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Abstract: A solid oxide fuel cell (SOFC) is an innovative power generation system that is green,
efficient, and promising for a wide range of applications. The prediction and evaluation of the
operation state of a solid oxide fuel cell system is of great significance for the stable and long-term
operation of the power generation system. Prognostics and Health Management (PHM) technology
is widely used to perform preventive and predictive maintenance on equipment. Unlike prediction
based on the SOFC mechanistic model, the combination of PHM and deep learning has shown wide
application prospects. Therefore, this study first obtains an experimental dataset through short-term
degradation experiments of a 1 kW SOFC system, and then proposes an encoder-decoder RNN-based
SOFC state prediction model. Based on the experimental dataset, the model can accurately predict the
voltage variation of the SOFC system. The prediction results of the four different prediction models
developed are compared and analyzed, namely, long short-term memory (LSTM), gated recurrent
unit (GRU), encoder–decoder LSTM, and encoder–decoder GRU. The results show that for the SOFC
test set, the mean square error of encoder–decoder LSTM and encoder–decoder GRU are 0.015121
and 0.014966, respectively, whereas the corresponding error results of LSTM and GRU are 0.017050
and 0.017456, respectively. The encoder–decoder RNN model displays high prediction precision,
which proves that it can improve the accuracy of prediction, which is expected to be combined with
control strategies and further help the implementation of PHM in fuel cells.

Keywords: solid oxide fuel cell; recurrent neural network; long short-term memory; gated recurrent
unit; encoder–decoder; state prediction

1. Introduction

Resources and environment are the foundation for the survival and development of
human society. As reserves of fossil fuels continue to decline and the environmental damage
caused by their use increases, studies to develop alternative fuels to avoid these issues are
on the rise. Efficient and green renewable energy products and technologies are especially
crucial to achieve all-round sustainable development. For that matter, electrochemical
cells are a prospective option to deal with the lack of fossil fuel sources and their negative
impact on the earth. SOFC, which can transform chemical energy directly into electrical
energy with a continuous supply of air and renewable energy as well as non-renewable fuel
and has the advantages of low emissions, low noise, high co-generation efficiency, no me-
chanical movement, and high power density compared to conventional energy-conversion
devices [1–6], has widespread applications in many industries, such as new-energy vehicles,
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military, and uninterruptible power supply [7]. However, currently the high cost and low
durability of SOFC systems have hindered their large-scale commercialization.

The current research directions and perspectives on SOFC are very diverse, and
Huang and Turan [8] analyzed the effects of methane, carbon monoxide, and hydrogen on
a pressurized SOFC/GT system from an energy perspective and also proposed an external
reforming fuel treatment. The results show that the electrical efficiency is the highest with
hydrogen as fuel and the lowest with carbon monoxide. Others have conducted studies
from the perspective of an SOFC plant layout. Yang et al. [9] compared internally and
externally reformed SOFC/GT systems and showed that internal reforming provides better
operational performance. From an economic point of view, Hou et al. [10] analyzed a
SOFC/GT system with methanol as an energy source and determined a power generation
efficiency of 59.7% and an annual profit of CNY 517,000.

Prognostics and health management (PHM) is a computation-based paradigm that
addresses in detail the physical knowledge, information, and data for the operation and
maintenance of structures, systems, and components [11]. To ensure long-term, efficient
operation of fuel cells, it is necessary to apply prognostics and health management (PHM)
technology to the SOFC system. A fuel cell’s state of health (SoH) is defined as the ratio of
the actual value to the nominal value of the performance parameter during the use of the
fuel cell, and SoH is often expressed in terms of internal resistance, capacitance, voltage,
etc. The remaining useful life (RUL) of an SOFC is the time it will take for its equipment
to decay from the current moment to end-of-life. The indicator of stack failure is that the
stack voltage is less than 70% of the rated voltage. PHM is able to predict the SoH and
estimate RUL of an SOFC system without the need to run the actual system for a long time.
Prediction and evaluation of the SOFC system status is the base of PHM, which can be
combined with control strategies and help to decrease the maintenance expenses of the
equipment [12]. In the prognostic session, the RUL of the SOFC system can be predicted by
combining various prediction methods. RUL as an important indication of the degree of
degradation of the SOFC system can be used as input to the SOFC management module
and for subsequent control and decision-making. The purpose of the decision-making
after prediction is to maximize the lifetime and improve the durability of the SOFC system.
Therefore, the prediction and state evaluation of an SOFC system by existing experimental
data can achieve the effect of reducing the experimental time, lowering the cost, and
delaying the degradation to a certain extent.

The reason for state prediction of SOFC systems is that some internal degradations
and failures can affect the system output as well as the RUL. SOFC system degradation
is mainly due to stack performance degradation and balance of plant (BOP) component
failure. The degradation mechanisms of SOFC stacks are roughly divided into two types:
microstructural changes and physical deformation [13]. The attenuation mechanisms of
microstructural changes mainly involve electrode poisoning (both cathode and anode),
oxidation of the cathode linker, carbon deposition in anodes, nickel coarsening and cathode
particle coarsening diffusion, etc. [14–18]. Physical deformation can cause an addition to
the ohmic resistance of the cell, which is mainly studied from the perspective of different
coefficients of thermal expansion of different materials, temperature gradients inside the
stack, and mechanical stresses [19]. Failure of BOP components includes air leaks, fuel leaks,
reformer degradation, fuel heat-exchanger failure, blower failure, combustion chamber
failure, and system oscillation [20].

Up to now, degradation prediction for fuel cells has mainly focused on proton exchange
membrane fuel cells (PEMFCs) [21–26]. Currently some predictions have been made for
SOFC systems, but mainly for the RUL of SOFC stacks. Generally speaking, mainstream
forecasting approaches are divided into three types: model-based, data-driven, and hybrid
approaches. The model-based prediction method is based on a mechanistic model to
make predictions for SOFC systems. The key to this method is to have a sufficiently
accurate mechanistic model so simulations can be performed without having to collect
large amounts of experimental data. However, due to the complicated structure of fuel
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cells and the quite complex operational phenomena, including inherent three-dimensional
heat transfer, transportation of species, and charge, multiphase flow, and electrochemical
reactions, it is very hard to build an accurate model [27,28].

The data-driven method is often referred to as the black-box model. It overcomes the
shortcomings of mechanistic models by eliminating the need to build complex mathematical
models through partial differential equations and instead learns directly from large amounts
of experimental data to make predictions. The data-driven prediction model tends to have
better accuracy and portability when sufficient data are available for learning. However, it
also suffers from two shortcomings: First, the model requires a large amount of data for
training, i.e., the data-source problem, and second, it cannot explain its internal mechanism,
i.e., how the output is obtained from the input. The data-driven approach is often based
on statistical techniques and machine learning and deep learning as a framework for
converting monitoring data into corresponding predictive model parameters. The artificial
neural network-driven simulator constructed by Arriagada et al. [29] can predict different
operational parameters of a fuel cell. Wu et al. [30] constructed an Elman neural network-
based state prediction model to predict future voltage of SOFC stacks. Song et al. [31]
used a BP neural network, support vector machine, and random forest to predict the
stack performance.

The hybrid approach combines the advantages of above two methods. Wu et al. [32]
developed a hybrid model for predicting the RUL of an SOFC. This hybrid model consists
of a hidden semi-Markov model and an empirical model, which retains the advantages
of both models and avoids their disadvantages as much as possible. Dolenc et al. [33]
proposed a comprehensive method for SoH estimation on the basis of stack ohmic’s area-
specific resistance (ASR). This method included an unscented Kalman filter, linear Kalman
filter, and Monte Carlo simulation.

The current state prediction for an SOFC is focused on the prediction of output
voltage, because the SOFC system, as a power generation unit, is the one whose electrical
characteristics are of most concern. The output voltage is time-series data, so it cannot
be processed by an ordinary neural network. The encoder–decoder model is widely
used in the processing of time-series data. The encoder can abstract the input time-series
data into a background variable, which contains the information of the input sequence.
The decoder predicts the output from the background variable and the prior sequence
information. A recurrent neural network (RNN) is a class of neural networks that takes
sequence data as input and has chain-connected recurrent nodes. It is based on the idea
that “human cognition is based on past experience and memory,” and it memorizes the
forward information of the sequence and uses it in the calculation of the current output, so
it is very suitable for the prediction of time-series data. Therefore, in this paper, both the
encoder and decoder use RNN structured networks.

In this paper, an encoder–decoder RNN prediction model based on deep learning
is proposed for predicting the output voltage variation of an SOFC system. The model
supports multiple sequences of feature input and multi-step prediction output, and the
proposed new model increases the prediction accuracy in contrast to the common RNN
model. First, the raw data are obtained through an SOFC system experiment. Then, the
original SOFC-degraded experimental data are processed (including feature extraction,
normalization, and reconstruction) to construct a suitable dataset for the model. Next, four
prediction models based on RNN network architecture (original LSTM model, encoder–
decoder LSTM model, original GRU model, encoder–decoder GRU model) are constructed.
Finally, these models are trained and tested by applying the processed datasets, and selected
evaluation metrics are used to judge prediction capability of these models.

2. Experimental Scheme and Data Analysis
2.1. System Structure

This experiment uses a 1 kW SOFC power generation system from the Fuel Cell R&D
Center of Huazhong University of Science and Technology [34]. As shown in Figure 1,



Energies 2022, 15, 6294 4 of 20

the hotbox includes high-temperature components such as heat exchangers, reformers,
and combustion chambers. The cold box includes low-temperature components such as
water tanks, desulfurizers, blowers, etc. The fuel selection for SOFC power generation
systems is characterized by diversity. In this experiment methane was used, which is also
relevant for the following BOP components. A general SOFC system must have a BOP
component in addition to the most critical stack. The SOFC stack is composed of multiple
single-cell stacks, and the BOP components mainly include the reformer, heat exchanger,
exhaust burner, blower, air-storage tank, and water-cooling tank, as shown in Figure 2. The
following electrochemical reactions occur in the single cell to convert chemical energy into
electrical energy.

H2 + 1/2O2 → H2O + heat + electricity (1)

CO + 1/2O2 → CO2 + heat + electricity (2)
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The stack used in this experiment consists of 27 cells. Each cell has an area of
15× 15 cm2, and the effective working area is 13 × 13 cm2. The reactants are natural
gas at 99.5% methane concentration and deionized water. It is worth mentioning that the
reformer used in this experiment consists of a reformer chamber and burner chamber. The
former is used to generate hydrogen from the reforming reaction and the latter is used to
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heat the methane combustion, so no external heat source is required. The water-to-carbon
ratio of the system was limited to 1.5~3.0. Too low of a ratio will lead to carbon deposi-
tion, and too high will lead to unstable thermoelectric properties. At this ratio, hydrogen
production was most efficient. The workflow of the whole system is as follows:
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Figure 2. SOFC system structure.

In the fuel channel, the natural gas is divided into two parts. One part of the methane
gas is desulfurized and mixed with deionized water to enter the reforming chamber for the
reforming reaction. The other part of the gas is mixed with air and burned directly in the
combustion chamber to generate heat to raise the temperature of the reforming chamber,
which facilitates the positive reforming reaction. The gas from the reforming reaction is
preheated by a co-flow heat exchanger and then enters the SOFC stack anode.

In the air channel, the air supplied by the blower enters the reactor cathode after
preheating by the cross-flow heat exchanger and after the co-flow heat exchanger. The inlet
temperature difference between the cathode (air) and the anode (fuel) of the stack is the
difference in gas inlet temperature, which can cause deformation and rupture inside the
stack. Among them, the co-flow heat exchanger is set to reduce the temperature difference
of the inlet gas of the stack and ensure the safety of the temperature gradient of the stack.

The electrochemical reaction takes place inside the stack, converting chemical energy
into electricity and heat. The exhaust gas produced by the reaction exists with a certain
amount of flammable gas, which is mixed and burned in the combustion chamber to release
heat and raise the temperature of the burner while reducing the emission of the harmful
gas carbon monoxide. The high-temperature exhaust from the burner preheats the air in
the heat exchanger. The preheated air is thermally balanced with the fuel gas to heat the
fuel gas to 500–600 ◦C, thus improving the operating efficiency of the system.

2.2. Experimental Scheme and Data Analysis

From several SOFC system experiments, the one with the highest output power was
selected as the subject of this paper. The start-up of the SOFC system is a slow process.
In the early stages of startup, the electrochemical reactions cannot take place because the
temperature has not reached the required range and therefore no electricity can be output.
The incoming fuel gas all reaches the combustion chamber directly to generate heat, and
then uses the heat exchanger to heat the air and fuel gas, thus preheating the stack. When
the temperature of the reactor rises to within the range where electrochemical reaction
occurs and stabilizes, the system’s connected electrical load is turned on so that the system
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current begins to rise. The system power generation process can be divided into the current-
rise phase, the high-temperature zero-current phase, and the long-term stable operation
phase, based on the change in current, some of which occur more than once during the
experiment. Due to the relatively poor dynamic ability of the SOFC system to respond,
when there is a suddenly increasing load, the SOFC system cannot supply enough fuel and
generate enough heat in time to maintain operation under the new load conditions. Big
changes in operating conditions can also seriously affect the normal running and life cycle
of the BOP component [35]. The load should be gradually increased during the current rise
phase to make the current rise smoothly and slowly to avoid the problem of a fuel deficit.
The electrical characteristics of the SOFC system during the entire experiment with time
are shown in Figure 3. During the first current rising phase, the current rose to 8 A. The
voltage did not decrease significantly during this period, indicating that the fuel supply to
the system was sufficient at this time. While the current continued to rise to 26 A, there
was an obvious fall in the output voltage curve, indicating that the stack was in a state of
slight fuel deficit. Next, the SOFC system went into a hot standby mode, at which time the
current was 0 A, the voltage rose to open-circuit voltage, and the output power was zero,
but the stack temperature was still at a higher value, i.e., the high-temperature zero-current
stage. After the end of the hot standby state, the second current-rise phase started, with
the current rising to 55 A. A load test was conducted with the current gradually climbing
to a peak of 75 A when the power also reached maximum. Finally, it entered long-term
stable operation and the current returned to 53 A. At this stage, the whole system was in
self-heating equilibrium, but the current showed a decreasing trend, indicating that the
stack was in the degradation period. From Figure 3, it can be seen that after reaching the
power peak back down, there was a large degradation of the reactor performance.
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During the experiment, 629,873 sets of SOFC system operation data were collected
with a sampling time of 1 s. Each set of data was an 82-dimensional row vector, i.e.,
82 features. The 82 features included both features of the SOFC stack and features of the
BOP components. Among them, the key features (pressure, temperature) of the SOFC
stack and BOP components as well as the gas-supply curves are presented in Figure 4.
These features can be divided into two categories, one for Boolean variables and one for
numerical variables. Numerical variables mainly include voltage, current, gas flow rate,
pressure, temperature, etc. Boolean variables mainly include solenoid valve switches, flow
valve switches, and so on. Since an SOFC system is a power generation device, the most
important concern is its pure output power. The power is calculated from the voltage
and current. In the electrical characteristics of the SOFC output, one variable is usually
controlled to observe the decay of the other variable. The stack studied in this paper belongs
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to the current type, i.e., the current is the independent variable according to the external
load demand, whereas the voltage value belongs to the corresponding dependent variable,
so the main concern is the trend of the voltage value of the stack under the system. The
state of the SOFC stack can only be observed indirectly by observing the voltage variation,
so voltage is one of the most important and typical state variables. The indicator of stack
failure is that the stack voltage is less than 70% of the rated voltage. Therefore, when the
predicted voltage is less than 70% of the rated voltage, the stack is deemed to have failed.
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In the short-term degradation experiments, there were some problems and phenomena
with unclear mechanisms:

1. There was high-frequency dithering at 150,000–300,000 s at the anode inlet tempera-
ture of the stack (Figure 4b);

2. The reconditioner temperature fluctuated slightly throughout the whole operation
(Figure 4c);

3. There was a sudden, significant drop in the heat-exchanger cathode inlet temperature
after 600,000 s, with gas supply not changing significantly and only gas pressure
fluctuating (Figure 4c);

4. There was a steep rise and fall in the temperature of the exhaust combustion chamber
with a high frequency of jitter in the inlet temperature values between 100,000 and
300,000 s (Figure 4c).

These phenomena are difficult to explain mechanistically, so they are collectively re-
ferred to as thermoelectric dithering phenomena. These phenomena cannot be represented
by mechanistic modeling, so a data-driven approach is needed to complement the SOFC
system operating characteristics. Meanwhile, it can be seen in Figures 3 and 4a that the
flow rate of the reactant gas was highly correlated with the thermoelectric characteristics of
the SOFC system, proving that the input gas was the main cause of the system state change.

3. Prognostic Method for the Degradation of the SOFC System

In this section, the basic principles and characteristics of two RNN morphs—long short-
term memory (LSTM) [36] and gated recurrent network (GRU) [37]—will be introduced
first. Then we will explain how the attention mechanism works and combine it with two
deep learning models, LSTM and GRU, in order to build a prediction model based on the
encoder–decoder mechanism. In the end, the implementation steps of the prognostic model
and the processing of the raw dataset, including feature selection, data filtering, and so on,
are introduced.

3.1. Neural Network
3.1.1. Recurrent Neural Network

A recurrent neural network (RNN) is a neural network with memory capability.
Therefore, it has good results in processing sequence data and has wide applications in the
fields of natural language processing [38] and sentiment analysis [39]. The basic structure
of RNN has an input layer, a hidden layer, and an output layer, which are basically the
same as a normal neural network. Unlike normal neurons, its hidden layer has an arrow
pointing to itself, indicating the passing of data updates. This is the reason why RNNs have
the ability to memorize. As shown in Figure 4a, the hidden layer state at each moment
is determined by both the input at the current moment and the hidden layer state at the
previous moment. The state of the hidden layer is updated by the following equation:

h = f (ht−1, xt) (3)

where xt is the input at the current moment, and ht−1 is the hidden layer state at the
previous moment.

Expanding the above Equation (3) can be written as:

ht = f (whhht−1 + wxhxt + b) (4)

where whh is the weight matrix from the hidden layer to the hidden layer, wxh is the weight
matrix from the input layer to the hidden layer, b is the bias vector, and f is the activation
function. The output expression is:

ŷt = whyht (5)

where why is the weight matrix from the hidden layer to the output layer.
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Because of the chain connection structure of RNN, it is able to uncover the temporal
association in the data, so it has a good effect on processing time-series data. However, when
a sequence is long enough, RNN suffers from short-term memory and it is difficult to retain
the earlier information to the current moment. It is also called the long-term dependencies
question. Two specific manifestations of the long-term dependencies question in practical
training are gradient explosion [40] and gradient vanishing [41]. To solve the long-term
dependence problem of RNN, two RNN-based neural networks (LSTM and GRU) are
proposed. In this paper, these two gated RNNs are used to predict the change in the output
voltage state of the SOFC system.

3.1.2. Long Short-Term Memory

LSTM is a particular variant of an RNN network that can learn and utilize long-term
dependent information. The structure of LSTM is shown in Figure 5b, and its external
connections are not very different from RNN. However, there is a big change inside the
LSTM hidden layer with the addition of a gate control mechanism and cell states. The
cell state of the LSTM, which controls the transmission of temporal information, is the key
to the absence of the long-term dependencies question in the LSTM. The output of the
forgetting gate determines the proportion of the cell state from the previous moment that
can be retained until the current moment. The input gate determines the percentage of
the current moment’s input in the new cell state. The output gate outputs a portion of the
updated cell state.
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Therefore, the working steps of LSTM can be divided into the following three steps.
First, the forget gate retains the cell state associated with the current moment. Then, the
input gate adds some of the inputs of the current moment to the cell state to complete
the cell-state update. Finally, the output gate retains part of the cell state as the output of
the hidden layer. The working mechanism of the three gates can be summarized by the
following equation:

ft = σ
(

W f ·[ht−1, xt] + b f

)
(6)

it = σ(Wi·[ht−1, xt] + bi) (7)

ot = σ(Wo·[ht−1, xt] + bo) (8)

where [ht−1, xt] is the vector connection between the hidden layer state and the current input
at the previous moment; W f , Wi, and Wo are the weight matrices between the connection
vector and the output of each gate; and b f , bi, and bo are the bias matrices of the three gates.

The update of the cell state and the output of the hidden layer are calculated as follows:

c̃t = tanh(Wc·[ht−1, xt] + bc) (9)

ct = ft ∗ ct−1 + it ∗ c̃t (10)

ht = ot ∗ tanh(ct) (11)

LSTM avoids the problem of gradient explosion and gradient disappearance due to
long-term dependence by gating the unwanted information and retaining the information
related to the current state due to the setting of the cell state and gating mechanism.
Therefore, LSTM has very good results for tasks that require long-term memory. However,
it is also the introduction of the gating mechanism that leads to more neural network
parameters and makes the training more difficult.

3.1.3. Gated Recurrent Unit

GRU is also a kind of deformation of RNN, which is also proposed to ameliorate the
long-term dependency problem of RNN. Compared with LSTM, it has a simpler structure
and faster training speed. The structure of GRU is shown in Figure 5c, which combines an
input gate and an oblivion gate into an update gate. The function of the update gate is to
determine the percentage of information to be passed from the past to the future, or what
is called update memory. Another gate of GRU is the reset gate, used to choose how much
of the past hidden layer state to ignore. The expressions for these two gates are:

zt = σ(Wz·[ht−1, xt] + bz) (12)

rt = σ(Wr·[ht−1, xt] + br) (13)

The state update expression for the hidden layer is:

h̃t = tanh(Wh·[rt ∗ ht−1, xt] + bh) (14)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (15)

where Wz, Wr, and Wh are the weight parameter matrices between the layers; zt is the
output of the update gate; rt is the output of the reset gate; ht is the hidden state at time t;
and bz, br, and bh are bias matrices.

3.2. RNN-Based Encoder–Decoder

In this paper, the prediction of the output time-series data from the input time-series
data is a typical structure of Seq2Seq. The Seq2Seq structure contains an encoder and a
decoder. The encoder can parse the information from the input data, obtain the features
in the data, and convert them into a form that is conducive to machine learning for the
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purpose of accelerated learning. The decoder is tasked with using the higher-order, abstract
information obtained by the encoder to predict the sequence output.

In this paper, the encoder–decoder RNN model is used, where the RNN used is
LSTM or GRU. The encoder–decoder RNN contains two identical RNN models, located in
the encoder and decoder, respectively, and its structure is shown in Figure 6 below. The
encoder is a one-way RNN without an output, responsible for reading the input sequence
and encoding it as a fixed-length vector—the background variable c, where the hidden
state at each moment depends only on the input subsequence before the current time. The
state transformation formula of the hidden layer is

ht = f (xt, ht−1) (16)

where xt is the input of the current time step and ht−1 is the hidden state of the previous
time step.
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Transformation of the hidden state of each time step into background variables is
carried out by means of the custom function q:

c = q(h1, · · · , hT) (17)

where T is the max time step.
For example, when choosing q(h1, · · · , hT) = hT , the background variable is the

hidden state of the final time step of the input sequence. In this paper, the q used is the
LSTM or GRU network.

The RNN in the decoder is responsible for mapping the background variables into
a variable-length output sequence. At the current time step t′, the input to the decoder is
the output yt′−1 at the previous moment with the background variable c, and it converts
them with the hidden state st′−1 at the last time step to the new hidden layer state st′ at the
current time, which can be expressed by the following equation:

st = f (st−1, yt−1, c) (18)

where st is the hidden state and yt−1 is the input of the previous time step.
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Finally, the output prediction of the model can be calculated:

P(yT |yt−1, yt−2, y1, c) = g(st, yt−1, c) (19)

where yT is the output at time step T.

3.3. Data Processing

In this paper, the raw observation data from the SOFC system experiment was a
629,873 × 82-dimensional data set with a sampling time of 1 s. The characteristics of SOFC
systems can be divided into electrical characteristics and thermal characteristics. The
electrical characteristics change quickly, in units of seconds. The thermal characteristics
change more slowly, in minutes. Therefore, in order to observe the changes in thermoelectric
properties of the whole SOFC system more visually, the data need to be compressed and
the redundant data need to be removed. From the original dataset, every 60 rows, a record
is picked and put into a new dataset. This results in a new dataset with a sampling time of
1 min and a size of 10,323 × 82. After compressing the rows, compression is also performed
for the columns. The 82 features in the original data would make the neural network too
complex, increasing the computational cost and training time. First, the Boolean variables
from the 82 features are removed, which are typically switch signals. The remaining
72 features have a large number of repetitive temperature features with similar trends and
features that can be computed from other features. Based on experimental experience and
literature review, 18 features were retained out of 72 features, as shown in Table 1 below.
The size of the dataset was reduced to 10,323 × 18.

Table 1. Selected features of the SOFC system.

Features

Output voltage Cathode air pressure Reformer temperature
Output current Bypass air pressure Anode inlet temperature

Cathode air-flow rate Anode input pressure Cathode inlet temperature
Bypass air-flow rate Cathode input pressure Anode outlet temperature
Methane flow rate Anode output pressure Cathode outlet temperature

Input methane pressure Cathode output pressure Burner temperature

The size of the dataset was greatly reduced after filtering, but 18 features was still too
much, so sequential forward selection (SFS) was used for the further feature selection. SFS
is a bottom-up approach. The first feature selects the feature that is individually optimal
and has the best prediction effect. The second feature is the feature that works best in
combination with the first feature from the remaining special features, and so on to obtain
the combination of features that works best. Finally, a combination of features consisting of
four features was determined, which were output voltage, output current, input methane
pressure, and cathode air pressure. Their changes with time are shown in Figure 7.

After the data are filtered, the data need to be normalized to avoid the influence of
different magnitudes and orders of magnitude on the evaluation index, and to accelerate
the learning speed of the neural network and improve the prediction accuracy. In this
paper, linear normalization is used, and its calculation formula is shown as follows:

xnorm =
x− xmin

xmax − xmin
(20)

where xnorm is the data after deflation, x is the original data, xmax is the maximum value,
and xmin is the minimum value.

After the data normalization is completed, the structure of the data needs to be
reorganized. Since time-series data cannot be used directly for training models, they need
to be converted to supervised learning data before they can be used for training. Sliding
time windows were used to divide the data into input and output data at fixed time steps,
as shown in Figure 8. Doing so increased the size of the training set. As an example, we
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input the state for the first 10 min and predicted the state for the next 10 min. Next, the
time window was moved back one minute and the states from 1–11 min were entered to
predict the states from 11–21 min, and so on.
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3.4. Prognostic Method Framework

Based on the above discussion, the framework of the RNN prediction method based
on the encoder–decoder mechanism established in this paper is shown in Figure 9. The
detailed steps of the prediction model are as follows:

1. Raw data from short-term degradation experiments of SOFC systems were collected
and pre-processed, including data culling, feature selection, normalization, etc.

2. For the processed data, the first 7500 min were used as the training set and the last
7500 min as the test set, where 20% of the training set was randomly selected as the
validation set.

3. The relevant parameters for the encoder–decoder LSTM/GRU were selected. Since
there were four features, the input layer had four nodes and the number of nodes in
the hidden layer was set to 32. There was a fully connected layer of 10 nodes between
the hidden layer and the output layer. Finally, since the output of the model was a
stack voltage, the output layer had only 1 node.

4. The relevant training hyperparameters were determined, including time step, batch
size, and epoch.
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5. The optimizer and loss function for the model were selected, the model was trained
using the training set, the predicted voltage of the test set was compared with the true
value, and the result was evaluated.
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4. Results and Discussion

In this section, the SOFC experimental data from Section 2 are used to train the deep
learning-based prediction model built in Section 3. Four different prediction models, LSTM,
encoder–decoder LSTM, GRU, and encoder–decoder GRU are used to forecast the voltage
state changes of the SOFC system and analyze the prediction results.

4.1. Evaluation Criteria

In order to measure the prediction results, the corresponding indexes must be used to
evaluate the degree of fit of the results to the real data. In this paper, three criteria—mean
square error (MSE), mean absolute error (MAE), and coefficient of determination (R2)—are
used to evaluate the prediction results. The closer the value of MSE and MAE is to 0,
the smaller the error between the prediction result and the true value, and the closer the
predicted value is to the true value. The normal range of R2 is [0, 1], and the larger it is, the
better the model fits the data. The correlation formula is as follows:

MSE =
∑N

i=1 (yi − ŷi)
2

N
(21)

MAE =
∑N

i=1|yi − ŷi|
N

(22)
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R2 = 1− ∑N
i=1 (yi − ŷi)

2

∑N
i=1 (yi − yi)

2 (23)

where yi is the true measured value of the SOFC output voltage, yi is the average of
the real voltage data, ŷi is the prognostic voltage, and N is the overall number of true
output voltages.

4.2. Results of the LSTM-Based Model

In this subsection, LSTM and encoder-decoder LSTM prediction models are con-
structed. The model is trained and the voltage variation of the SOFC is predicted using
the processed dataset. The inputs of the model are output voltage, output current, input
methane pressure, and cathode air pressure, and the output is voltage. The hyperparame-
ters of the hidden layers are particularly critical for the neural network model. A larger
number of hidden layers and nodes will lead to an overly complex model, which will
greatly increase the model training time; a smaller number will lead to a degradation of the
model prediction performance and fail to achieve the expected results. In this paper, based
on the relevant experience, we initially selected the parameter range of hidden layers, and
then used the grid-search method to search the optimal parameters. The number of LSTM
layers was two and the number of nodes was 32. In addition to the hidden layer parameters,
time step is also an important parameter that affects the prediction performance. The time
step was set to 10, i.e., the data from the first 10 min were used to predict the data from the
second 10 min.

After model construction and parameter selection, the prognostic outcomes of the
processed dataset were calculated. The prognostic results of the original LSTM model are
shown in Figure 10. The data set was divided into two parts around 7500 min, where
(0, 7500) min is the training set and (7500, 10,000) min is the test set. From Figure 10a, it can
be found that the prediction curves of both the training and test sets fit the original data
well, but the prediction of the training set was slightly better than that of the test set, which
proves that the model had no overfitting problem. At several peak points, the voltage
mutation was too fast and the prediction effect needed to be enhanced. From Figure 10b,
it can be found that the prediction model converged very quickly in the training process,
experiencing a total of 20 epochs, having converged at around the ninth epoch. The error
of the validation set was slightly lower than that of the training set at the beginning, and
it was higher than that of the training set afterwards, which also indicates that the model
was not overfitted. In general, the LSTM-based prediction model had good performance in
predicting the SOFC output voltage.
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Based on the above prediction model, it was changed to the encoder–decoder LSTM
prediction model, and the number of nodes of LSTM in the encoder and decoder was kept
the same. After the construction, the model was applied to the dataset for prediction, and
the prediction results are shown in Figure 11. In Figure 11a, it can be seen the prediction
curve of the new model was smoother and fit the original curve more closely than the
previous model. The evaluation results of the two models are shown in Table 2. In the
training phase, the MSE of the LSTM mode was 0.013956 and the MSE of the encoder–
decoder LSTM mode was 0.011820. In the testing phase, the MSE of the LSTM mode
was 0.016550 and the MSE of the encoder–decoder LSTM mode was 0.015121. These
data demonstrate that the new model was more accurate than the original LSTM model.
The R2 of the new model was 0.981198 in the training phase and 0.964618 in the testing
phase, which shows that the proposed model fit the dataset better. During the experiment,
the presence of some faults (heat-exchanger rupture, reformer-reforming performance
degradation, and exhaust combustion chamber airflow imbalance) led to sudden voltage
changes and spikes. However, it can be seen in Figures 10a and 11a that the model still had
some prediction capability for abrupt voltage changes, and these abnormal states could be
partially fitted to the model.
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Table 2. Calculation of the evaluation criteria for prediction results.

Training Set Test Set

LSTM Encoder–Decoder
LSTM GRU Encoder–Decoder

GRU LSTM Encoder–Decoder
LSTM GRU Encoder–Decoder

GRU

MSE 0.013956 0.011820 0.013129 0.011521 0.017050 0.014966 0.017456 0.015121
MAE 0.082145 0.059687 0.078887 0.057455 0.094432 0.084220 0.097976 0.086195

R2 0.963418 0.981198 0.964254 0.982704 0.936420 0.964618 0.933110 0.961665

4.3. Results of the GRU-Based Model

From the previous section, it can be seen that encoder–decoder LSTM had better
prediction performance compared to the original LSTM. To verify the role of encoder–
decoder RNN architecture network, in this section, the GRU-based prediction model and
the encoder–decoder GRU prediction model is constructed to repeat the prediction task
to verify the effectiveness of the encoder–decoder mechanism. After the grid search, the
hyperparameters of the GRU model were determined as 32 nodes with two layers. The
prediction results are presented in Figure 12. From Figure 12a, it can be seen that the first
half of the prediction curve of the training set fit well with the original data. Comparing
Figure 10a,b, the prediction curve of the GRU model was shifted downward compared with
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the original curve, but the number of epochs required for GRU to converge was smaller.
This was due to the characteristics of GRU, which sacrifices the prediction performance
(number of parameters inside the hidden layer) to improve the training speed.
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(b) training loss during the training phase.

Next, the performance of the encoder–decoder GRU was observed in a real-world
application, and its prediction results are shown in Figure 13. The prognostic performance
of the new model was enhanced when measured against the GRU model. This can be seen
visually from the comparison of Figures 12a and 13a, where the encoder–decoder GRU
model had a more stable output, and its prediction curve was more consistent with the
original data and less volatile. Comparing Figure 12a with Figure 13a, it can be found that
the validation set error was smaller and converged faster after adding the encoder–decoder.
From the perspective of evaluation metrics, the MSE of the new model was 0.011521 and
0.014966 in the training phase and testing phase, respectively, which are lower than before,
indicating that the new model predicted more accurately.
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The MAE, MSE, and R2 of the four models were all calculated with the training set data
and the test set data, so they had the same reference standard. The smaller the MAE and
MSE, the smaller the average error at each min. The MAE and MSE of the LSTM and GRU
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models did not differ significantly, indicating that the difference between the prediction
accuracy of these two models was little. The R2 of both was also similar, indicating that
the prediction results of both were similar to the true value fitting level. Theoretically,
when the LSTM and GRU have the same number of neurons, the LSTM network will
have more internal parameters, and therefore the prediction is a little bit better. The GRU
network, on the other hand, had slightly fewer parameters and trained a little faster. This
can also be seen in Table 2, where the MAE and MSE of GRU were larger and the R2 was
smaller. After adding the encoder–decoder mechanism, the new models were more capable
of information extraction, processing, and prediction of data, and MAE and MSE were
decreased and the R2 was increased.

5. Conclusions

In this paper, a new data-driven deep learning fuel cell-state prediction model is
proposed. Recurrent neural networks (RNN) with long short-term memory (LSTM) units
and gated recurrent units (GRU) are used as the encoder and decoder to avoid the gradient-
vanishing and gradient-exploding problem in network training. Short-term degradation
experiments of the SOFC system were designed to collect raw data. The model prediction
results are validated by the output voltage profile of the system. In addition, different
degradation models, including ordinary LSTM and GRU networks, are compared with the
proposed encoder–decoder model. The following conclusions can be drawn:

1. The results show that the proposed encoder–decoder model can effectively achieve
high prediction accuracy under realistic fuel cell operating conditions. Encoder–
decoder LSTM and encoder–decoder GRU RNN models had RMSE errors (test phase)
of 0.015121 and 0.014966, respectively, whereas the LSTM and GRU models had corre-
sponding values of 0.017050 and 0.017456, which proves that the encoder–decoder
RNN had higher performance.

2. The proposed model still had some predictive tracking ability for large changes in the
data. When the training data changed less, the prediction model had better and more
reliable performance compared to the existing work.

3. The proposed model can be tested for predictive performance by varying the sliding
time step as well as the number of input sequences to suit different SOFC systems
and even different fuel cell systems.

The model can be used to predict the fuel cell lifetime and also help monitor the
operational performance of fuel cells in real applications. Due to its simple structure, the
proposed RNN-based encoder–decoder prediction model is easy to implement once it has
been trained. In the future, the model can be further developed to combine with PHM
technology to help improve the durability of SOFC systems and even other fuel cells by
making joint decisions with existing control strategies.
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