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Abstract: This paper carries out a study on the numerical simulation of borehole instability based
on the disturbance state concept. By introducing the disturbance damage factor into the classical
Mohr–Coulomb yield criterion, we establish a finite element hydro-mechanical coupling model of
borehole instability and program the relevant field variable by considering elastic–plastic deformation
in borehole instability, the distribution of the damage disturbance area, the variation of porosity and
permeability with the disturbance damage factor, etc. Numerical simulation shows that the borehole
stability is related to the action time of drilling fluid on the wellbore, stress anisotropy, the internal
friction angle of rock, and borehole pressure. A higher horizontal stress difference helps suppress
shear instability, and a higher rock internal friction angle enhances shear failure around the borehole
along the maximum horizontal principal stress. When considering the effect of the internal friction
angle of rock, the rock permeability, disturbance damage factor, and equivalent plastic strain show
fluctuation characteristics. Under the high internal friction angle of rock, a strong equivalent plastic
strain area and disturbance damage area occur in the direction of the maximum horizontal principal
stress. Their cloud picture shows the mantis shape, where the bifurcation corresponds to the whiskers
of the shear failure area in borehole instability. This study provides a theoretical basis for solving the
problem of borehole instability during drilling engineering.

Keywords: borehole stability; disturbance state concept; elastic–plastic deformation; finite element
method; numerical simulation

1. Introduction

In the oil and gas industry, 50–80% of exploration and development costs are spent on
drilling. The downhole accidents such as wellbore shrinkage, sticking, formation collapse,
and leakage caused by borehole instability lead to an increase in the drilling cycle, the
damage of downhole equipment, and an increase in the cost, which has restricted oil
and gas exploration and development [1–3]. The core of high-quality, safe, efficient, and
low-cost drilling is to evaluate the downhole surrounding rock environment, study the
mechanism of borehole instability, and control the borehole instability, and it is of great
theoretical and practical significance [4–6].

The disturbance state concept (DSC) was proposed by Desai in 1974 in the United
States [7], and a relatively complete theoretical system was formed. The DSC has been
applied in metal, welding material, soil, rock, oil sand, concrete, and electronic packaging
materials. Research on the DSC started from the material mechanical response, hierarchical
single surface model, and numerical simulation method. In 1992, Desai et al. established a
DSC-based unified constitutive model for study on the static behavior of rock joints and
interfaces [8]. In 1995, Katti et al. established a DSC-based clay constitutive model for
the prediction of the response of stress–strain and pore pressure of undrained saturated
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clay under cyclic loading, as well as the response of soil under earthquake [9]. Desai et al.
introduced the viscoplastic constitutive relation into the DSC to describe the response of
the material in the relatively intact state [10]. In 1996, Desai et al. established a constitutive
model based on stress–strain and non-destructive behavior and used DSC to describe the
crack density [11]. In 1998, Desai et al. used the DSC-based numerical simulation method
to establish the governing equation, disturbance function, and finite element equation of
the relatively complete state and fully adjusted state [12]. In 1996, Pal integrated DSC and
computer methods to describe the mechanical behavior of the solid and contact face [13].
In 2016, Fan et al. established a general compression model of metal-rich clay based on
the general DSC compression model [14]. In 2017, Ouria et al. used the DSC function to
describe the coefficient of compressibility of structural soil [15]. In 2018, Ghazavi Baghini
et al. applied DSC to simulate the behavior of the pile under the axial load [16].

In China, some research progress has been made on DSC since 2000. Wu et al. applied
the DSC to establish the nonlinear constitutive model and elastic–plastic constitutive model
of rock [17]. Zheng et al. developed the method of describing the triaxial compression
response of rock and the stress anisotropic response of soil based on DSC [18] and proposed
a evolution equation of the disturbance factor through a mesoscopic analysis of the DSC
established by the hardening model [19]. Zhang et al. established a creepage model of
structural soft soil based on DSC [20]. Fu et al. proposed two methods of disturbance
factor evolution based on the conventional triaxial test curve and the volumetric strain
threshold, and the limit state of deviator strain energy [21]. Yang et al. applied the
DSC hardening parameters to establish a structural clay boundary surface model [22].
Huang et al. established a creepage disturbance factor model with time as an independent
variable [23]. Zou et al. established a stress–strain model of hydrated soil with the DSC
method to describe the process of the failure of the cement structure [24]. The application
of the DCS method in borehole stability is still not reported [25–27].

In previous mechanical theory, it was supposed that the cracks and damage inside
the borehole rock have no strength [27–40]. In the DCS, it is proposed that the cracks
and damaged parts are caused by the continuous merging and integration of defects in
the internal complex microstructure, and they still have a certain strength and reflect
softening and weakening caused by the propagation of crack and failure and hardening
and strengthening caused by continuous compression. The DCS reveals the mechanism of
the mechanical response of the borehole wall. Moreover, the DCS suggests that various
forces cause the disturbance of the material microstructure, and the self-adjustment of the
material internal microstructure includes relative motion that leads to damage, softening,
or compression hardening of the material and macroscopically obvious disturbance. A
description of disturbance through macroscopic observation provides the method of a cross-
scale analysis of the micro-response of internal complex microstructure and the macroscopic
behavior of yield failure in borehole rock. In the DCS, the material is considered as a random
mixture under the relatively intact stage and the fully adjusted state, which correspond
to the undamaged part and the damaged part in previous models. Material deformation
and failure caused by disturbance is a process of transition from a relatively intact state to a
fully adjusted state through self-adjustment and self-organization.

To overcome the defects and limits of conventional methods such as fracture mechanics,
damage mechanics, and configuration mechanics, we carried out a numerical simulation of
borehole instability based on the DSC by considering microscopic to macroscopic effects and
the multi-regional response of borehole rock. We revealed the mechanism and evolution of
borehole instability and developed a system for DSC-based study on borehole stability.

The paper is organized as follows. Section 2 introduces the mechanical theories and
methods of borehole stability, including the mechanical equilibrium equation, seepage equa-
tion, the theory of borehole instability in a disturbed state, and model verification. Section 3
introduces the finite element model for borehole instability, mesh division, boundary con-
ditions, and secondary development of subroutine. Section 4 discusses the numerical
simulation results and analyzes the effects of action time of drilling fluid on the wellbore;
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stress anisotropy; internal friction angle; and borehole pressure on the equivalent plas-
tic strain, permeability, borehole wall stress, and disturbance damage factor. The main
conclusions of this study are summarized in the last section.

2. Theory and Method
2.1. Mechanical Equilibrium Equation

According to rock mechanics, the mechanical equilibrium equation of rock borehole
stability is expressed as [41–43]:

σij,j + Xi = 0 (1)

where σij is the stress tensor component; Xi is the body force vector component.
Assuming small rock deformation, the geometric equation of borehole stability is

expressed as:

εij =
1
2
(
ui,j + uj,i

)
(2)

where εij is the strain tensor component; ui is the displacement vector component.
According to the effective stress of porous media, we have [44]:

σ′ij = σij − αpδij = Cijkl : εkl (3)

where Cijkl is the stiffness tensor component; p is the pore pressure; α is the Biot constant;
σ′ij is the effective stress tensor component; δij is the Kronecker symbol, which is 0 when
i = j and 0 when i 6= j.

2.2. Seepage Equations

According to the theory of seepage mechanics, the fluid seepage equation in the
borehole surrounding rock is expressed as [45]:

∇ ·
(

k
µ
∇p

)
=

1
M

∂p
∂t
− α

∂εv

∂t
(4)

where k is the permeability tensor; εV is the volumetric strain component; M is the Biot
modulus; and t is the time of the drilling fluid action on the borehole wall.

2.3. Theory of DSC Borehole Instability

The basic principle of the DSC is to consider the material under stress disturbance
as a random mixture in an undisturbed state and a completely disturbed state, and its
mechanical response is determined by a weighted average of the mechanical response
of the part in an undisturbed state and the part in a completely disturbed state. The
undisturbed state refers to that the material is at the idealized state or the undisturbed
and little disturbance state which is defined subjectively. For example, a stable material
with a hardening response is in an undisturbed state. The completely disturbed state
refers to the limit of the material under stress disturbance. According to the DSC principle,
the basic elements include the undisturbed state, the completely disturbed state, and the
disturbance function.

The establishment of the model requires a definition of the basic elements, where
the undisturbed state corresponds to the non-crack (non-damaged) part in the damage
mechanics constitutive model, and the completely disturbed state corresponds to the
damaged part; the disturbance function corresponds to the damage function. The crack
(damage) part has no strength; the completely disturbed state part has specific stress–strain
and strength; and the disturbance function characterizes softening (damage), strengthening,
and hardening.

Damage to the rock affects the effective shear strength parameters c∗ and φ∗, which
are the function of the disturbance state. Under the action of disturbance and pore pressure,
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the Mohr–Coulomb criterion of rock failure is expressed by effective stress, pore pressure,
and effective shear strength as follows:

τn

1− D
= c∗ +

σn + Dpw

1− D
tan φ∗ (5)

where D is the disturbance damage factor; τn is the shear stress; and pw is the pore pressure.
Assuming that the rock’s uniaxial compressive strength is σc and the uniaxial compres-

sive strength of the damaged rock is σ∗c = (1− D)σc, the relationship between the shear
strength and uniaxial compressive strength is expressed as

σ∗c = (1− D)σc = (1− D)
2c∗ cos φ∗

1− sin φ∗
(6)

By solving the above two equations, the effective shear strength parameters c∗ and
φ∗ are expressed as a function of stress σn and τn on the failure surface, the compressive
strength σc of non-damaged rock, and disturbance damage factor D.

When the equivalent plastic strain of a rock element exceeds the limit plastic strain
εpmax, plastic deformation and failure occur. The relationship between the disturbance
damage factor and the equivalent plastic strain satisfies the first-order exponential decay
function, and the equivalent plastic strain is normalized as:

D = A0e−εpn/a + B0 (7)

where εpn is the normalized equivalent plastic strain and the material parameter a is
a constant, which is equal to 0.2 in the simulation. A0 = 1

e−1/a−1
and B0 = − 1

e−1/a−1
.

The parameter a reflects the rate of the disturbance damage factor evolution with the
plastic strain.

In the hydro-mechanical coupling system, the solid phase is expressed as S = Un + Da,
where Un is the undamaged phase, Da is the damaged solid phase, and L is the liquid phase.
The Da component cannot support the shear load, and the Un component can support the
shear stress and hydrostatic pressure. Therefore, the load capacity of the rock is reduced,
i.e., damage has occurred. Assuming that the volume of the porous medium is V, the
damaged volume is expressed as:

VD = V(1− n)D (8)

where n is the rock porosity and D is the disturbance damage factor.
According to the cubic law of seepage [44], the rock permeability coefficient is evolved

as follows:
k = (1− D)kM + DkD

(
1 + ε

pF
v

)3
(9)

where kM and kD are the permeability coefficients of non-damaged and fractured rock,
respectively, and ε

pF
v is the plastic volumetric strain of the damage phase.

Assuming that no damage occurs during the elastic deformation of the rock, and
plastic deformation and damage occur simultaneously, ε

pF
v is expressed as:

ε
pF
v = Dε

p
v (10)

where ε
p
v is the plastic volume strain.

2.4. Model Validation

According to rock mechanics, there is an analytical solution for the stress field around
the borehole in the homogeneous formation. The analytical solution and finite element
solution of the stress field component Sxx are calculated by setting the bottom hole pressure
as 30 MPa, 40 MPa, and 50 MPa [41,45] (Table 1 and Figure 1a), and the solutions have
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a good agreement, which verifies the reliability of the finite element solution under the
hydro-mechanical coupling conditions.

Table 1. Input parameters.

Parameters Value

Porosity/decimal 0.05

Poisson’s ratio/decimal 0.25

Elastic modulus/GPa 34.5

Rock density/kg/m3 2500

Rock permeability/mD 0.001

Tensile strength/MPa 6.04

Uniaxial compressive strength/MPa 100

Internal friction angle of rock/◦ 33.7

Element damage evolution factor/decimal 2

Fluid density/kg/cm3 1020

Fluid compression coefficient/1/Pa 2 × 10−10

Fluid viscosity/mPa·s 1.8

Initial formation pressure/MPa 28

Maximum horizontal principal stress/MPa 40

Minimum horizontal principal stress/MPa 30

Borehole radius/m 0.1

Injection time/s 60
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Figure 1. Validation examples: (a) numerical solution and analytical solution of Sxx stress component;
(b) comparison of numerical simulation and experimental results.

To validate our DCS theory, we compare the numerical results with experimental
results, as shown in Figure 1b. The cohesive force is 30.7 MPa and the friction angle is
27◦. The bulk and shear modulus of rock sample are 22 GPa and 16 GPa, respectively. The
initial fracture toughness is equal to 12 MPa·mm0.5. We observe that the numerical results
have a good agreement with the experimental results, which indicate that our DSC model
are reliable.
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3. Finite Element Model

A 2D 20 m × 20 m finite element model is established, and a borehole with a radius
of 0.1m is drilled in the middle of the model (Figure 2). The model is meshed with
the structured grid of the plane strain quadrilateral elements (CPE4P) coupled with the
degree of freedom of the pore pressure. To simulate the stress concentration around the
borehole, the meshes near the borehole are refined locally. The mesh size of the directional
quadrilateral elements away from the borehole increases gradually. The finite element
model of borehole stability includes a total of 9024 nodes and 8928 CPE4P quadrilateral
elements. The basic input parameters are listed in Table 2.
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Table 2. Input parameters in finite element simulation of rock borehole instability (Base case).

Parameters Value

Rock elastic modulus/Pa 3 × 108

Poisson’s ratio/decimal 0.25

Rock permeability/m2 3 × 10−12

Porosity/decimal 0.16

Maximum horizontal principal stress/Pa 2.75 × 106

Minimum horizontal principal stress/Pa 1.75 × 106

Vertical stress/Pa 3.5 × 106

Rock cohesion/Pa 3 × 105

Internal friction angle of rock/◦ 18

Dilation angle of rock/◦ 0

Initial pore pressure/Pa 1.5 × 106

Material parameter a/decimal 0.2

This finite element simulation of borehole stability is completed in two steps. The
first is to establish the stress balance equation, which provides the initial stress field for the
DSC-based numerical simulation of borehole instability. The second is to carry out a finite
element simulation of borehole instability, and it is operated in a Soils hydro-mechanical



Energies 2022, 15, 6295 7 of 18

coupling solver in ABAQUS. The solver numerically discretizes the time derivative term
through an implicit algorithm. The time step is adaptive. The initial time step is 0.1 s. The
minimum and maximum are 1 × 10−9 s and 86,400 s. The elastic–plastic deformation of
the borehole wall rock is simulated by the Mohr–Coulomb plastic yield criterion. The rock
internal friction angle and the dilation angle of rock are listed in Table 1.

As shown in Figure 1, the boundary conditions of this finite element model are set as
follows: the normal displacement constraint of the outer boundary is 0, that is, the roller
boundary condition is satisfied, and pore pressure is applied to the outer boundary and the
inner boundary of the borehole. It is noted that the PORMECH keyword in the ABAQUS
input file converts pore pressure into surface force and applies it to the borehole wall to
simulate the force of the mud column pressure on the borehole wall.

Based on Section 2.3 of this paper, “Theory of Borehole Instability in Disturbed State”,
the secondary development is carried out on the commercial finite element software
ABAQUS platform, and the USDFLD subroutine is used to realize the porosity, permeability
coefficient, disturbance damage factor, and equivalent plastic stress (PEEQ). In this program,
the relationships of the permeability coefficient and equivalent plastic stress with the
disturbance damage factor are coded by using Equations (8) and (9). The evolution of other
parameters is used to obtain the instability process of rock borehole.

4. Results and Analysis

The effects of the action time of drilling fluid on the wellbore, stress anisotropy, internal
friction angle of rock, and borehole pressure on borehole stability are simulated with the
parameters listed in Table 1. In the cloud picture of equivalent plastic deformation and
disturbance damage factor, the horizontal direction is set as the x axis, and the vertical
direction is set as the y axis.

4.1. Effect of Action Time of Drilling Fluid on the Wellbore

During drilling, the borehole is filled with the drilling fluid, and the action time of the
drilling fluid on the wellbore affects the borehole instability. Here, the effects of the action
time of the drilling fluid on the wellbore (i.e., t = 0.675 s, t = 5.126 s, t = 667.2 s, and t = 2210
s) are simulated.

The cloud picture of equivalent plastic strain under different action times of drilling
fluid on the wellbore is shown in Figure 3. At the initial stage of the action time of the
drilling fluid, the equivalent plastic strain is concentrated around the borehole in the
maximum principal stress direction. As the drilling operation continues, the equivalent
plastic strain region gradually expands to the periphery of the borehole, showing a typical
symmetrical bifurcated feature, which is due to rock shear damage.

The cloud picture of the disturbance damage factor of borehole instability under
different action times of drilling fluid on the wellbore is shown in Figure 4. Initially,
the rock damage region is concentrated around the borehole in the maximum principal
stress direction. Then, the rock damage region develops as the equivalent plastic strain
region. The disturbance damage factor gradually expands to the periphery of the borehole
and shows symmetrical bifurcation characteristics, indicating the dominant mechanical
mechanism of borehole instability as a shear failure.

The rock permeability, disturbance damage factor, and equivalent plastic strain with
different distances from the borehole are shown in Figure 5. The node extraction path is
shown in Figure 5d. As the distance from the borehole increases, the rock permeability,
disturbance damage factor, and equivalent plastic strain value gradually decrease. As the
action time of drilling fluid on the wellbore increases, the rock permeability, disturbance
damage factor, and plastic strain area increase slightly. At a distance of 0.3 m from the
borehole, the permeability, disturbance damage factor, and plastic strain change abruptly,
indicating serious damage.
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Figure 5. Rock permeability, disturbance damage factor, and equivalent plastic strain with different
distances from the borehole.

4.2. Effect of Stress Anisotropy

The rock yield failure is related to its stress state, and the in situ stress affects borehole
stability during drilling. The effects of the horizontal stress difference of 0 MPa, 5 MPa,
7.5 MPa, and 10 MPa are simulated.

The cloud picture of equivalent plastic strain around the borehole under various
horizontal stress differences is shown in Figure 6. Under the isotropic stress (the stress
difference of 0 MPa), the equivalent plastic strain area occurs around the borehole and
shows the symmetrical distribution on the x axis and y axis. As the stress anisotropy is
enhanced, the equivalent plastic strain region grows in a narrow region in the x direction
and grows longer in the y direction. The shape of the equivalent plastic strain cloud picture
in Figure 6b,c is similar to the cockroach, and the bifurcation is similar to the whiskers.
Under the low stress anisotropy, there are multiple bifurcations on the equivalent plastic
strain region, indicating several shear failures. Under the stress anisotropy of 10 MPa, only
one bifurcation occurs in the y direction, shear failure is significantly reduced, and the
plastic strain zone occurs along the 45◦ direction. As the stress anisotropy increases, the
shear failure area is reduced.

The cloud picture of damage factor distribution around the borehole under different
stress anisotropy is shown in Figure 7. As the stress anisotropy is enhanced, the rock
damaged area in the x axis is narrowed and elongated in the y axis. As the stress anisotropy
reduces, the bifurcation increases. Under the strong stress anisotropy of the stress difference
of 10 MPa, only one bifurcation occurs in the y axis, and the shear damage zone is generated
along the 45◦ direction.
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Figure 7. Evolution of disturbance damage factor with different stress differences.
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The rock permeability, disturbance damage factor, and equivalent plastic strain with
the distance from the borehole during the borehole instability along the direction of the
nodal path are shown in Figure 8. As the distance from the borehole increases, the rock
permeability, disturbance damage factor, and plastic strain generally show a decreasing
trend. Under the low stress anisotropy, the permeability, disturbance damage factor, and
plastic strain show fluctuation characteristics, corresponding to multiple bifurcations in
Figure 7. As the shear damage increases, the damage region increases. Under the higher
stress anisotropy, the rock permeability, disturbance damage factor, and equivalent plastic
strain fluctuate at a relatively low level, which is consistent with the condition of one
bifurcation in the y direction in Figure 7d.
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different distance.

4.3. Effect of the Internal Friction Angle of Rock

The internal friction angle of rock is a key parameter in the Mohr–Coulomb yield
criterion for borehole stability. The effect of the internal friction angle of rock of 13◦, 18◦,
23◦, and 28◦ on borehole instability is simulated.

The cloud picture of the equivalent plastic strain around the borehole under different
internal friction angles of rock is shown in Figure 9. As the internal friction angle increases,
the equivalent plastic strain area increases, and the bifurcation is enhanced. Under the
internal friction angle of 28◦, a strong plastic strain area occurs in the y direction, a ‘mantis’
shape occurs (Figure 7b,c), and the bifurcation corresponds to the whisker, which is the
shear failure area. Under the low internal friction angle of rock, the equivalent plastic
strain area shows a chaotic feature, with a weak elongated plastic strain area along the
diagonal direction.

The cloud picture of the damage factor around the borehole under different internal
friction angles of rock is shown in Figure 10. As the internal friction angle, the damage
area increases, and the bifurcation characteristics are enhanced. Under the friction angle of
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28◦, an obvious bifurcation occurs in the y direction, and the damage degree approaches
1, indicating shear collapse failure around the borehole. Under the low internal frictional
angles, a narrow and long damaged area occurs in the sub-diagonal direction.
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The rock permeability, disturbance damage factor, and equivalent plastic strain along
the nodal path are shown in Figure 11. As the distance from the borehole increases, the rock
permeability, disturbance damage factor, and equivalent plastic strain show a decreasing
and fluctuation trend, indicating the heterogeneous damage features.
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Figure 11. Variation of rock permeability, damage factor, and equivalent plastic strain with
different distance.

4.4. Effect of Borehole Pressure

During drilling, the drilling fluid within the borehole generates hydrostatic pressure
on the borehole wall and causes compression stress on the borehole wall. The effect of
the borehole pressure of 3.5 MPa, 4 MPa, 4.5 MPa, and 5 MPa on borehole instability
is simulated.

The cloud picture of equivalent plastic strain around the borehole under drilling fluid
static pressure is shown in Figure 12. As the hydrostatic pressure increases, the equivalent
plastic strain area is enlarged, and the bifurcation characteristics are enhanced. When the
hydrostatic pressure is 5 MPa, several bifurcated plastic strain regions occur in the y axis.
Under the low borehole pressure, the bifurcation occurs only in the y direction, and shear
failure occurs along the y axis.

The cloud picture of the disturbance damage factor around the borehole under drilling
fluid column pressure is shown in Figure 13. As the drilling fluid static pressure increases,
the damaged area is enlarged, and the bifurcation characteristics are enhanced. When the
drilling fluid hydrostatic pressure is 5 MPa, multiple bifurcated damage zones occur in the
y direction, indicating that increasing the drilling fluid density promotes shear damage
near the borehole and borehole instability.
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The rock permeability, disturbance damage factor, and plastic strain area with distance
from the borehole along the direction of the node path are shown in Figure 14. As the
distance from the borehole increases, the permeability, disturbance damage factor, and
plastic strain gradually decrease. Under the low hydrostatic pressure of drilling fluid,
the rock permeability, disturbance damage factor, and equivalent plastic strain fluctuate
slightly, and the damage position is determined. Under the high borehole pressure, the
rock permeability, disturbance damage factor, and plastic strain area fluctuate significantly.
The degree of damage varies in different locations, corresponding to multiple bifurcation
positions on the cloud picture.
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Figure 14. Variation of rock permeability, damage factor, and equivalent plastic strain with
different distance.

5. Conclusions

Based on the DSC, we carried out a finite element hydro-mechanical coupling model
of borehole instability by introducing the disturbance factors into the Mohr–Coulomb
yield criterion and writing the subroutine for the field variables. The model considers
elastic–plastic deformation, the damage distribution area, and the variation of rock porosity
and permeability with the disturbance area in borehole instability. The following conclu-
sions can be drawn:

(1) The finite element numerical simulation results show that borehole stability is related
to the action time of drilling fluid on the wellbore, stress anisotropy, internal friction
angle of rock, and borehole pressure. Excessive drilling fluid density and long action
time between the drilling fluid and the borehole should be avoided. Under the small
stress anisotropy, shear failure occurs often around the borehole. A high horizontal
stress difference restricts shear instability around the borehole. The high internal
friction angle of rock enhances shear failure around the borehole in the direction of
the maximum horizontal principal stress.
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(2) The equivalent plastic strain zone has a good agreement with the borehole instability
disturbance damage zone, and they show the same characteristics. A high internal
friction angle of rock, low stress anisotropy, and long action time of the drilling
fluid on the wellbore enlarge the plastic zone and disturbance damage zone around
the borehole.

(3) The model of borehole stability considers the variation of rock permeability, rock
porosity, and equivalent plastic strain with the disturbance damage factor. Under
the large borehole pressure and the low stress anisotropy, the rock permeability,
the disturbance damage factor, and the equivalent plastic strain show fluctuation
characteristics, which is due to the different damage magnitudes. When considering
the internal friction angle of rock, the rock permeability, disturbance damage factor,
and equivalent plastic strain area show fluctuation characteristics.

(4) Under the large internal friction angle of rock, a strong equivalent plastic strain zone
and a disturbance damage zone occur in the direction of the maximum horizontal
principal stress, and they correspond to the mantis shape. The bifurcation corresponds
to the whisker, which is the shear failure area. Under the low internal friction angle
of rock, the equivalent plastic strain and disturbance damage region show chaotic
features, and an elongated equivalent plastic strain region occurs along the diagonal.
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