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Abstract: Grid integration of renewable resources such as solar and wind energy can significantly
raise the level of uncertainty in power systems, making the scheduled operation of generating units
difficult. Therefore, the importance of operating reserves is more emphasized to prevent disruption
by sudden changes in outputs of generators. In this paper, a stochastic unit commitment (UC) model
to reflect uncertainty due to a large amount of renewable resources is proposed, in which upward
and downward operating reserves are deployed simultaneously, and feasibility of the reserves is
examined to make the deployed reserves supplied reliably. Uncertain parameters considered in
the model are wind power availability, solar direct normal irradiance, and electric load. Two-stage
stochastic programming is applied to the mathematical formulation, where UC decisions including
dispatch are modeled as non-anticipative variables at the first stage, and redispatch decisions to
serve realized electric demand are made at the second stage as recourse. By solving the UC problem,
feasible and reliable stochastic UC and dispatch solutions can be provided to power system operators.

Keywords: energy management; stochastic unit commitment; reserve feasibility; economic dispatch;
renewable generation

1. Introduction

Unit commitment (UC) is a core part of energy management systems, turning gener-
ators on or off while maintaining the high efficiency and reliability of power systems at
a low cost. An optimal UC solution provides power system operators with information
for decision-making related to system operation, such as optimal output levels and on/off
status of the generators with respect to predicted electric demand. Consequently, the
efficiency of the system can be determined by the UC and economic dispatch (ED) results
that decide operating points of the generators by merit order. For that reason, research on
UC problems has been actively conducted to enhance the performance of the UC model in
energy management systems.

In the literature, UC problems for electric generators have appeared with various
optimization methodologies. In [1], the mathematical formulation for UC with dynamic
programming is presented, where constraints such as the capacity limits of generating units
and the availability of the units are applied in the formulation. Lagrangian relaxation is
applied in [2,3], and a mixed-integer nonlinear optimization problem for UC is studied
in [4].

A mixed-integer linear programming (MILP) approach is introduced in [5], which is
frequently applied to UC models. Recent advances in optimization solvers may affect a
wide range of research on MILP-based UC formulations because the optimal solutions from
the MILP problems can be obtained by state-of-the-art mixed-integer programming (MIP)
solvers. Therefore, MILP UC formulations have been widely investigated in the literature
due to easy access to the well-constructed optimization solver. The cost function of a
generator is typically a nonlinear, quadratic function that results in a nonlinear objective
function. Therefore, MILP formulation using a linearized cost function is studied in [6].

MIP-based UC problems generally require long solution times; however, the solution
time can be considerably decreased when the UC formulation is strong, which can be
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achieved when the relaxation of the MILP UC problem is tight and compact. In the
context of this relationship, UC formulations have been studied in terms of tightness
and compactness (see [7–9]). In [7], a binary variable representing the on/off status of
generators is adopted, and the upper bounds of generation capacity for thermal generators
are limited by the previous operating points and ramp rates, instead of by fixed maximum
capacity levels. Ramping constraints between two time intervals that are two hours apart
from each other are applied to strengthen the formulation in [8], which helps to reduce the
solution time with tight bounds for the given UC problem. In [9], an MILP formulation is
presented that employs three binary variables to represent on/off, start-up, and shut-down
states, and continuous decision variables represent generators’ outputs above minimum
generation levels. It is reported that the computation time for the optimal solution is short
compared to other UC models.

In power system operation, it is important to operate the system reliably as well as
efficiently. For this reason, security-constrained UC (SCUC) problems have been widely
investigated (e.g., [10–12]). Corrective actions for wind generator contingencies are rep-
resented in the model in [10], and a robust optimization approach is taken for the SCUC
problem in [11]. Moreover, post-contingency transmission constraints and intra-hour vary-
ing reserves are incorporated in the SCUC model [12]. A UC model combining transmission
line switching and N-1 contingency is introduced in [13], where the operating aspects of
the power system, such as transmission line commitment, are discussed along with reliabil-
ity. Flexibility of power system operation and operating cost savings are reported by the
given model.

Various types of uncertainties that may affect the optimal solutions exist in the power
system, so stochastic UC models are developed to explicitly include uncertainty in the
model [14,15]. As a conventional uncertainty, electric demand is considered a random
parameter in [14], where a UC formulation with mixed-integer quadratic program is solved
with Lagrangian relaxation and dynamic programming. A dynamic stochastic UC model
with a multistage scenario tree is introduced in [16], where Lagrangian relaxation is applied
for problem solving. The availability of generating units can be said to be uncertain
because the units may possibly experience failure. Therefore, in [15], the availabilities of
generating units are represented explicitly as random parameters, and an SCUC model
based on stochastic MILP is proposed, where transmission constraints are incorporated in
the formulation, unlike some models that focus only on the behaviors of generating units.
Lagrangian relaxation is employed as a solution method.

Recent trends in energy and environmental policies indicate high interest in abate-
ment of carbon dioxide emissions and utilization of renewable resources in the power
generation sector. Accordingly, UC problems considering stochastic characteristics of re-
newable resources are studied in [17–21]. A widely applied renewable resource, wind
power, which results in high uncertainty in the power system, is modeled as a random
parameter in [17,18]. A chance-constrained two-stage stochastic UC model is presented
that considers the uncertainty of wind power in [19]. UC decisions for thermal units and
dispatch decisions for all units, including wind generators, are made at the first stage,
and the penalty costs of the shortage due to overestimation of wind power generation are
incurred at the second stage. The utilization of wind power generation is guaranteed with a
probability of at least 1− ε by the chance constraint. In [20], a two-stage model is presented,
where transmission constraints and failure of units are considered as scenario-dependent
parameters as well as electric demand. Dispatch plans for slow generators are determined
at the first stage, and fast generators are dispatched at the second stage with respect to the
given scenarios. In [21], a two-stage stochastic UC model is proposed, where UC decisions
are made at the first stage, and ED is modeled in the second stage as a recourse. The
uncertainty of wind power output is represented by random parameters, while electric
load is not uncertain.

Deployments of capacity reserves are included in several unit commitment formu-
lations, as shown in the literature [9,22–24]. However, the main goal of these reserve
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deployments is procuring capacity, regardless whether the reserved capacity can be sup-
plied or not. Particularly, in stochastic unit commitment models, the feasibility of reserves
is not considered owing to the computational difficulties. Consequently, there exists a
possibility that the reserved capacity cannot be supplied as needed, which may lead to
failure of the reserve supply. To avoid this trouble, a stochastic UC model considering the
feasibility of upward and downward reserves is proposed, and how the UC and ED results
change by ensuring the feasibility of reserves is analyzed in this study.

The contributions of this work can be summarized in the following: (1) A two-stage
stochastic UC formulation with ensuring feasibility of reserve supply from time t to t + 1
is presented. The resulting schedules lower a possibility that deployed reserves are not
supplied when needed.( 2) The proposed UC model allows the second-stage redispatch to
cope with uncertainty of renewable energy generation; therefore, the model can be applied
to power systems with a high share of uncertain renewable resources. (3) Optimal UC and
ED decisions from the presented model are made under uncertainty, and they are feasible
with respect to given scenarios. Therefore, the obtained optimal schedules can be provided
to the system operator as day-ahead schedules.

The rest of this paper is organized as follows: In Section 2, a two-stage stochastic
UC model considering the feasibility of reserves is presented, in which a basic idea of
the model, a scenario generation method, and the mathematical formulation for the UC
problem are described. The data and the test system for the simulations are detailed in
Section 3. The impacts of considering the feasibility of reserves are investigated in Section 4
by comparing optimal UC and ED solutions. Finally, the results are summarized and
discussed in Section 5.

2. A Two-Stage Stochastic UC Model

In this section, a stochastic UC model including a mathematical formulation with
consideration of reserve feasibility is presented, which provides hourly UC and ED sched-
ules. Wind power availability, solar direct normal irradiance (DNI), and electric load are
defined as uncertainties in the system and modeled as random variables. They are realized
by a finite number of hourly random samples, and the methodology to obtain random
samples is described in Section 2.4. The mathematical formulation for optimization is
based on two-stage stochastic programming [25,26], and the formulation is represented by
deterministic equivalent problem.

2.1. Decision Process

In Figure 1, a timeline of decision-making for UC and ED under uncertainty is illus-
trated. At the first stage, non-anticipative decisions for UC and ED are made, and operating
reserves are deployed. After the first stage, the uncertainty is realized, and then redispatch
decisions are made for all generators including renewable resources to serve the realized
electric demand at the second stage. Load shedding decisions are also made at the second
stage to avoid infeasible solutions by an excessively high electric demand that the system
cannot take care of. The first-stage decisions are “here-and-now" decisions made when
the uncertain parameters are not known, while the second stage decisions are made under
“wait-and-see” situations. In the presented decision process, solutions provided to the
system operators are the first-stage decisions: optimal UC status, the deployed operating
reserve capacity, and outputs of the generators as day-ahead schedules. The solutions are
feasible for the given scenarios.
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Figure 1. Decision-making process for the proposed stochastic UC

2.2. Objective Function

The objective function for the UC problem is presented in (1), minimizing the first-
stage costs and the expected second-stage costs, where decision variables, Rtc, Rtc, Ptg, Pω

tg,
and Pω

tg, represent upward operating reserve, downward operating reserve, first-stage eco-
nomic dispatch, second-stage upward redispatch and second-stage downward redispatch,
respectively. The operating period and the interval of the model are 24 h and an hour,
respectively. The upward & downward redispatch and load shedding represent unwanted
situations which affect optimal operating points of generators, so they are highly penalized
at USD 5000/MW and USD 2000/MW for load shedding and redispatch, respectively. All
generators including renewable resources are assumed to be able to adjust their outputs as
needed at the second stage.

min ∑
t∈T

[
∑

c∈Gc

(
scostc ·Vtc + rucostc · Rtc + rdcostc · Rtc

)
+ h ∑

g∈G
gcostg · Ptg

]

+h ∑
ω∈Ω

pω ∑
t∈T

[
∑

g∈G

[
(sdcostg + gcostg)Pω

tg + (sdcostg − gcostg)Pω
tg

]
+ ∑

d∈D
pcost ·UDω

td

]
(1)

2.3. Constraints

Throughout the simulations, steady-state conditions for a given power system are
assumed, and constraints related to stability are not explicitly represented.

2.3.1. Power Balance and Transmission Capacity Limits

The power balance constraints ensure that the sum of generated power and power
flows coming in and out is exactly same as the power demand at each bus in (2). These
constraints also maintain the balance of supply and demand of power. The operating
reserve capacity is not incorporated in this formulation because the reserve is capacity for
supplying power as needed rather than power scheduled to be supplied. The realized
electric demand, ξω

dt, represents system-wide demand, so electric demand at time t is
obtained by multiplying it by a distribution factor δd.

∑
g∈G

Λgi(Ptg + Pω
tg − Pω

tg)−∑
l∈L

Λli · f ω
tl = ∑

d∈D
Λdi(δd · ξω

dt −UDω
td),

∀t ∈ T, ∀ω ∈ Ω, ∀i ∈ I (2)

Scheduled energy may not be delivered if transmission constraints are severely bind-
ing. Therefore, in (3), thermal capacity limits are applied, optimal power flows on trans-
mission lines are verified using linearized direct current (DC) power flow in (4), and the
power flow is represented by the bus voltage angle difference between two buses linked by
a transmission line divided by the reactance of the line.

− f max
l ≤ f ω

tl ≤ f max
l , ∀ω ∈ Ω, ∀t ∈ T, ∀l ∈ L (3)
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f ω
tl = ∑

i∈I
Λli ·

θω
ti

Xl
, ∀ω ∈ Ω, ∀t ∈ T, ∀l ∈ L (4)

2.3.2. Deployments of Upward and Downward Reserves

In the model, operating reserves are procured only by conventional generators that
can certainly change their operating points as expected. Upward and downward operating
reserve capacity are enforced to be deployed at least the fixed capacity, Rtc and Rtc, in (5)
and (6). Types of operating reserves such as spinning, non-spinning, and regulation are
not specified, and the generators to provide a particular type of operating reserves are not
categorized in this model. Approximately 10% of expected electric demand at time t is
assumed as the amount of deployed reserves throughout the simulations.

∑
c∈Gc

Rtc ≥ rup
t , ∀t ∈ T (5)

∑
c∈Gc

Rtc ≥ rdn
t , ∀t ∈ T (6)

2.3.3. Feasibility of Reserves

The feasibility of reserved capacity is ensured by applying two constraints in the
formulation, in which the two constraints consider an actual supply of deployed upward
and downward reserves. The constraints (7) and (8) basically represent ramp-up and ramp-
down constraints. Additionally, deployed upward and downward reserves are assumed
to be supplied, and they are restricted by ramp rates together with supplied power. In
particular, the feasibility of the reserve supply is secured by preventing the situation that
the downward and upward reserves are deployed by one generator sequentially.

An example to present how the reserve feasibility in ramp constraints is ensured is
illustrated in Figure 2. For a scenario ω, the optimal operating point is Pt − Pω

t at time t,
and the deployed downward reserve Rt is supplied. In this case, Pt+1 + Pω

t+1 + Rt+1 can
move up to the red line at time t + 1 by the ramp-up rate in (7). However, conventional
UC models that do not consider reserve supply allow Pt+1 + Pω

t+1 + Rt+1 to move up to
the upper bound shown by the green line at time t + 1, where the difference between
the red and green upper bounds indicates an infeasible amount to be supplied when the
downward reserve at time t is supplied. Consequently, upward reserve or redispatch may
not be supplied at time t + 1. In this context, the presented ramp constraints considering
reserve feasibility avoid the worst case when downward and upward reserves are deployed
consecutively and supplied by one generator. Similarly, a lower bound is formed based
on Equation (8).

Ptc + Pω
tc + Rtc − (Pt−1,c − Pω

t−1,c − Rt−1,c) ≤ ruc(Utc −Vtc) + suc ·Vtc ,

∀ω ∈ Ω, t = 2, 3, . . . , T, ∀c ∈ Gc (7)

Ptc + Pω
tc + Rtc − (Pt+1,c − Pω

t+1,c − Rt+1,c) ≤ rdc(Utc −Wt+1,c) + sdc ·Wt+1,c ,

∀ω ∈ Ω, t = 1, 2, . . . , T − 1, ∀c ∈ Gc (8)

The constraints (9)–(12) prevent situations when upward or downward reserves are
sequentially deployed and supplied by one generator at time t and t + 1. These constraints
guarantee the supply of reserves for at least the time t and t + 1 when the upward reserves
are sequentially deployed by one generator at time t and t + 1. The guaranteed time for
reserve supply can be extended up to t + N.
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𝜔
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feasibility const.

Figure 2. Upper and lower bounds for reserves by ramp constraints.

The available maximum upward reserve at time t + 1 when reserve feasibility con-
straints are applied is illustrated in Figure 3. By considering the actual supply of upward
reserve at time t, available upward reserve at t + 1 is capped by the maximum capacity
limit. Without the feasibility constraints (9) and (11), the upward reserve at time t + 1
can be deployed up to “Rt+1 without feasibility," and some of them cannot be supplied if
the deployed reserve is supplied at time t. Figure 4 also shows the restricted downward
reserve at time t + 1 by (10) and (12). For scenario ω, the operating point of the generator
is Pt − Pω

t with redispatch at time t when the deployed reserve Rt is not supplied. The
maximum available Rt+1 is represented by “Rt+1 with feasibility,” while the maximum
available downward reserves at time t + 1 with the consideration of reserve supply is
smaller than that.

Ptc + Rtc + Rt+1,c ≤ gmax
c · (Utc + Vt+1,c), t = 1, 2, . . . , T − 1, ∀c ∈ Gc (9)

Ptc − Rtc − Rt+1,c ≥ gmin
c ·Utc − gmax

c ·Vt+1,c , t = 1, 2, . . . , T − 1, ∀c ∈ Gc (10)

P0
c + R0

c + Rtc ≤ gmax
c · (u0

c + Vtc), t = 1, ∀c ∈ Gc (11)

P0
c − R0

c − Rtc ≥ gmin
c · u0

c − gmax
c ·Vtc , t = 1, ∀c ∈ Gc (12)

𝑃𝑡

𝑃𝑡+1

t+2t+1tt-1

Maximum capacity

Minimum capacity

Time [h]

𝑃𝑡 + 𝑃𝑡
𝜔
+ 𝑅𝑡

𝑃𝑡 + 𝑃𝑡
𝜔

𝑹𝒕+𝟏 with feasibility

𝑅𝑡

𝑹𝒕+𝟏 without feasibility  
Ramp-up

𝑃𝑡 + 𝑅𝑡

Figure 3. Reserve when upward operating reserves are procured consecutively
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Figure 4. Reserve when downward operating reserves are procured consecutively

2.3.4. Maximum Capacity for Generators

The constraints in (13) represent that the sum of power generation, deployed upward
reserve, and redispatched power by a conventional generator is less than or equal to the
maximum capacity of the generator that is represented by the variable, Pmaxω

tc. The variable
changes based on the operating point in the previous interval and ramp rates. Basically, a
conventional generator c has its maximum available capacity, gmax

c , in (14) when it is turned
on. However, that capacity may be a maximum upper bound that cannot be immediately
reached by the ramp-up rate. Instead, variable capacity Pmaxω

tc that is less than or equal to
gmax

c can provide a realistic and tight upper bound of the output of the generator in (13)
(see, e.g., [7,8]).

Ptc + Rtc + Pω
tc ≤ Pmaxω

tc , ∀ω ∈ Ω, ∀t ∈ T, ∀c ∈ Gc (13)

Pmaxω
tc ≤ gmax

c ·Utc , ∀ω ∈ Ω, ∀t ∈ T, ∀c ∈ Gc (14)

The maximum capacity of a generator changes along with the changes of the generator’s
operating point. If the operating point of the generator is supposed to move up to the next
operating point at time t from the previous actual operating point, Pt−1,c + Pω

t−1,c − Pω
t−1,c,

in the constraints (15), the operating points change based on the ramp-up or start-up rates,
depending on the generators’ status. Basically, this type of constraint offers a tight upper bound
on the capacity limit and consequently shortens the solution time. In the case that the generator’s
operating point moves down at time t + 1, the operating point is restricted by the previous
operating point and ramp-down or shut-down rate in (16).

Pmaxω
tc ≤ Pt−1,c + Pω

t−1,c − Pω
t−1,c + ruc(Utc −Vtc) + suc ·Vtc,

∀ω ∈ Ω, t = 2, 3, . . . , T, ∀c ∈ Gc (15)

Pmaxω
tc ≤ Pt+1,c + Pω

t+1,c − Pω
t+1,c + rdc(Utc −Wt+1,c) + sdc ·Wt+1,c,

∀ω ∈ Ω, t = 1, 2, . . . , T − 1, ∀c ∈ Gc (16)

Conventional generators also have minimum capacity limits that ensure stable genera-
tion outputs and reasonable production efficiencies. The operating point and downward
operating reserve have lower bound constraints based on their minimum output limits,
gmin

c , in (17).

Ptc − Rtc − Pω
tc ≥ gmin

c ·Utc, ∀ω ∈ Ω, ∀t ∈ T, ∀c ∈ Gc (17)
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Available solar PV generation is estimated by randomly generated solar DNI at the
second stage and ambient temperature based on a specific solar panel [27–29]. In this work,
the available power from the solar DNI is calculated every hour. At the second stage, the | |
number of random scenarios for solar power availability are generated, and then electricity
generation by solar PV, Pts, is limited by the realized solar power availability in (18). The
downward redispatch at the second stage cannot be greater than the first-stage dispatch
for solar PV systems in (19). The reserve terms do not appear in the formulation because
renewable generators are assumed not to provide operating reserves.

Pts + Pω
ts ≤ Pmax

s (ξω
st), ∀ω ∈ Ω, ∀t ∈ T, ∀s ∈ Gs (18)

Pts − Pω
ts ≥ 0, ∀ω ∈ Ω, ∀t ∈ T, ∀s ∈ Gs (19)

At the second stage, the operating points of wind generators are adjusted with Pω
tw

and Pω
tw in accordance with their available power, which are referred to as redispatch

here. The sum of the operating point determined at the first stage and the amount of
upward adjustment cannot exceed the realized wind power availability in (20). The sum
of first-stage dispatch and downward redispatch as recourse at the second stage must be
non-negative in (21).

Ptw + Pω
tw ≤ γw · ξω

wt , ∀ω ∈ Ω, ∀t ∈ T, w ∈ Gw (20)

Ptw − Pω
tw ≥ 0, ∀ω ∈ Ω, ∀t ∈ T, ∀s ∈ Gs (21)

2.3.5. Start-Up and Shut-Down

Decision variables for commitment, start-up, and shut-down of a conventional genera-
tor c at time t are represented by binary variables, which indicate two states, zero or one,
in (22). When a generator is committed at time t, the UC decision variable, Utc, changes
from 0 at time t− 1 to 1 at time t; therefore, the start-up and shut-down variables become
1 and 0 at time t, respectively, in (23). Conversely, the shut-down decision variable, Wtc,
becomes 1 when the generator is turned off at time t, and Utc changes from 1 at time t− 1
to 0 at time t. The initial commitment status of a generator c is represented by u0

c , which is
obtained from the UC solutions in the previous operating period. With u0

c , commitment,
start-up, and shut-down status are determined at time t = 1 in (24). The sum of the
binary decision variables, Vtc and Wtc, cannot be more than 1 in (25), because start-up and
shut-down cannot occur simultaneously.

Utc, Vtc, Wtc ∈ {0, 1}, ∀t ∈ T, ∀c ∈ Gc (22)

Utc −Ut−1,c = Vtc −Wtc, t = 2, 3, . . . , T, ∀c ∈ Gc (23)

Utc − u0
c = Vtc −Wtc, t = 1, ∀c ∈ Gc (24)

Vtc + Wtc ≤ 1, ∀t ∈ T, ∀c ∈ Gc (25)

2.3.6. Minimum Up and Down Times

Thermal generators must remain online for a certain amount of time by (26), once
they are committed. Conversely, the generators must stay off for the next several hours
when they are turned off, which is a minimum down time constraint represented by (28).
Depending on the physical characteristics of the generators, minimum up and down times
can range from less than 1 h to more than 10 h. Therefore, (26) enforces the number of time
intervals that generators are supposed to be on according to the inherent minimum up time,
utmin

c , once generators are turned on. If the minimum up time is greater than |T| − t + 1,
the generator must be online to the end of the operating period.

Constraints (27) ensure that the generators must be turned on for utmin
c − utsum

c
hours when the generators are turned on t = 0. The parameter utsum

c indicates the
hours that the generators have been turned on in the previous operating period. In the
constraints (27) and (29), utsum

c and dtsum
c are calculated at the end of the solution process.
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For instance, any thermal generator c is on at time t = |T|, the initial on/off state for the
next operating period becomes 1 (u0

c = 1), and the sum of time intervals that the generator
has been on is calculated as utsum

c = ∑T
T−utmin

c +1 Utc.

Vtc ≤ Uτc, t = 1, 2, . . . , T − 1, τ ∈ [t + 1, min{t + utmin
c − 1, |T|}], ∀c ∈ Gc (26)

m

∑
t=1

Utc ≥ (utmin
c − utsum

c )u0
c , ∀c ∈ Gc,

where m = max{1, min{|T|, utmin
c − utsum

c }} (27)

Wtc ≤ 1−Uτc , t = 1, 2, . . . , T − 1, τ ∈ [t + 1, min{|T|, t + dtmin
c − 1}], ∀c ∈ Gc (28)

n

∑
t=1

(1−Utc) ≥ min{|T|, (dtmin
c − dtsum

c )(1− u0
c )},

where n = max{1, min{|T|, dtmin
c − dtsum

c }}, ∀c ∈ Gc (29)

2.3.7. Unserved Demand and Non-Negativity

The constraints (30) restrict unserved demand not to exceed the realized load at d.
Continuous decision variables, except the power flows and bus voltage angles, are non-
negative by (31).

0 ≤ UDω
td ≤ δd · ξω

dt , ∀ω ∈ Ω, ∀t ∈ T, ∀d ∈ D (30)

Ptg, Pω
tg, Pω

tg, Rtg, Rtg, Pmaxω
tc ≥ 0 (31)

2.4. Scenario Generation

Random samples with |T| number of time intervals are generated using autoregressive-
to-anything (ARTA) processes [30–32], where the samples indicate solar DNI, available
wind power, and electric load for one day in summer. The historical data used to obtain the
ARTA process are from [32,33]. An enhanced method for generating scenarios can improve
the accuracy of optimal solutions. The samples are scaled down to meet the capacity of the
test system. The 100 generated samples applied to the model are illustrated in Figure 5.

1 6 12 18 24

Time [h]

0

200

400

600

800

1000

S
o
la

r 
D

N
I 
[W

/m
2
]

1 6 12 18 24

Time [h]

0

20

40

60

80

W
in

d
 p

o
w

e
r 

[M
W

]

1 6 12 18 24

Time [h]

1

1.4

1.8

2.2

2.7

L
o
a
d
 [
M

W
]

104

Figure 5. One hundred random samples for a day in summer

3. Data and Test System

A 24-bus power system is built based on the IEEE 24-bus system [34] for verifying
optimal UC solutions, in which eleven thermal generators, five solar PV farms, and six
wind farms are located. The total number of transmission lines is thirty eight, with two
different voltage levels of 138 kV and 230 kV. The gmax

c and gmin
c values for renewable

resources indicate installed capacity and zero, respectively. Detailed data for the system are
listed in Table 1, and the description of the data can be found in Nomenclature.
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Table 1. Data of generators in 24-bus test system [34,35].

Gen. gmin
c gmax utmin

c dtmin
c utsum

c dtsum
c u0

c rdc ruc sdc suc gcostg scostc rucostc rdcostc

g1 30.4 152 8 4 8 0 1 120 120 120 120 13.32 1430.4 15 14

g2 75 350 8 8 0 2 0 350 350 350 350 20.7 1725 10 9

g3 206.85 591 1 1 0 1 0 240 240 240 240 20.93 3056.7 8 7

g4 12 60 1 1 2 0 1 60 60 60 60 26.11 437 7 5

g5 54.25 155 8 6 0 2 0 155 155 155 155 10.52 312 16 14

g6 54.25 155 8 8 8 0 1 155 155 155 155 10.52 312 16 14

g7 100 400 12 10 3 0 1 80 80 280 280 6.02 0 0 0

g8 100 400 12 10 3 0 1 50 50 280 280 5.47 0 0 0

g9 300 300 1 1 2 0 1 300 300 300 300 19.83 0 0 0

g10 108.5 310 8 8 8 0 1 180 180 180 180 10.52 624 17 16

g11 140 350 8 8 8 0 1 240 240 240 240 10.89 2298 16 14

s1 − s5 100

w1 − w6 100
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4. Impacts of Reserve Feasibility Constraints

In this section, optimal upward & downward reserves and UC & ED decisions are
presented, which are obtained from the proposed stochastic UC model in Section 2. The
impacts on optimal solutions are analyzed when feasibility of reserves is considered. The
proposed UC problems are solved by General Algebraic Modeling System (GAMS) 30.3.0
and the MIP solver, CPLEX [36].

4.1. Without Reserve Feasibility

To see how UC and ED solutions are affected by the reserve feasibility constraints, a
base case without reserve feasibility is simulated by replacing constraints (7) and (8) with
the constraints shown below, in which reserve supply is not considered. Additionally,
constraints (9)–(12) are excluded.

Ptc + Pω
tc − (Pt−1,c − Pω

t−1,c) ≤ ruc(Utc −Vtc) + suc ·Vtc ,

∀ω ∈ Ω, t = 2, 3, . . . , T, ∀c ∈ Gc (32)

Ptc + Pω
tc − (Pt+1,c − Pω

t+1,c) ≤ rdc(Utc −Wt+1,c) + sdc ·Wt+1,c ,

∀ω ∈ Ω, t = 1, 2, . . . , T − 1, ∀c ∈ Gc (33)

Optimal upward and downward reserve deployments are presented in Figure 6. The
costs for reserves are USD 0/MW for generators g7 and g8, and they mainly provide upward
and downward reserves. In particular, the downward reserves are mostly deployed by g7
and g8. The thermal generators are assumed to provide upward and downward reserves
as much as their maximum capacity and ramp rates allow.
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Figure 6. Optimal reserve deployments when the feasibility constraints are not implemented. (a) Up-
ward operating reserve; (b) Downward operating reserve.

Optimal UC and ED decisions are listed in Tables 2 and 3. The costs of generator
g9 is USD 0/MW for reserve and USD 0/MWh for generation; however, g9 was mostly
turned off because of a high minimum output level. The generator g5 has a relatively
low generation cost and high ramp rates, so it has a high possibility of being committed.
However, it was finally turned on from t = 5 by the minimum down-time constraint.
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Table 2. Optimal unit commitment decisions without considering reserve feasibility.

Unit
Time Interval (h)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

g1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
g3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
g4 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
g5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
g10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 3. Optimal first-stage economic dispatch decisions without considering reserve feasibility.

Unit
Time Interval (h)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

g1 32 32 32 30.4 30.4 30.4 30.4 30.4 30.4 32 58.9 92.9 152 50.8 82.6 32 32 32 150.4 95.4 32 32 30.4 30.4
g2 0 0 0 0 0 0 0 0 0 0 0 75 75 75 75 75 75 75 75 75 75 75 75 75
g3 0 0 0 0 0 0 0 0 0 0 0 0 0 206.9 206.9 0 0 0 0 0 0 0 0 0
g4 12 12 12 12 0 0 0 0 0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 0
g5 0 0 0 0 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 113.9
g6 155 155 155 155 54.3 66.7 82.5 141.2 155 155 155 155 155 155 155 155 155 155 155 155 155 155 119.3 54.3
g7 174.0 187.0 182.9 185.2 183.4 186.4 193.5 198.4 200.2 209.4 195.7 218.8 218.8 218.8 220.3 216.6 214.9 213.1 204.2 204.0 201.9 196.0 189.5 182.6
g8 374.8 350 350 350 350.9 350 350 350 350 350 363.7 350 388.0 354.6 350 350 350 350 363.5 350 350 350 350 350
g9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 300 300 300 0 0 0 0 0 0
g10 310 310 310 310 292.1 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310
g11 350 270.4 219.0 175.9 140 140 140 140 186.1 266.5 350 350 350 350 350 310.6 287.1 252.8 350 350 339.0 221.0 140 140
s1 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
s2 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
s3 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
s4 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
s5 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
w1 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w2 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w3 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w4 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w5 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w6 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
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4.2. Reserve Feasibility in Ramp Constraints

The impact of considering reserve supply in the ramp constraints is simulated by
applying the constraints (7) and (8) and excluding the constraints (9)–(12). Optimal reserve
deployments are illustrated in Figure 7.
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Figure 7. Optimal reserve deployments when reserves are considered in the ramp constraint:
(a) upward operating reserve; (b) downward operating reserve.

Unlike the case shown in Figure 6, g8 is determined not to provide the upward reserve.
The total amount of deployed upward reserves by g7 is decreased from 1802.8 MW to
1368.2 MW, which is about a 24% decrement. For downward reserves, deployments decline
from 1166.5 MW to 437.6 MW by g7 and from 2871 MW to 1200 MW by g8. The decrements
indicate that these amounts of reserves are not feasible by ramp rates when upward and
downward reserves are supplied by one generator.

Optimal UC and ED decisions are listed in Tables 4 and 5. The committed hours of
all generators increases from 200 to 209 h during the operating period, and dispatched
energy from thermal generators at the first stage also increases from 36,968 MWh to
36,976 MWh. Optimal wind and solar energy generation at the first stage is determined to
simply minimize changes in operating points at the second stage because no constraints
are implemented to raise renewable energy generation.
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Table 4. Optimal unit commitment decisions considering reserves in the ramp constraints.

Unit
Time Interval (h)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

g1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g2 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
g4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
g10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 5. Optimal first-stage economic dispatch decisions considering reserves in the ramp constraints.

Unit
Time Interval (h)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

g1 32.0 32.0 32.0 32.0 32.0 30.4 30.4 32.0 30.4 32.0 32.0 47.2 32.0 32.0 32.6 33.3 32.0 32.0 106.4 39.2 32.0 32.0 30.4 30.4
g2 0 0 0 0 0 0 0 0 0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0
g3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 206.9 206.9 206.9 206.9 0 0 0 0 0 0
g4 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0
g5 0 0 0 0 135.1 155 144.2 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 141.4
g6 155.0 155.0 155.0 155.0 54.3 54.3 54.3 88.7 153.1 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 115.7 54.3
g7 194.3 197.1 188.3 186.0 183.4 186.4 193.5 198.4 202.0 204.7 209.4 214.5 219.1 221.4 220.3 219.0 216.0 213.7 211.7 213.7 203.2 198.7 185.1 170.3
g8 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 378.3 400.0
g9 0 0 0 0 0 0 0 0 0 0 0 0 300.0 300.0 0 0 0 0 0 0 0 0 0 0
g10 310.0 310.0 310.0 288.5 249.4 260.5 287.1 298.9 294.1 310.0 310.0 310.0 310.0 310.0 310.0 310.0 310.0 310.0 310.0 310.0 310.0 288.5 288.5 232.9
g11 304.5 210.4 163.6 145.0 140.0 140.0 140.0 140.0 140.0 146.3 251.9 350.0 157.7 230.3 350.0 350.0 329.1 295.4 350.0 350.0 287.8 192.5 140.0 140.0
s1 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
s2 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
s3 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
s4 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
s5 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
w1 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w2 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w3 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w4 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w5 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w6 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4



Energies 2022, 15, 6221 17 of 22

4.3. With Reserve Feasibility Constraints

Optimal reserve deployments are presented in Figure 8 for the case in which the
feasibility of reserves is considered in ramp constraints (7) and (8), and t + 1 feasibility
constraints (9)–(12) are applied to the formulation. The upward reserves are deployed by
six thermal generators, and a large portion of reserves are deployed by the generators that
have high maximum capacity and ramp-up rates, g2 and g3. The generator g7 provides a
1213 MW upward reserve, which is a decreased amount compared to the case implementing
the reserve feasibility in the ramp constraints when the upward and downward reserves
are deployed consecutively.
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Figure 8. Optimal reserve deployments when reserve feasibility is considered: (a) upward operating
reserve, (b) downward operating reserve.

Downward reserves are mostly deployed by generators g5, g6, and g8. The reserve
costs for generators g5 and g6 are relatively high compared to g7. However, their gen-
eration costs are low, so they are fully dispatched up to their maximum capacity limits
while the downward reserves are deployed. Optimal UC and ED decisions are shown in
Tables 6 and 7. Optimal energy generation by thermal generators is 36,978 MWh, and this
value shows that thermal generation is increased compared to the case in which feasibility
is considered in the ramp constraints.
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Table 6. Optimal unit commitment decisions considering feasibility of reserves.

Unit
Time Interval (h)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

g1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
g3 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
g4 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
g5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 7. Optimal first-stage economic dispatch decisions considering feasibility of reserves.

Unit
Time Interval (h)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

g1 30.4 32.0 33.6 32.0 32.0 30.4 30.4 32.0 32.0 32.0 32.0 47.2 30.4 30.4 32.6 33.3 32.0 32.0 106.4 39.2 32.0 32.0 32.0 30.4
g2 0 0 0 0 0 0 0 0 0 0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 0
g3 358.9 206.9 0 0 0 0 0 0 0 0 0 0 206.9 206.9 206.9 206.9 206.9 206.9 0 0 0 0 0 0
g4 12.0 0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 0
g5 0 0 0 0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0
g6 134.6 155.0 155.0 155.0 112.2 107.9 124.4 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 80.3 64.0
g7 181.9 187.0 182.9 185.2 183.4 186.4 193.5 198.4 202.5 204.7 209.4 214.5 219.1 221.4 220.3 219.0 216.0 213.7 211.7 213.7 203.2 198.7 202.2 182.7
g8 350.0 400.0 375.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0
g9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g10 199.9 130.0 288.5 288.5 171.4 206.8 206.1 232.3 275.5 310.0 310.0 310.0 310.0 310.0 310.0 310.0 310.0 310.0 310.0 310.0 310.0 288.5 284.6 284.0
g11 140.0 207.3 214.0 145.8 140.0 140.0 140.0 140.3 154.7 221.3 251.9 350.0 252.4 325.0 350.0 350.0 329.1 295.4 350.0 350.0 287.8 192.5 140.0 140.0
s1 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
s2 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
s3 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
s4 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
s5 0 0 0 0 0 0 0.1 3.2 9.5 9.9 6.8 4.3 7.5 4.3 0.2 0.2 0.2 3.3 6.4 0.5 0 0 0 0
w1 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w2 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w3 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w4 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w5 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
w6 5.6 9.3 7.1 6.1 4.4 2.0 1.4 2.4 1.2 6.5 6.1 4.0 2.1 1.7 2.5 1.7 2.6 2.9 4.4 2.9 4.2 5.9 6.9 2.4
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4.4. Computational Time

Elapsed times in GAMS to obtain the optimal solutions for the three cases described
in Sections 4.1, 4.2, and 4.3 are about 310, 411, and 395 seconds, respectively. The relative
optimality criterion for the problems is set to 0.01 throughout the simulations. The elapsed
time is relatively short when feasibility constraints are not considered.

5. Discussion

In this paper, a stochastic UC model considering feasibility of upward and downward
operating reserves is proposed. The proposed model prevents the worst case in which
operating reserves cannot be supplied due to excessive deployments by a limited number
of generators.

Feasibility of reserves is ensured by applying two types of constraints that restrict
the two worst case: 1) upward and downward reserves are deployed consecutively by
one generator and 2) upward or downward reserves are consecutively deployed by one
generator. In these two cases, deployed reserves are not guaranteed to be supplied at time
t + 1 when reserves are supplied from time t. With the reserve feasibility constraints, the
number of committed thermal generators increases, and dispatched energy increases. The
number of thermal generators that provide reserves is also raised.

The proposed UC formulation provides one set of feasible, optimal solutions which
can be provided to system operators as day-ahead schedules with available redispatch
and load shedding in real-time. As a future work, the performance of the schedule will
be investigated.
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Nomenclature
The following abbreviations are used in this manuscript:

Sets/Indices
ω ∈ Ω Scenarios
t ∈ T Time interval, T = {1, 2, . . . , T}
g ∈ G All generators
c ∈ Gc Conventional generators, Gc ⊂ G
w ∈ Gw Wind generators, Gw ⊂ G
s ∈ Gs Solar PV systems, Gs ⊂ G
i ∈ I Electric buses
l ∈ L Transmission lines
d ∈ D Electric demand (electric load)
Data/Parameters
scostc Start-up cost for conventional generator c (USD)
rucostc Upward operating reserve cost for generator c (USD/MW)
rdcostc Downward operating reserve cost for generator c (USD/MW)
gcostg Operating cost for generator g (USD/MWh)
sdcost Second-stage redispatch cost for all generators (USD/MWh)
pcost Penalty cost of unserved demand (USD/MWh)
Λgi Generator-node incident matrix
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Λli Transmission line-node incidence matrix
Λdi Demand-node incident matrix
δd Load distribution factor for demand d
γw Wind distribution factor for wind farm w
rup

t Fixed upward reserve requirement at time t (MW)
rdn

t Fixed downward reserve requirement at time t (MW)
gmax

c Maximum generation capacity of generator c (MW)
ruc Ramp-up rate for generator c (MW/h)
rdc Ramp-down rate for generator c (MW/h)
suc Start-up rate for generator c (MW/h)
sdc Shut-down rate for generator c (MW/h)
gmin

c Minimum generation level of generator c (MW)
Pmax

s (ξω) Availability of solar PV generation for scenario ω (MW)

ξω
dt, ξω

wt, ξω Realized electric demand, available wind power, and solar PV generation at time
t for scenario ω

utmin
c Minimum up time (h)

utsum
c Sum of up hours for generator c at time t = 0 (h)

dtmin
c Minimum down time (h)

dtsum
c Sum of down hours at time t = 0 (h)

u0
c Initial on/off state for generator c at time t = 0

f max
l Maximum power flow on the line l (MW)

Xl Reactance of line l (p.u.)
h Operating hour for time interval t (h)
pω Probability for the scenario ω

Binary decision variables
Utc Unit commitment decision for generator c at time t
Vtc Start-up decision for c at time t
Wtc Shut-down decision for c at time t
Continuous decision variables
Ptg, Ptc, Ptw, Pts Power generation of g, c, w, and s at time t (MW)
Pmaxω

tc Maximum capacity of generator c at time t (MW)
Pω

tg, Pω
tg Redispatch for generator (MW)

Rtg, Rtg Upward and downward reserves (MW)
f ω
tl Power flow on transmission line l (MW)

θω
ti Voltage angle at bus i (radian)

UDω
td Unserved electric demand (MW)
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