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Abstract: Hot dry rock (HDR) geothermal energy, as a clean and renewable energy, has potential
value in meeting the rapid demand of the social economy. Predicting the temperature distribution of
a subsurface target zone is a fundamental issue for the exploration and evaluation of hot dry rock.
Numerical finite–element simulation is currently the mainstream method used to study the variation
in underground temperature fields. However, it has difficulty in dealing with multiple geological
elements of deep and complex hot dry rock models. A Unity networking for hot dry rock temperature
(HDRT–UNet) is proposed in this study that incorporates the matrix rock temperature field equation
for relating the three parameters of density, specific heat capacity and thermal conductivity. According
to the numerical geological structures and rock parameters of cap rocks, faults and magma intrusions,
a new dataset simulated by the finite element method was created for training the HDRT–UNet. The
temperature simulation results in the Gonghe basin show that the predicted temperatures within
faults and granites were higher than their surrounding rocks, while a lower thermal conductivity
of the cap rocks caused the temperature of overlying strata to be smaller than their surrounding
temperature field. The simulation results also prove that our proposed HDRT–UNet can provide a
certain evolutionary knowledge for the prediction and development of geothermal reserves.

Keywords: hot dry rock (HDR); UNet; temperature field

1. Introduction

Geothermal energy is a kind of clean and renewable energy in deep strata, and it is one
of the alternatives to fossil fuels such as coal, oil and natural gas [1]. Geothermal energy
has the advantages of large reserves, broad distribution, good stability and high utilization
efficiency. Hot dry rock power generation technology can greatly reduce the impact of the
greenhouse effect and acid rain on the environment, and it is not restricted by seasons and
climates, so it can be developed and utilized all the time. The cost of using hot dry rock to
generate electricity is only half that of wind power [2]. Geothermal energy is more stable
and superior to wind power, solar power and tidal power. It also has more development
potential [3]. However, predicting the evolution of formation temperature is the basis for
evaluating the reserves of hot dry rock geothermal resources, calculating the development
potential and designing the development plan [4]. Temperature field simulation of hot
dry rock predominantly includes a numerical simulation and interpolation method. The
available numerical simulation method lacks the theoretical formula to deal with complex
models with multiple geological elements. The reliability of the interpolation method
depends on the data coverage rate, which will increase the cost. Therefore, based on
the in–situ measured temperature data and rock parameters, predicting the formation
temperature field is a very challenging task.

A key distribution law of the temperature field can be provided for engineering
practice through the numerical simulation of HDR geothermal energy. Researchers have
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explored various HDR simulation methods and conducted a large number of numerical
simulation studies [5,6]. Blocher (2010) highlighted the importance of numerical simulation
in geothermal research [7]. Zeng et al. (2013) investigated sensitive parameters based on
logging data and numerical simulation [8]. Shi et al. (2018) researched the influence of
key factors such as groundwater on geothermal systems with numerical simulation [9].
Zhang et al. (2021) surveyed the feasibility of extracting geothermal energy from hot dry
rock by a 2500 m super–long gravity heat pipe by numerical simulation [10].

At present, the simulation of temperature fields is predominantly based on the finite
element method (FEM). Feng et al. (2012) used the FEM to analyze the zonal temperature
distribution [11]. Zhao et al. (2014) established a fractured reservoir model of HDR by the
FEM, reviewed a formula of water temperature change according to the measured–fracture
water temperature change and the fracture model, and used this formula to forecast the
future water temperature change [12]. Wei et al. (2019) numerically simulated the changes
in temperature, stress and seepage after the exploitation of the Yangbajing geothermal
field in Tibet by the FEM [13]. Zeng et al. (2020) numerically studied the distribution of
temperature field, pressure field and water density in the Zhangzhou geothermal field
by using the FEM and analyzed the main factors affecting the temperature field, pressure
field and water density [14]. Li et al. (2020) established the hydrodynamics and heat
transfer model by the finite element software ANSYS fluent and studied the heat transfer
between the heat exchange tube and the surrounding rock in the process of heat storage
and extraction [15]. Chen et al. (2021) utilized the Finite Volume Method to solve a thermal–
hydraulic–mechanical coupling model. Several numerical experiments were carried out and
compared with commercial software to verify the feasibility of the method [16]. S. Üner and
D. Dusunur (2021) created a complete hydrothermal geophysical model by implementing
the finite volume code ANSYS fluent. In this model, the physical and thermal properties of
existing rocks are used to compute and display the fluid velocity and temperature mode [17].
The embedded discrete fracture model (EDFM) directly divides the bedrock into structured
grids, then embeds the fractures into the bedrock grid system, and forms the fracture
grid according to the intersection with the bedrock. The extended finite element method
(XFEM) is an effective numerical method for solving the discontinuous problem. Li et al.
(2021) used the embedded discrete fracture model (EDFM) and the extended finite element
method (XFEM) to analyze the distribution of pressure, temperature and displacement
fields in EGS. A combination of the EDFM and the XFEM was proposed to reduce the
number of grids, enhance the calculation efficiency and maintain a high accuracy [18].
Diego Viesi et al. (2022) used 3D finite element modeling to evaluate the thermal effect in
the ground according to real cases, such as the Madonna Bianca neighborhood in the city
of Trento [19].

Intelligent big–data processing requires a reasonable processing cycle, and HDR tem-
perature numerical simulation needs to calibrate the numerical geothermal model with
detailed geological structure information. This procedure usually depends on the expe-
rience of geothermal workers, a large number of parameter adjustments and repeated
tests. As it is time–consuming and subjective work, it is urgent to explore a new intelligent
HDR temperature simulation method. In recent years, a large number of machine–learning
methods have been developed to automatically extract features and discover the relation-
ship hidden in a large number of data, which is conducive to establishing a functional
relationship between the temperature field and rock parameters [20]. In recent years, it has
been increasingly used in geothermal research. Based on artificial neural network (ANN)
predictive control, Gang et al. (2014) proposed a method of hybrid ground–source heat
pump systems and compared them with the methods of schedule–based and temperature–
differential–based control systems. [21]. Gradient Boosted Regression Tree (GBRT) is
composed of several decision trees, and the output results of all the trees add up to be
the final answer. Rezvanbehbahani et al. (2017) establish a complex relationship between
geothermal heat flow (GHF) and the geologic–tectonic features using GBRT algorithm
techniques and then predicted the GHF for the Greenland Ice Sheet [22]. Tut Haklidir and



Energies 2022, 15, 6162 3 of 17

Haklidir (2020) used a deep neural network (DNN) and a traditional machine learning
algorithm to predict geothermal fluid temperature. The results showed that the DNN
algorithm had a better performance and more accurate prediction [23]. Maryadi M et al.
(2021) used ANN combined with magneto–telluric technology to conduct geothermal
exploration in Indonesia [24]. Vivas and Salehi (2021) established data sets and labels
using drilling data and thermal conductivity, respectively, and evaluated the effects of four
different supervised–regression algorithms in testing thermal conductivity, and finally con-
cluded that a KNN (k—Nearest Neighbor algorithm) algorithm can better predict thermal
conductivity, and subsequently applied this algorithm to actual data [25]. He et al. (2022)
used the machine–learning method to predict geothermal heat flow in the Bohai Basin [26].
Yang et al. (2022) established the complex relationship between the identification factor
and temperature by a depth–confidence network, and finally predicted the formation
temperature [27]. The above studies show that machine learning is a feasible method for
temperature prediction in hot dry rock geothermal areas.

In this study, we propose a HDRT–UNet method to resolve the issue of temperature
simulation for deep complex hot dry rock. First, the HDRT–UNet model is introduced
that contains a HDRT–UNet structure and parameter fusion. Second, we introduce the
establishment of a temperature simulation data training set by classic numerical mod-
els, and two complex geological models are used to test the performance of the proposed
method. Finally, we discuss the proposed method and analyze the influence of hyperparam-
eters, training data sets and other aspects on our proposed method. The evolution law of
temperature fields involved with fractures, caprocks and other factors is also investigated.

2. HDRT–UNet Methods
2.1. Review of Temperature Control Formula

There are many rock parameters that affect underground temperature fields [28,29].
In this paper, the relations of three key parameters (specific heat capacity, density, thermal
conductivity) are determined according to the basic equations of temperature field con-
trol. The value range of the three parameters is quite huge, which has a great influence
on network fitting. A physical relationship between thermal diffusivity and the three
parameters is used to eliminate the influence of multi–parameter coupling and different
value amplitudes.

Three basic equations of temperature field control are listed:
Mass conservation equation:

∂ρ

∂t
+∇

(
ρ
→
ν
)
= 0 (1)

Momentum conservation equation:

∂
(

ρ
→
ν
)

∂t
+∇

(
ρ
→
ν
→
ν
)
= ρ

→
F +∇

(→
τ
∗)

(2)

Energy conservation equation:

∂(ρT)
∂t

+∇
(

ρ
→
ν T
)
= ∇

(
λ

c
gradT

)
(3)

where λ denotes thermal conductivity; ρ is density;
→
ν is speed; t is time;

→
F is physical

strength;
→
τ
∗
= −p

→
I +

→
τ , p is pressure;

→
I is unit tensor;

→
τ is viscous stress tensor; c is

specific heat capacity of rock; and T is rock temperature.
Initial conditions:

Ti(x, y, t) (4)

where Ti denotes the temperature at t time and in the position (x,y) under the initial conditions.
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Dirichlet boundary conditions: 
TUpper = 15

TLower = Ts

TLe f t = 0

TRight = 0

(5)

where Ts denotes the temperature given on the boundary, Ti = Ts;TUpper, TLower, TLe f t, TRight
are the boundary conditions of upper, lower, left and right boundaries of the
model, respectively.

Assuming that there is no water in the hot dry rock and the heat exchange among the
strata is conducted in the way of heat conduction, the flow rate

→
ν is 0:

Q + λ∇2T = ρc
∂T
∂t

(6)

where Q = Ti = Ts.

2.2. HDRT–UNet Method for Temperature Field

In the simulation of the temperature field by the finite element method, the debugging
of parameters and the personnel experience will have a great influence on the results. The
UNet is a neural network consisting of a classical encoder–decoder framework to discover
hidden features or patterns in data [30]. The UNet’s powerful nonlinear mapping ability
can be used to explore a relationship between a temperature field and rock parameters and
reduce the influence of parameter debugging and human factors. We propose a HDRT–
UNet method for establishing the functional relationship between the thermal diffusivity
and the temperature fields.

Figure 1 shows that the architecture of our HDRT–UNet model has an end–to–end
framework. In order to fit to the data, we made two major modifications to the UNet. First,
we changed the UNet three–channel input into a single channel. Secondly, in the UNet,
the number of output and input channels is 3 channels of RGB. To complete our task, we
changed the output layer and the input layer to 1. To accomplish our task, we change the
number of channels in the output and input layers to 1.
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The relationship between 2D temperature field and various physical parameters can
be expressed as:

∂T
∂t

= a
(

∂2T
∂x2 +

∂2T
∂y2

)
(7)

where a represents the thermal diffusivity. It can be described as follows:

a =
λ

cρ
(8)

The HDRT–UNet takes a geological model of thermal diffusivity as an input, and the
temperature field simulated by the finite element method serves as its expected output.
This process can be expressed as:

T = Net(a; θ) (9)

where Net(·) denotes an HDRT–UNet that indicates a nonlinear mapping of the network;
θ = {W, b}, W and b are learnable parameters; W represents a weight matrix; b represents
a bias matrix.

In the training process of the neural network, the objective function is continuously
optimized and adjusted. By repeatedly comparing the difference between the current
objective function and the expected objective function, the super parameters (weight and
deviation) of each layer in the neural network are adjusted. Through the optimization and
adjustment of the objective function, the error between the network temperature prediction
Net(a; θ) and the expected temperature output T is gradually reduced. We used the mean
square error function to measure the error between Net(a; θ) and T:

L(θ) =
1

2N

N

∑
i=1
‖Net(ai; θ)− di‖2

F (10)

where the term ‖ · ‖2
F represents the Frobenius norm; {ai; di}N

i=1 represents the number of
training samples.

For updating the learned parameter θ, the optimization problem can be solved by
using back propagation and adaptive moment estimation algorithms (Adam) [31].

θ(i) = θ(i) − α
∂L(θ)
∂θ(k)

(11)

where θ(i) represents the neural network parameters of layer i, α represents the learning rate.
The structure of the HDRT–UNet is shown in Figure 1. The HDRT–UNet is a network

structure containing an encoder and decoder. A geological model of thermal diffusivity
is set as an input, which is followed by the encoder. The encoder is composed of a
convolutional layer and a pooling layer. After applying maxpool, the size of the feature
maps is changed to half of the previous one. Then, there is the decoder, in which a
transposed convolution operation is applied to amplify the output size to make it the same
as the input geological model. Finally, the functional relationship between the temperature
field and the formation thermal conductivity coefficient is gained through the convolution
layer, pool layer and convolution layer, and the network simulation of the temperature
field is realized.

The encoder includes a convolution layer and a down–sampling layer, and the opera-
tion performed by the convolution layer can be represented by the following formula:

ak = ReLU(BN(Wk · ak−1 + b)) (12)

where ak represents the characteristic diagram of layer K in the encoder; ReLU(·) represents
the Rectified Linear Unit; BN(·) represents the Batch Normalization. In the convolution
layer of the encoder, the feature map from the previous layer will be calculated twice
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according to Formula (10) (the convolution kernel size is 3 × 3 in convolution operation,
and the convolution step size is 1), and the size of the feature map will be kept unchanged
by zero padding. After the first convolution, the number of feature maps doubles, while the
number of feature maps in the second convolution remains unchanged. The convolution
layer is followed by the down–sampling layer, and the operations performed by the down–
sampling layer can be expressed as:

ak+1 = Down(ak) (13)

where Down(·) represents the down–sampling operation. The improved HDRT–UNet
adopts a convolution operation with a convolution kernel of 4 × 4 and a convolution step
size of 2 instead of maximum pooling, which increases the complexity of the network calcu-
lation and the consumption of the GPU. In order to reduce the large number of calculations,
the maximum maxpool in the traditional HDRT–UNet is used for down–sampling.

The HDRT–UNet connects four concatenates between the encoder and decoder to fuse
features of different scales, as shown in Figure 1. The decoder includes a convolution layer
and an up–sampling layer. In the convolution layer of the decoder, the feature map from
the upper layer is spliced with the feature map from the encoder by jumper wires, and
the spliced feature map is used as the input of the convolution layer. The process can be
expressed as follows:

al = ReLU
(

BN
(

Wl · Cat
(

al−1, aencoder
l−1

)
+ bl

))
(14)

where al represents the characteristic diagram of layer l in decoder; aencoder
l−1 represents the

characteristic diagram with the same number of channels as al−1 from the encoder; Cat(·)
represents the splicing operation. The result of Formula (14) is subjected to a convolution
operation as shown in Formula (12) again (convolution kernel size is 3 × 3, convolution
step size is 1), and zero padding is performed to obtain the output result of the convolution
layer in the decoder. After the first convolution, the number of feature maps is reduced
to half of the original number, and the number of feature maps in the second convolution
is unchanged. The convolution layer is followed by the sampling layer. After transposed
convolution, the size of the feature map is doubled, and the number of feature maps is
reduced to one half. In the last layer of the decoder, the functional relationship between
the temperature field and the thermal conductivity coefficient is obtained by convolution
with a convolution kernel with a size of 1 × 1. After the training of the HDRT–UNet,
one can input the geological model that needs to simulate the temperature field, and the
HDRT–UNet can realize the end–to–end temperature field simulation.

2.3. Data Set Preparation

As a data–driven algorithm, the performance of the proposed HDRT–UNet depends on
the training data set. In order to explore the functional relationship between the temperature
field and the thermal diffusivity, we used the formation parameters from petrophysical
experiments of an actual underground structure to establish a geological model for the
training data set by the finite element method. The following basic assumptions were
proposed to establish the mathematical model in this study.

1. The matrix rock block and the rock mass with faults were simplified as a continuous
medium of homogenous isotropic elastomers.

2. The rock mass was hot dry rock, and the factors such as water permeability and
water storage of the rock block were neglected in the geological model. Since the rock
radiation heat transfer was complicated to deal with, only conduction heat transfer
was considered.

3. There was no heat source in the geological model, and the deep mantle heat was
considered as the boundary of the model when initial conditions were set.
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For the training data set, we established a 2D geological model containing density,
thermal conductivity and specific heat capacity. The parameters of the rock mass are
listed in Table 1. The geological model meets the above basic assumptions, and the size
of each geological model was 16 × 16 km, the temperature of mantle heat source was
500 ◦C, and the ground temperature was 15 ◦C. Figure 2 shows 6 geological models from
the training data set. When inputting the geological model into the neural network, we
adjusted the relative position of the stratum to an absolute position. Figures 3–6 show the
density, specific heat capacity, thermal conductivity and calculated thermal diffusivity in
the geological model. After the establishment of the geological model, we simulated the
heat conduction of the model by the finite element method, calculated the temperature
field after 100,000 years, and established the label of the training data as shown in Figure 7.

Table 1. Rock mass parameters.

Parameter Unit Matrix Rock Block

Density Kg m−3 2500~2700
Thermal conductivity W m−1 ◦C−1 1.5~3.1
Specific heat capacity J kg−1 ◦C−1 700~800
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Figure 7. The temperature field labels of six geological models (a–f) from the training data set.
(a) Temperature field of Graben model, (b) temperature field of pleated–structure model, (c) temper-
ature field of magmatic intrusion model, (d) temperature field of platform model, (e) temperature
field of magmatic intrusion model, (f) temperature field of magmatic intrusion model. The finite
element method was used to simulate the heat conduction of the model, the temperature field after
100,000 years was simulated, and the label was established.

Data preprocessing was used to reduce the influence of the numerical difference
between the parameters of the model and decrease the fitting time of the HDRT–UNet. We
used the normalization method to preprocess the formation parameters. The purpose of
normalization is to process the data of different scales and dimensions, so that they can
be scaled to the same data interval and range, so as to reduce the influence of the scale,
characteristics and distribution differences on the model. If normalization is not carried out,
the values of different features in the feature vector are quite different. When the gradient
descends, the direction of the gradient will deviate from the direction of the minimum
value, resulting in a too–long training time or network under–fitting. In this paper, the
numerical value of thermal diffusion was reduced to the range of [0, 1] by the normalization
method and input into the network. The normalization formula is:

x∗ =
x

xmax
(15)

where x is the original formation parameters, xmax is the maximum value of data, and x∗ is
the normalized formation parameters.

In order to expand our training data, we cut the training data and tags into
160 × 160 slices, and we obtained 9000 slices and their corresponding tags. Among them,
7200 slices were used as the synthetic training data set of the network, and the other
1800 slices were used as the verification set.

2.4. Training the HDRT–UNet

We used 0.001 as the initial learning rate; the learning rate was attenuated using the
cosine–annealing algorithm [32]. We selected 32 and 100 for the batch size and epoch,
respectively. We used the Adam algorithm to optimize the learning objectives [31]. Figure 8



Energies 2022, 15, 6162 11 of 17

shows the change in the value of the loss function during network training. As shown in
the figure, the loss value dropped rapidly in the epoch from 0 to 40, slowed down in the
epoch from 40 to 80, and reached a lower value near the 80th epoch and tended to be steady.
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3. HDR Mode Temperature Simulation
3.1. Two–Testing Geological Model

In this section, we test the effectiveness of the network based on the training data.
We designed two geological models with a size of 16 × 16 km as shown in Figure 9. The
geological model in Figure 9a contains the heat conduction channels and granite with high
thermal conductivity, and the geological model in Figure 9b contains a heat conduction
channel and a non–thermal conductive caprock. We simulated the temperature field by
using the finite element method and HDRT–UNet, respectively, and the corresponding
simulation results are shown in Figures 10 and 11.
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Figure 10 shows the simulation of the temperature field of the geological model in
Figure 9a by the finite element method and the HDRT–UNet. The results show that the
simulation effect of the HDRT–UNet on the heat conduction channel and granite with good
thermal conductivity was better than that of the finite element method. Figure 11 shows
the simulation of the temperature field of the geological model in Figure 9b by the finite
element method and the HDRT–UNet. The results show that the simulation effect of the
HDRT–UNet on the heat conduction channel was better than that of the finite element
method, and the effect of the finite element method on non–thermal conductive cover was
more obvious. The HDRT–UNet also had a certain effect on cover, but no finite element
software is sensitive to cover. These two geological models verify that the HDRT–UNet can
simulate the temperature field, but the network needs to be improved to avoid the poor
effect on the caprock in Figure 11.

3.2. Gonghe Geological Model

As the transitional zone between Qilian Mountain and Kunlun Mountain (Figure 12),
the Gonghe Basin has the advantages of wide distribution, good lithological conditions and
abundant hot dry rock resources [33]. The high–temperature mass drilled in Gonghe Basin
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is the first large–scale available hot dry rock resource with a temperature above 200 ◦C.
There are many cap rocks, faults and magma intrusions in the Gonghe Basin [34]. In terms
of stratum, the Gonghe area is mainly dominantly covered by thick Cenozoic deposits,
including mudstone, sandy mudstone, sandstone and glutenite in the Quaternary, Neogene
and Paleogene strata [35]. Triassic formations and Indosinian acidic magmatic rocks are
also present [36].
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Figure 12. The distribution of major tectonic structures in Gonghe Basin [37].

To further show the outstanding ability of the proposed model, we established a com-
plex geological model of the Gonghe basin with MATLAB, which included heat conduction,
intrusive granite rocks and cap rocks, as shown in Figure 13. We simulated the tempera-
ture field of the model with the HDRT–UNet. Figure 14 shows the simulation results of
temperature field by the HDRT–UNet. The heat conduction channels, caprocks and high–
temperature granite bodies had a tremendous influence on temperature field simulation.
The temperature field of the heat conduction channels and the high–temperature granite
body was higher than that of the surrounding rock, while the lesser thermal conductivity of
the cover layer lead to a lower temperature field above the cover layer than that around it.
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4. Discussion

The simulation results demonstrate that our proposed HDRT–UNet presents promis-
ing capabilities of simulating the temperature field of hot dry rocks. The purpose of this
research was to use the HDRT–UNet to simulate the temperature field, to solve the problem
of complicated setting conditions of the temperature field simulation and to achieve the
results in a faster time. Although the temperature field simulated by our method is encour-
aging, many factors in the HDRT–UNet can affect its performance, including the size of the
training data set, the setting of hyper–parameters (initial learning rate setting, batch size
and loss function selection) and the structure of the neural network. Consequently, this
section will discuss the advantages and disadvantages of the new method.

The limitation of our approach was that the simulation ability of the network pre-
dominantly depended on the data set. In general, the training data set should contain the
rock parameters and structural characteristics of the 2D geological model to be predicted.
That is, the supervised learning network used for the prediction has a direct impact on the
selection of training data sets and the amount of data. Figure 15 shows the prediction result
of the HDRT–UNet of the geological model of Figure 9 when there were no heat conduction
channels in the data set. Figure 15 shows that there were obvious errors in the results of
temperature field simulation, because the HDRT–UNet had not learned the parameters and
structural characteristics of the heat conduction channels, and it was under–fitting when
using the HDRT–UNet to simulate the temperature field. In most cases, a large number of
large–scale and varied training samples will make the HDRT–UNet more powerful, but the
training process takes longer.

The advantage of our method is realizing an end–to–end simulation and reducing the
influence of human factors. After a training process, the temperature field simulation result
of complex models also met the experimental requirements, and the time consumption was
shorter. The traditional finite element method used to simulate the temperature field of
hot dry rock must include six modules: model establishment, parameter setting, boundary
and initial conditions of the computing model, grid division, research and solution and
post–processing, which not only requires manual operation, but also consumes more
time. Neural network simulation of a temperature field only needs two steps: model
establishment and network simulation, which greatly reduces manual operation and saves
time. Table 2 shows the time taken using the finite element method to simulate the
temperature field (including only the method solution process) and using HDRT–UNet
to simulate the temperature field. The HDRT–UNet consumed less time, had a higher
efficiency, and its accuracy was within an allowable error range.
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Figure 15. Temperature field simulated from HDRT–UNet (excluding the heat conduction channels).
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Table 2. Time used to simulate temperature sites.

Method
HDRT–UNet Finite Element MethodProcess

Training 2880 min N/A
Simulation 2 s 5 min

5. Conclusions

A HDRT–UNet was proposed in this paper for simulating the temperature field of a
complex deep HDR formation that provides an alternative to the finite element method.
The conclusions are listed as follows:

1. The simulation of the temperature field needs to deal with the relationship between
thermal conductivity, specific heat capacity and density. We used the temperature
field equation and thermal diffusivity equation to transfer the three parameters into
the network to simulate the temperature field, thus realizing the fusion of multiple
parameters into the network training.

2. As a machine–learning method, our proposed method relies on training data sets
and labels, which are simulated by the finite element method (FEM). The results of
several numerical simulations demonstrate the feasibility of our proposed HDRT–
UNet method in temperature field simulation and its better effect on the complex
HDR model.

3. Temperature simulation of several numerical HDR geological models by our HDRT–
UNet method reached some conclusions. The cover layer had a great influence on the
regional temperature field, and its low thermal conductivity lead to the temperature
field above the cover layer being smaller than the surrounding temperature field. The
thermal channel is the transportation channel with the temperature moving up. The
transportation speed of heat energy in the thermal channel was obviously higher than
that in the granite and crust, and the temperature in the thermal channel was also
higher than that in the surrounding strata. However, granite showed the characteris-
tics that the internal temperature field was higher than the surrounding geothermal
field, and the heat energy migration speed was faster than the surrounding strata.
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