

In this paper, a six–phase voltage source inverter is used to control the DTP–SynRM.
The two sets of three–phase windings of the motor, which are respectively denoted as ABC
and DEF, are spaced apart by 30◦ electrical angles, as shown in Figure 5.
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The six–phase inverter, which is rich in control resources, has 64 space voltage vectors.
Coordinate transformation (5) can be used to decouple the vector space and decompose the
voltage vector of the dual three–phase motor into three mutually orthogonal subspaces:
α–β, x–y, and o1–o2. The α–β subspace is called the fundamental wave subspace, and the
corresponding component forms a rotating magnetomotive force in the air gap to participate
in electromechanical energy conversion. The x–y subspace is called the harmonic subspace,
and the corresponding components are 6k ± 1 (k = 1, 3, 5 . . . ) harmonic components,
which do not generate electromagnetic torque. The harmonic content of the current is less
when the component of the harmonic subspace is smaller. The o1–o2 subspace is called the
zero sequence subspace. When the inverter adopts the neutral point isolation connection
method in Figure 5, the component mapped onto the zero–sequence subspace is zero.
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1
3
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(5)

After decoupling the vector space of DTP–SynRM used in the current study, the
64 space voltage vectors are mapped onto the fundamental wave and harmonic subspaces,
as shown in Figures 4 and 6. The space voltage vector in each subspace contains 60 non–
zero vectors and 4 zero vectors. The 60 nonzero vectors can be divided into 4 groups in
accordance with their amplitude: large, medium, original, and small vectors. Each space
voltage vector is numbered with a six–bit binary number converted into a decimal number,
i.e., SF, SE, SD, SC, SB, and SA, from high to low. For each bit, “1” indicates that the upper
bridge arm is turned on, while “0” indicates that the lower bridge arm is turned on. For
example, when the A and D two–phase upper bridge arms and the remaining four–phase
lower bridge arms are turned on, the corresponding binary number is 001001, which is
converted into a decimal number of 9. The latter is space voltage vector 9 in Figure 7.



Energies 2022, 15, 6350 6 of 19

Energies 2022, 15, x FOR PEER REVIEW 6 of 19 
 

 

bridge arm is turned on, while “0” indicates that the lower bridge arm is turned on. For 

example, when the A and D two–phase upper bridge arms and the remaining four–phase 

lower bridge arms are turned on, the corresponding binary number is 001001, which is 

converted into a decimal number of 9. The latter is space voltage vector 9 in Figure 7. 

30° 180° 210°0°

A-phase fundamental current

D-phase fundamental current

Angle

am
p

li
tu

d
e

 

Figure 6. Current phase difference between two sets of windings. 

18

43

25

1019

30

50

20

38

53 44

13

8

33

15

3
59

24 31

2
58

16

23

6

62

48

55

4
60

32 39
5

61

40

47

1

57

1714
51

28

34

21

46 49
12

35

29

42

27

11

26

22

54

52

36 37

45

41

9

β

α

 

53

25

2013

30

44

10

38

43 50

19

23

33

16

61
5

31 24
60

4

8
15

6

62

40

47

2
58

32 39
3 59

48

55

1

57

922
45

26

36

11

54 41
18

37

27

42
17

21

2928

12

14

46

42

34 35

51

49

y

x

 

(a) (b) 

Figure 7. Dual three-phase motor space voltage vector distribution diagram. (a) Space voltage vector 

diagram of the fundamental subspace. (b) Space voltage vector diagram of the harmonic subspace. 

A one–to–one correspondence exists between the 64 space voltage vectors in the fun-

damental and harmonic subspaces. The 12 outermost large vectors in the fundamental 

subspace correspond to the 12 small vectors in the harmonic subspace. Suppose that the 

angle between the 12 large vectors of the fundamental wave subspace and the α–axis is θ1 

and the angle between the corresponding vector and the x–axis in the harmonic subspace 

of this vector is θ2. Then, θ2 = 5θ1. For example, the angle between space voltage vector 9 

and the α−axis is 15° and the angle between vector 9 and the x–axis in the harmonic sub-

space is 75°, as shown in Figure 7. 

In traditional DTC, only one vector control motor is selected in each case, and it is 

mapped onto a small vector in the harmonic subspace. However, harmonic voltages 

caused by small vectors also generate large harmonic currents due to the small harmonic 

impedance in the harmonic subspace of a DTP–SynRM. The DTC of the DTP–SynRM in-

cludes modules, such as sector judgment, flux estimator, torque estimator, and switch ta-

ble design. The principle block diagram is depicted in Figure 8. 

Figure 6. Current phase difference between two sets of windings.

Energies 2022, 15, x FOR PEER REVIEW 6 of 19 
 

 

bridge arm is turned on, while “0” indicates that the lower bridge arm is turned on. For 

example, when the A and D two–phase upper bridge arms and the remaining four–phase 

lower bridge arms are turned on, the corresponding binary number is 001001, which is 

converted into a decimal number of 9. The latter is space voltage vector 9 in Figure 7. 

30° 180° 210°0°

A-phase fundamental current

D-phase fundamental current

Angle

am
p

li
tu

d
e

 

Figure 6. Current phase difference between two sets of windings. 

18

43

25

1019

30

50

20

38

53 44

13

8

33

15

3
59

24 31

2
58

16

23

6

62

48

55

4
60

32 39
5

61

40

47

1

57

1714
51

28

34

21

46 49
12

35

29

42

27

11

26

22

54

52

36 37

45

41

9

β

α

 

53

25

2013

30

44

10

38

43 50

19

23

33

16

61
5

31 24
60

4

8
15

6

62

40

47

2
58

32 39
3 59

48

55

1

57

922
45

26

36

11

54 41
18

37

27

42
17

21

2928

12

14

46

42

34 35

51

49

y

x

 

(a) (b) 

Figure 7. Dual three-phase motor space voltage vector distribution diagram. (a) Space voltage vector 

diagram of the fundamental subspace. (b) Space voltage vector diagram of the harmonic subspace. 

A one–to–one correspondence exists between the 64 space voltage vectors in the fun-

damental and harmonic subspaces. The 12 outermost large vectors in the fundamental 

subspace correspond to the 12 small vectors in the harmonic subspace. Suppose that the 

angle between the 12 large vectors of the fundamental wave subspace and the α–axis is θ1 

and the angle between the corresponding vector and the x–axis in the harmonic subspace 

of this vector is θ2. Then, θ2 = 5θ1. For example, the angle between space voltage vector 9 

and the α−axis is 15° and the angle between vector 9 and the x–axis in the harmonic sub-

space is 75°, as shown in Figure 7. 

In traditional DTC, only one vector control motor is selected in each case, and it is 

mapped onto a small vector in the harmonic subspace. However, harmonic voltages 

caused by small vectors also generate large harmonic currents due to the small harmonic 

impedance in the harmonic subspace of a DTP–SynRM. The DTC of the DTP–SynRM in-

cludes modules, such as sector judgment, flux estimator, torque estimator, and switch ta-

ble design. The principle block diagram is depicted in Figure 8. 

Figure 7. Dual three–phase motor space voltage vector distribution diagram. (a) Space voltage vector
diagram of the fundamental subspace. (b) Space voltage vector diagram of the harmonic subspace.

A one–to–one correspondence exists between the 64 space voltage vectors in the
fundamental and harmonic subspaces. The 12 outermost large vectors in the fundamental
subspace correspond to the 12 small vectors in the harmonic subspace. Suppose that the
angle between the 12 large vectors of the fundamental wave subspace and the α–axis is θ1
and the angle between the corresponding vector and the x–axis in the harmonic subspace of
this vector is θ2. Then, θ2 = 5θ1. For example, the angle between space voltage vector 9 and
the α–axis is 15◦ and the angle between vector 9 and the x–axis in the harmonic subspace
is 75◦, as shown in Figure 7.

In traditional DTC, only one vector control motor is selected in each case, and it
is mapped onto a small vector in the harmonic subspace. However, harmonic voltages
caused by small vectors also generate large harmonic currents due to the small harmonic
impedance in the harmonic subspace of a DTP–SynRM. The DTC of the DTP–SynRM
includes modules, such as sector judgment, flux estimator, torque estimator, and switch
table design. The principle block diagram is depicted in Figure 8.
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In this paper, 12 large vectors are divided into 12 sectors, as shown in Figure 9. This
method can keep the control effect of torque and flux linkage unchanged for each vector in
one sector.
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Figure 9. Sector division.

The stator flux linkage is calculated by the back EMF integral method, which can be
expressed as {

ψsα =
∫
(Usα − Risα) dt

ψsβ =
∫
(Usβ − Risβ) dt (6)

|ψs| =
√

ψ2
sα + ψ2

sβ (7)

ϕ = arctan(ψsβ/ψsα) (8)

The torque is calculated as

Te = np(ψsαiβ − ψsβiα) (9)

where t is sampling period, Usα and Usβ are the stator voltage components of the α–β
subspace, isα and isβ are the stator current components of the α–β subspace, ψs is flux
observation amplitude, ϕ is stator flux position angle, ψsα and ψsβ are flux linkage estimate,
iα and iβ are current estimate, and np is the pole–pairs of motor.

After the difference between the estimated flux and torque and the given value, the
hysteresis comparator is input to obtain the torque state value DT and the flux state value
DF. Traditional DTC selects an appropriate large vector through three variables: state value
DT, state value DF and sector number n. The advantage of using a large vector is that the
DC voltage is highly utilized and the amplitude of the harmonic vector mapped to the
harmonic subspace is small.
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Presenting sector 1 as an example, counterclockwise is selected as the positive direction
of motor rotation, and the direction outside the circle is the positive direction of flux increase.
In sector 1, if the torque and flux increase at the same time, the space voltage vectors that
can be selected are V9, V11 and V27, as shown in Figure 10.
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Figure 10. Space voltage vector selection of sector 1.

The difference between the three vectors is that the response speed is different. The
smaller the projection length of the vector on the flux axis, the faster the response to the
torque and the slower the response to the flux. In Figure 10, vector V27 has the fastest
response to torque and the slowest response to flux linkage, and V9 has the slowest response
to torque and the fastest response to flux linkage. The response speed of V11 is the middle
value. To increase torque and reduce flux linkage, V26, V18 and V22 space voltage vectors
can be selected, and the selection method for other cases is similar.

The control effect of space voltage vector on torque and flux linkage in 12 sectors is
analyzed. Taking the fastest torque response as the selection standard of the same function
vector, the traditional switch table shown in Table 1 can be obtained. The disadvantage
of the switch table is that there are harmonic vectors in the harmonic subspace, and the
motor has large 5th and 7th harmonics during operation, which increases the loss of the
fly–wheel battery.

Table 1. Traditional DTC switch table.

n S1 S2 S3 S4 S5 S6

DF = 1
DT = 1 V27 V26 V18 V22 V54 V52

DT = 0 V37 V45 V41 V9 V11 V27

DF = 0
DT = 1 V26 V18 V22 V54 V52 V36

DT = 0 V36 V37 V45 V41 V9 V11

n S7 S8 S9 S10 S11 S12

DF = 1
DT = 1 V36 V37 V45 V41 V9 V11

DT = 0 V26 V18 V22 V54 V52 V36

DF = 0
DT = 1 V37 V45 V41 V9 V11 V27

DT = 0 V27 V26 V18 V22 V54 V52

4. Improved DTC

The difference between the improved DTC and traditional DTC is that the control
requirements in the fundamental and harmonic subspaces must be considered simultane-
ously. The current harmonics in improved DTC can be suppressed after the vector space is
decoupled and when the selected space voltage vector can meet the torque and flux linkage
control requirements in the fundamental wave subspace and can cancel each other after
being mapped onto the harmonic subspace.

Presenting vectors V41, V9, and V11 as examples, the mapping of three adjacent large
vectors in the fundamental wave subspace onto the harmonic subspace is illustrated in
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Figure 11. The mappings of vectors V41, V9, and V11 onto the harmonic subspace are v41,
v9, and v11, respectively. v11 leads v9 by 150◦, and v41 lags v9 by 150◦. The components of
the harmonic subspace can be cancelled by controlling the action time of the three vectors
within one control period Ts.
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monic subspace.

Suppose that the action time of vector V9 is Tmid, and that of vectors V41 and V11 is Tsid.
In accordance with the trigonometric function relationship, the component of the harmonic
subspace is zero when (11) is satisfied. The action time of three adjacent vectors should
also satisfy.

Tsid = Tmid/
√

3 (10)

Tsid + Tmid + Tsid = Ts (11)

Thus, the action time of three adjacent vectors is

Tmid =
(√

3/
(

2 +
√

3
))

Ts =
(

2
√

3− 3
)

Ts (12)

Tsid =
(

1/
(

2 +
√

3
))

Ts =
(

2−
√

3
)

Ts (13)

The low–harmonic control vectors of M1–M12 can be obtained, as shown in Table 2, by
combining three adjacent vectors in accordance with the preceding method.

Table 2. Low–harmonic vector synthesis table.

Large
Vector Three Vectors Used in Synthesis Low–Harmonic Vector

V9 V41 V9 V11 M1
V11 V9 V11 V27 M2
V27 V11 V27 V26 M3
V26 V27 V26 V18 M4
V18 V26 V18 V22 M5
V22 V18 V22 V54 M6
V54 V22 V54 V52 M7
V52 V54 V52 V36 M8
V36 V52 V36 V37 M9
V67 V36 V37 V45 M10
V45 V37 V45 V41 M11
V41 V45 V41 V9 M12

In accordance with the torque state value DT, the flux link state value DF, and the
sector value n, the improved DTC selects a low–harmonic vector from the 12 low–harmonic
vectors, which can control the motor without generating harmonics. Sector 1 is presented
as an example; when the torque and flux linkage need to be increased at the same time,
the optional vectors are M1, M2 and M3, as shown in Figure 12. In traditional DTC, the
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fastest torque response is taken as the standard, and the vector M3 is selected. Vector M3 is
composed of vectors V11, V27 and V26. Vector V26 increases the torque but reduces the flux
linkage, which cannot fully meet the control requirements.
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Therefore, the improved DTC proposed in this paper takes the fast torque response
as the standard, and M2 is selected. Vector M2 is composed of vectors V9, V11 and V27, all
of which can fully meet the control requirements of torque and flux linkage. This method
makes full use of the vectors with the same function but different response speed, which
can not only meet the control requirements of the motor, but also realize the suppression of
current harmonics. After analyzing all 12 sectors, the harmonic suppression switch table
shown in Table 3 can be obtained.

Table 3. Harmonic suppression switch table.

n S1 S2 S3 S4 S5 S6

DF = 1
DT = 1 M2 M3 M4 M5 M6 M7

DT = 0 M11 M12 M1 M2 M3 M4

DF = 0
DT = 1 M5 M6 M7 M8 M9 M10

DT = 0 M8 M9 M10 M11 M12 M1

n S7 S8 S9 S10 S11 S12

DF = 1
DT = 1 M8 M9 M10 M11 M12 M1

DT = 0 M5 M6 M7 M8 M9 M10

DF = 0
DT = 1 M11 M12 M1 M2 M3 M4

DT = 0 M2 M3 M4 M5 M6 M7

Although the harmonic suppression switch table has been determined, the method of
low–harmonic vector synthesis can also be optimized. The switching sequence diagram of
each phase–switching device when synthesizing low–harmonic vectors can be drawn on
the basis of Table 2.

M1 is presented as an example, as shown in Figure 13. To reduce harmonics as much as
possible, simultaneous changes in the switching states of the two phases should be avoided.
Thus, partial vector action time is divided into two halves to make the output waveform
symmetrical. The switching diagram of the switching sequence process of replacing V9
with M1 synthesized by V41, V9, and V11 is presented in Figure 13. The output of this
scheme is a five–segment PWM wave, which is easier to implement by hardware than the
seven–segment PWM. The 11 other low–harmonic vectors can also obtain the optimization
scheme of switching frequency reduction.
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Figure 13. Switch sequence during M1 synthesis.

To reduce the switching frequency of the device, the switching sequence in Figure 13
is adjusted to obtain the switching sequence shown in Figure 14. In the switching sequence
of Figure 14, the switching frequency of phase B is reduced to half of the original.
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Figure 14. Switching sequence when M1 reduces switching frequency synthesis.

The switching sequence in Figure 14 uses the vector sequence V41, V9 and V11 when
synthesizing M1. V41 has the slowest torque response speed, which will lead to the
reduction of the torque response speed of the synthesized M1. Adjusting the vector order
again yields the switch sequence synthesis table, as shown in Figure 15. In Figure 15, the
vector sequence is V11, V9 and V41. V11 has the fastest response to torque, and the resultant
M1 torque response speed remains unchanged. This avoids sacrificing torque performance
to suppress harmonics. The 11 other low–harmonic vectors can also obtain the optimization
scheme with constant torque response speed.

Therefore, two optimization schemes are proposed in this paper, namely the switching
frequency reduction scheme and the torque response invariant scheme.
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Figure 15. Switching sequence when M1 is synthesized with constant torque response speed.

5. Simulation

To verify the effectiveness of the harmonic suppression strategy proposed in this study,
a DTP–SynRM control system was built on the MATLAB platform. The parameters of the
motor used in the simulation are shown in Table 4.

Table 4. Motor parameter table.

Motor Parameters Numerical Value

Inverter DC link voltage 300 V
Fundamental frequency 100 Hz

Number of pole pairs 2
d–axis inductance 0.0276 mH
q–axis inductance 0.014 mH

Stator resistance (per phase) 0.2 Ω
Moment of inertia 0.0486 kg·m2

Base speed 3000 rpm

The voltage vector simulation of the DTC system of the DTP–SynRM is illustrated in
Figure 16. After adopting the low–harmonic vector, the density of the voltage vector is
three times that of the original, which verifies the feasibility of three–vector synthesis of the
low–harmonic vector.
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The six–phase current simulation of the DTP–SynRM’s DTC system is depicted in
Figure 17. After adopting a low–harmonic vector, the current becomes closer to the sine wave.
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Figure 17. Dual three–phase current simulation diagram. (a) Traditional DTC current simulation
diagram. (b) Low–harmonic DTC current simulation diagram.

In the simulation, the given speed is 3000 r/min, the fundamental frequency of the
motor is 100 Hz, and the phase current fast Fourier transform (FFT) analysis results are
presented in Figure 16. After replacing the large vector with a low–harmonic vector, the
current harmonic content decreases from 36.6% to 4.49%, as shown in Figure 18. The
harmonic suppression effect is remarkable.

The torque response simulation of the direct torque control of the dual–phase syn-
chronous reluctance motor is shown in Figure 19. Figure 19a is a comparison diagram
of torque responses T1 and T2 when the motor is controlled by a large vector and low–
harmonic vector. Under the same PI parameters, there is obvious overshoot in the torque
response T2 using the low–harmonic vector. When the given torque changes suddenly
in 0.1 s and 1 s, the dynamic response performance of the torque decreases. Figure 19b
is a comparison diagram of torque response T2 and T3 when the motor is controlled by
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a low–harmonic vector and improved low–harmonic vector. Improved low–harmonic
vectors optimize vector synthesis order. The torque response T3 has no obvious overshoot
at 0.1 s and 1 s, and the dynamic response performance of the torque recovers. Figure 19c
is a comparison diagram of torque response T1 and T3 when using a large vector and
improved low–harmonic vector control motor. When the given torque changes suddenly at
0.1 s and 1 s, the overshoot of torque response T1 and T3 is not obvious, and the dynamic
response is the same. This proves that the torque dynamic response performance can
be restored to the same as the large vector by optimizing the sequence of low–harmonic
vector synthesis.
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Figure 19. Torque response simulation diagram. (a) Comparison of large vector torque response and
low–harmonic vector torque response. (b) Comparison of low–harmonic vector torque response and
improved low–harmonic vector torque response. (c) Comparison of large vector torque response and
improved low harmonic vector torque response.
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6. Experimental Verification

In order to verify the effectiveness of the harmonic suppression strategy, an exper-
imental platform for DTP–SynRM, as shown in Figure 20, was built. The experimental
platform consists of a host computer, dual three–phase synchronous reluctance motor, dual
three–phase drive, DC power supply, oscilloscope, and RTU–BOX digital controller.
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Figure 20. DTP–SynRM experimental platform.

Figures 21 and 22 show the current waveforms of traditional DTC and improved
DTC. The traditional DTC applied to the DTP–SynRM has obvious distortion of the current
waveform, which indicates that the current contains more harmonics. After FFT analysis, it
can be seen that the harmonic content is 28.2%. In the improved direct torque control, the
current waveform is more sine wave, and the harmonic content is reduced to 2.6%. The
effectiveness of the harmonic suppression strategy can be proved by comparison.
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diagram. (b) Traditional DTC current FFT analysis diagram.
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7. Conclusions

DTP–SynRM low–harmonic DTC based on three vector synthesis retains the character-
istics of a simple direct torque control structure. It makes full use of three adjacent torque
and voltage vectors with the same flux control effect, which has the least dependence on
motor parameters. The low–harmonic vector is synthesized to suppress harmonics, and
it exhibits the advantages of small calculation amount, easy implementation, and good
harmonic suppression effect.

On this basis, the vector sequence in low–harmonic vector synthesis is optimized,
and two optimization schemes are proposed: switching frequency reduction type and
torque response unchanged type. These two schemes are suitable for high–speed and
high–performance control of flywheel batteries, respectively. Finally, the effectiveness of
the harmonic suppression strategy is verified by comparative experiments.
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