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Abstract: The rapid increase in solar photovoltaic (PV) integration into electricity networks introduces
technical challenges due to varying PV outputs. Rapid ramp events due to cloud movements are
of particular concern for the operation of remote islanded microgrids (IMGs) with high solar PV
penetration. PV systems and optionally controllable distributed energy resources (DERs) in IMGs can
be operated in an optimised way based on nowcasting (forecasting up to 60 min ahead). This study
aims to evaluate the performance under Perth, Western Australian conditions, of an all-sky imager
(ASI)-based nowcasting system, installed at Murdoch University in Perth, Western Australia (WA).
Nowecast direct normal irradiance (DNI) and global horizontal irradiance (GHI) are inputted into a
5 kWp solar PV system with a direct current (DC) power rating/alternating current (AC) power rating
ratio of 1.0. A newly developed classification method provided a simplified irradiance variability
classification. The obtained nowcasting system evaluation results show that the nowcasting system’s
accuracy decreases with an increase in lead time (LT). Additionally, the nowcasting system’s accuracy
is higher when the weather is either mostly clear (with a recorded LT15 mean absolute deviation
(MAD) of 0.38 kW) or overcast (with a recorded LT15 MAD of 0.19 kW) than when the weather is
intermittently cloudy with varying cloud conditions (with a recorded LT15 MAD of 0.44 kW). With
lower errors observed in lower LTs, overall, it might be possible to integrate the nowcasting system
into the design of IMG controllers. The overall performance of the nowcasting system at Murdoch
University was as expected as it is comparable to the previous evaluations in five other different sites,
namely, PSA, La Africana, Evora, Oldenburg, and Julich.

Keywords: direct normal irradiance; global horizontal irradiance; nowcasting; solar photovoltaic;
DigSILENT PowerFactory; irradiance variability classification

1. Introduction
Background and Motivation

The most significant challenge that the world is currently facing is anthropogenic
climate change, thus driving the development of sustainable energy solutions to avoid the
use of fossil fuels. This has led to the increasing utilisation of renewable energy resources
mostly solar photovoltaic, wind, and hydro. However, solar photovoltaic (PV) power can
have short-term variability, mostly due to variable cloud cover which presents challenges
to increasing PV penetration levels, particularly in islanded microgrids (IMGs) [1].

Currently, in some IMGs, these fluctuations in PV power output are being managed
by limiting PV connections, curtailing PV power output, using battery storage systems
to compensate for fluctuations in PV power output, or by using dump loads, flywheels,
or fuel cells [2-5]. Limiting power ramp (power ramp limiting is limiting/minimising
the fluctuation rate of PV output when the irradiance is fluctuating but still delivering
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maximum available power) is another technique to control the variable renewable energy
generation systems” output power [6].

However, these currently employed solutions can be costly and may limit renewable
energy resources’ penetration [7]. Therefore, utilities are investigating and trialling new
technologies and control methods (e.g., nowcasting) to meet the customers’ desire to enable
more rooftop PV within IMGs [8].

Nowcasting, which is very short-term solar irradiance forecasting, can possibly assist
in mitigating irradiance variability impacts on system management by predicting a near-
future PV output, which can be integrated into the control of IMGs, resulting in the
provision of the operational/spinning reserve to cover for the predicted reduction in PV
output. Operational reserve strategies incorporating nowcasting can provide benefits such
as reduced fuel consumption and increased hosting capacity [8]. Additionally, nowcasting
may reduce the required battery energy storage systems, thus reducing the system’s capital
cost [9]. In the analysis by Harris [9], it is reported that the battery energy storage system
would have been doubled in the absence of a nowcasting system. Nowcasting may also be
integrated for ramp rate control during cloud events by curtailing PV output.

All-sky imagers (ASIs) (All sky imagers are sky-facing surveillance cameras used
to take images of the sky at certain set time intervals) can be used for the development
of nowcasting systems for irradiance forecasts. The process in which nowcasts are per-
formed using ASIs is explained in detail by [10-17]. A few nowcasting tools have been
developed and/or evaluated under different conditions around the world. Table 1 sum-
marises the available sky-imagery-based nowcasting tools suitable for system-level control
applications [18]. However, the product information and information on the application
experiences of some outlined tools in Table 1 is limited (especially for InstaCast and SkyIn-
sight by Reuniwatt and Steady Eye by Steadysun) as they are primarily based only on the
manufacturer-provided information [19-21]. Reuniwatt analysed the benefits of integrating
nowecasting in a hybrid PV /diesel system. Results of this study by Boudreault et al. [20],
suggest that the integration of nowcasting to the hybrid PV /diesel system reduces the
system’s fuel consumption and reduces potential blackouts.

Table 1. Nowcasting tool examples.

Product/System and Forecast Parameters Forecast Horizon Application Examples and
Manufacturer References
Global horizontal irradiance 2E§£2Et%n?i§:r:gz§§1:r
Q4cast by CSP Service (GHI), direct normal 15 min commercial 50 MW solar
(Almeria, Spain) irradiance (DNI) and global

tilted irradiance (GTI)

power plant, La Africana in

Spain [22].

Steady Eye by Steadysun (Le GHI, DNI, GTI, PV system Up to 60 min, updated every .

Bourget-du-Lac, France) output (percentiles) minute Hybrid system [21].

InstaCast by Reuniwatt . . .
(Sainte-Clotilde, La Réunion, GHI, DNI, GTI, PV system 30 min Microgrid Example, Brazil

output [23].
France)
SkylInsight by Reuniwatt GHL, DNI,oStTpI{lFV system 10 min Hybrid PV-Diesel system [20].
CloudCAM by Fulcrum3D Irradiance/solar power Up to 15 min (depends on Karratha Airport IMW Solar

(Artarmon, NSW, Australia)

output

local atmospheric conditions)

Project [9].

The nowcasting system is of interest in Western Australia due to the existence of many
remote IMGs with abundant solar resources. The utilities and industries operating IMGs
are interested to examine the possibility of integrating nowcasting in the control of IMGs,
which can potentially lead to increased PV penetration [8]. One of the readily available
ASI nowcasting tools, developed by the DLR Institute of Solar Research is installed and
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evaluated at Murdoch University in Perth, Western Australia (WA) [22,24]. The purpose of
trialling the nowcasting system is to determine its accuracy in predicting near-future solar
PV power output in Perth conditions.

The performance of this ASI nowcasting system has been evaluated in Germany
(Oldenburg and Julich), Portugal (Evora), and Spain (La Africana and PSA) [25]. In the
performance evaluation, the mean absolute deviation (MAD) and root mean square devia-
tion (RMSD) were calculated for DNI, and in some locations also for GHI, but not for solar
PV power output. However, this study focuses on the prediction of PV power output and
related uncertainties due to cloud events. The nowcast PV output power and ultimately
the error in the prediction is relevant for the IMG operators for accurate dispatching and
ramp rate control.

The following are outlined as the contributions of this study:

e DNl variability classification is one of the processes involved in the nowcasting system
performance evaluation [25]. The variability indices by [25-30] were used in the study
by Nouri et al. [25] to determine eight DNI variability classes. The persistence model
has been reported in the literature to be highly accurate on cloudless days and highly
overcast days with almost constant cloud conditions but incurs huge errors during
intermittently cloudy conditions [27]. Against this backdrop, and because most days
evaluated in this study are intermittently cloudy, a new simplified classification model
is developed. This model classifies conditions into mostly clear sky, intermittently
cloudy, and overcast. This simplified approach is deemed suitable in view of the
application of nowcasting in IMG control where the distinction between mostly clear
sky, overcast, and intermittently cloudy conditions may align well with distinct control
regimes suitable for these conditions. The proposed method utilises the mean and
standard deviation (STD) of daily DNI and GHI datasets, as well as integration tools
for the classification.

e  This study evaluates the performance of the nowcasting system in the southern hemi-
sphere (Perth, Western Australia). The performance of the nowcasting system has
been evaluated in northern hemisphere locations in Germany (Oldenburg and Julich),
Portugal (Evora), and Spain (La Africana and PSA) [25].

e  Inthe DigSILENT PowerFactory (PF), the highest resolution that can be inputted using
the inbuilt characteristic tool is 1 min. In this study, higher resolution (30 s) irradiance
data are utilised for the DNI and GHI nowcasts. These nowcasts are then inputted
into the solar PV system in PF for nowcast PV power output determination. As a
contribution, a scripting program was developed to input these high-resolution DNI
and GHI data into the solar PV system in PF to be able to determine the PV power
output, the MAD, and the RMSD of the PV power output.

This paper is structured into five sections. Section 2 describes an overview of the
nowcasting system set up at Murdoch University in Perth, followed by the performance
evaluation in Section 3. The results are presented and discussed in Section 4, and finally,
the conclusions and recommendations for future work are presented in Section 5 of this

paper.

2. An Overview of the Used Nowcasting System Set-Up

Two MOBOTIX Q26, 6 megapixels (MP), fisheye lens surveillance cameras are utilized
as ASIs at Murdoch University, Perth Campus in Western Australia. Table 2 presents
the technical details of the measurement equipment [31,32] and location details of the
ASIs, which are mounted 640 m apart from each other and other nowcasting system
components. The fisheye lenses of the cameras produce 180° x 180° hemispherical images
encapsulating the viewable sky from the camera location. Set to the maximum image
format of 6 megapixels (3072 x 2048), the cameras capture images every 30 s.
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Table 2. Nowcasting system components and locations.

Operational Location at
System Sensitivity =~ Response Field of Tempera- Murdoch Longitude  Latitude  Altitude
Component (LV/W/m?) Time (s) View (°) ture Range . . (° East) (° South) (m)
€0 University
Renewable
Outdoor
ASI'1 180 115.84051 32.07048 27
Test Area
(ROTA)
Engineering
and Energy
ASI 2 180 Building 115.8371 32.06613 52
220 (Bld
220)
CHP1
. 7to14 <5 5+02 —40 to +80 (Bld 220) 115.8371 32.06613 52
Pyrheliometer
2x CM11 7to14 <5 180 —40 to +80 (Bld 220) 115.8371 32.06613 52
Pyranometers
Thermofisher
DT80 (Bld 220) 115.8371 32.06613 39
Datalogger
Sky server (Bld 220) 115.8371 32.06613 39
Murdoch
University Murdoch 56389 3206732 6
University

weather station

A ground-based meteorological station at Murdoch University also forms part of
the nowcasting system. The flow diagram in Figure 1 summarises the configuration and
processing chain, whilst Table 3 summarises the steps involved in the processing chain
of the nowcasting system applied in this study. Figure 2a,b shows a MOBOTIX Q26
ASI mounted at Murdoch University and an example of a sky image taken by the ASI,
respectively.

Table 3. ASI nowcasting system processing steps [8].

Step Description
1 Cloud segmentation [22,33,34].
2 Cloud height and 3D cloud coordinates ‘determination [35].
3 Cloud motion vectors extraction [35].
4 Future cloud position prediction [36].
5 Cloud transmittance properties ‘'measurements [37].
6 Cloud shadows determination [36].
7 Derivation of DNI and GHI maps [36].

For evaluating nowcasts, high-resolution solar irradiance data are required. At least
one DNI measurement sensor needs to be installed adjacent to one of the ASIs for evaluation
purposes. In this study, a Kipp and Zonen CHP1 pyrheliometer used for DNI measurements
is installed on a Kipp and Zonen SOLYS2 sun tracker which is mounted less than one meter
from the ASI 2. In addition to the DNI, the diffuse horizontal irradiance (DHI) and GHI
are also recorded. Kipp and Zonen CM11 pyranometers are used for this purpose. A
DT80 Series 2 data logger is used to sample and record the irradiance and temperature
measurements from the pyranometers and pyrheliometer.
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‘ Sky camera hardware

v

Installation
(tilt requires calibration)

v

Masking of occluding objects
(trees, buildings, structures etc) to
remove all non-sky pixels

v

Lens distortion modelling/lens
calibration

v

Sun position tracking

v

Cloud classification
(differentiating clouds from sky)

v

3D cloud coordinates,

including cloud height

Movement vector extraction

v

‘ Cloud movement projection

v

Nowcasting
(Shadow map and surface
irradiance field, time of expected
irradiance)

Sky camera hardware can
range from low cost
(camera) solutions to high
quality cameras

Time and camera position
information, sun positioning
algorithms, machine learning to
overcome errors

Cloud segmentation using a
4-D clear sky library or
convolutional neural network

Stereoscopic approaches
based on multiple ASls

Figure 1. A flow diagram of nowcasting using ASIs.

—

(b)

Figure 2. (a) Mobotix 26 camera. (b) Sky image captured at Murdoch University in Perth.

Network, Connectivity and Storage

The ASI system at Murdoch University comprises two ASIs and a datalogger connected
via ethernet on a local area network. The sky images and irradiance measurements are
stored via the FIP to a server. The Mobotix cameras are both hardwired for power via a
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power over ethernet power supply, whilst the data logger and the SOLYS2 are hardwired
with a regulated 24 V DC supply. The maintenance of the cameras and irradiance sensors is
carried out periodically with a set schedule and maintenance log kept for consistency and
fault finding. Figure 3a,b shows the complete setup at the Murdoch University location.
The geographical coordinates of these components are presented in Table 2.

Legend:
1 — Building 220
2 — Renewable Outdoor Test Area (ROTA)

(b)

Figure 3. (a) Murdoch University ASI system overview. (b) Location of Building 220 and ROTA
facility at Murdoch University.
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3. Nowcasting System Performance Evaluation

The methodology for the performance evaluation of the ASI nowcasting system
considering various atmospheric conditions is outlined in this section. In stable conditions
with fewer fluctuations in DNI (low temporal irradiance variability), uncertainties decrease,
and when DNI variability is high (high temporal irradiance variability), uncertainties also
increase [38], thus low or high metric errors are detected depending on the dataset selected.

Figure 4 summarises the methodology employed for the performance evaluation
of the nowcasting system. The ASI nowcasting system is utilised to generate irradiance
nowcast maps, up to 15 min ahead. A reference point (Building 220 at Murdoch University,
where the irradiance sensors are located) was then identified from the generated maps.
Time-series DNI and GHI datasets are then produced from the irradiance maps and used
as inputs to a 5 kWp PV system in PF. The MAD and RMSD are then calculated from the
output power from the PV system.

Generate time series
data set from the

START

Generate nowcast
maps of the days/
period of interest
(period when the
system is operational
without
faults).(Executable/
MATLAB)

Reference points
identification
(geographical
locations of a

developed irradiance
maps of the reference
points (LT data in
time series of the
period of interest)
(MATLAB)

Simulate 5 kWp PV
system using the
reference and LT time
series data for the
period under study
(DigSILENT
PowerFactory).

Determine errors

(MAD and RMSE) in |

the outputs (Ms

Classify the days into
3 classes; (sunny,
variable and cloudy)

Determine errors
(MAD and RMSE) of
different classes and
compare in the
outputs (Ms Excel)

monitored PV system Excel) ( STOP

[Bd220 at MUY
(MATLAB) \.

Figure 4. ASI nowcasting system validation procedure.

3.1. Generation of Nowcast Irradiance Maps

The first phase of the methodology included the utilisation of MATLAB for the gener-
ation of DNI and GHI maps, the identification of geographical locations of the irradiance
sensors on top of Building 220 at Murdoch University, and the generation of lead time (LT)
time-series DNI and GHI datasets from the generated maps. The LTs were determined for
15 min ahead in 1 min intervals, thus from LT1 to LT15, representing nowcasts from 1 min
to 15 min ahead. The generated irradiance maps covered an area of 8 km by 8 km. The
area covered by the generated irradiance maps is enclosed as shown in Figure 5, whilst the
pictorial description of the nowcast is shown in Figure 6.

3.2. Simulation of PV System

A total of 47 days were considered for this study. These 47 days (between January 2021
and October 2021) represent all seasons and weather conditions. Furthermore, they denote
the days when the nowcasting system was fully operational, recording all the datasets
required for the nowcasts.

The GHI and DNI time-series data of those days were generated from LTO0 (which is
the same as the recorded reference data) to LT15. The generated LTO to LT15 time-series
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DNI and GHI time-series data are fed as inputs to a 5 kWp PV system, with a direct current
(DC)/alternating current (AC) ratio of 1.0, in the ‘Solar Calculation Model” in PF through
DPL scripting. The ‘Solar Calculation Model’ is selected to be able to feed into a high
resolution (<1 min) irradiance dataset for the solar PV model. Power in kW is generated as
one of the output parameters, which is then used to determine the nowcast errors.

Museum Sy

Murdoch |
= University :

A
Fremant!

=
T
|4

“UA jventure World
- E’Y‘DO'{:V !.C'OS §
ANMED .

7
!rBiga‘i?
A

Figure 5. Enclosed area shows the area for the generated irradiance maps.

HF

H

20m{:jj_l

8 km DNI Maps
LT1S
. ® i
. ° o |[i1 13
Y LT
.lT;T "
.IT§
* .ITEL[
° turi Temporal scale: 15 minutes
3 km o Resolution: | minute
71

Lead
Spatial Space: 8 km * 8 km Time

LT)0

Resolution: 20 m x 20 m

Figure 6. Description of the nowcast maps (DNI maps).

3.3. Error Metrics

The discretised RMSD¢ and MADc for both of the PV system output over the lead
times are determined using Equations (1) and (2). The RMSDc is an accuracy measure. In
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general, a lower RMSDc is better since the lower the RMSDc, the higher the accuracy of
the nowcasting system. The MADc is the average distance between each data point and
the mean which outlines the variability in a dataset.

1 .
MADc = —— } 7 | |¥;, — Vi | 1)
C
1 2
RMSDc = |- Y (Y, -1, @)

where Y;_and Y;, represent the reference and the corresponding nowcasted output power
value from the simulations, respectively. The reference output power is power generated
using reference DNI and GHI data, while the nowcast DNI and GHI generated nowcast
output power. The number of used validation time stamps is denoted by n¢, whilst i,
identifies all timestamps belonging to the same output power variability class. Further
analysis of errors after the classification of the days under consideration was performed.

3.4. DNI and GHI Variability Classification

Three classes are formulated for the DNI variability as displayed in Table 4 together
with corresponding brief descriptions. The three classes are mostly clear sky, intermittently
cloudy, and overcast. During the mostly clear sky conditions, the DNI is expected to have a
bell shape curve over a day, whereas, during the overcast conditions, the DNI is expected
to vary between 0-500 W/m?. As for the intermittently cloudy days, the DNI can fluctuate
from a low to high irradiance value and also produce a bell shape curve. There are some
days in which characteristics of all the three defined classes or more than one class may be
observed, for example, a morning with mostly clear sky conditions, followed by noon with
intermittently cloudy conditions and an overcast afternoon.

Table 4. DNI and GHI variability classification.

Class Description
1 e  Mostly clear sky conditions with low temporal irradiance variability.
2 e  Intermittently cloudy with high temporal irradiance variability.
3 e  Overcast with low temporal irradiance variability.

Figure 7a shows an example of a day in which all the three classes are observed on
the same day, whilst Figure 7b displays the metrics used for the classification exercise.
Figure 7c,d shows examples of the actual DNI characteristics of the three classes. The
shaded areas in Figure 7a,b are the regions where the DNI values are expected to be
present. Both the mostly clear sky and the overcast days have a small area compared to the
intermittently cloudy day. This was used as the first metric in identifying the intermittently
cloudy day. Another metric, the sliding hourly STD of the DNI values can be used to
identify the rest of the days. A high STD shows that the DNI values are far from the mean
value, while a low STD shows that the DNI values are close to the mean. The days on
which multiple classes are observed are also determined by calculating sliding hourly STD
and area within the day and then classified on an hourly period using the metrics shown in
Table 4. The overall class of the entire day is then determined by the class with the highest
frequency observed within the day.
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Figure 7. Cont.
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Figure 7. (a) A day in which all three classes are observed. (b) Simplified classification using mean,
standard deviation, and shaded area where DNI values can be expected. (c¢) Example of a mostly
clear sky (5 June) and an intermittently cloudy day (6 June). (d) Example of an overcast day (10 June).

3.4.1. Assigning High and Low Values to Metrics

The proposed method requires initial values of the classification metrics, the STD and
shaded area, to determine whether the metrics of a particular day fall into the high or low
class. The averages of the STD and the shaded area are stored as initial conditions within
the program.

3.4.2. Determining High and Low STD

A mostly clear sky day and an overcast day are manually selected by scanning the
sky images at the beginning. Sliding STDs of each day are computed on an hourly basis
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to allow for intraday variabilities. An average of the two days” STDs is then computed
and stored as an initial condition. If a random hour on a random day is selected and
its STD is computed, a comparison of this newly computed STD to the initial condition
(average STD, ~170 W/m?) will determine whether that hour has a high (>initial condition)
or low (<initial condition) STD. A mostly clear sky hour and an hour with variable DNI
(intermittently cloudy) will both have high STDs, whilst an overcast hour will have a lower
STD compared to the initial condition.

3.4.3. Determining High and Low Shaded Area

A mostly clear sky day and an overcast day are manually selected by scanning the sky
images at the beginning, then followed by a calculation of their individual shaded areas
using Equation (3), and then computing the average of the shaded areas. This average
of the shaded areas is then stored as an initial condition (~1272 W/m?). If a random day
is picked and its shaded area is calculated, a comparison of the calculated shaded area
with the initial condition of the shaded area will determine whether the shaded area of
that day falls in the high or low category. The shaded area is assigned a high value if it
is greater than the initial condition and low if the calculated shaded area is less than the
initial condition. A mostly clear sky and an overcast day will both have an area lower than
the initial condition set, while an intermittently cloudy day will have an area higher than
the initial condition set.

To find this shaded area, the difference between the first and second values of the DNI
is calculated. This difference is then added to the difference between the second and third
values of DNI. The sum of all the differences will give the shaded area of the class for that
day. Equation (3) shows the shaded area formula utilised, where A is the shaded area of
the class, n is the number of DNI datasets for that day, and x is the DNI data.

A= 2?:1\9@- — Xj41] i <n 3)

Table 5a summarises the conditions that can be used to identify the different classes. To
classify a selected hour, if both the value of the shaded area and STD are high, with respect
to the initial condition, the hour is classified as intermittently cloudy. If both assigned
values are low, the hour is classified as overcast, otherwise, the selected hour would be
classified as mostly clear sky. Table 5b shows the days used to calculate the initial conditions
for the classification exercise.

Table 5. (a) Conditions used for classification. (b) Dates chosen for initial conditions.

(@)

Value of Shaded Area Compared to the

Class Initial Condition Value of STD Compared to the Initial Condition
Mostly clear sky Low High
Intermittently cloudy High High
Overcast Low Low
(b)
Weather Condition Day Chosen
Mostly clear sky 5 January 2021
Overcast 10 June 2021

3.4.4. Classification Examples

Three days, displayed in Figure 7c,d (5 June, 6 June, and 10 June), were chosen
and classified using the newly developed classification method of this study. Hourly
classifications are calculated over the day, and the class with the majority occurrences in a
day is chosen to be the overall class of the day. Table 6 shows the frequency of each class on
an hourly basis for 10 h (from 07.00 to 17.00) and the chosen class for that day.
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Table 6. Class Frequency for 3 specific days (See Figure 7c,d).
Frequency Frequency Mostly
Date Frequency Overcast Intermittently Cloudy Clear Sky Chosen Class
5 June 2021 0 3 7 Mostly Clear Sky
6 June 2021 0 10 0 Intermittently Cloudy
10 June 2021 6 3 1 Overcast

4. Results and Discussion

To evaluate the operation of the nowcasting system under Western Australian con-
ditions, models were developed, and this section reports the outcomes of the analysis.
Figure 8 is a three-dimensional virtual modelling space with cloud models and a topo-
graphical map around Perth with spatial DNI information generated at a 30 s resolution.
This resolution corresponds to a 30 s resolution at which the sky images are logged as
inputs for the generation of the irradiance maps. These maps cover a surface area of
64 km? (8 km x 8 km). The Z-axis in Figure 8 shows the cloud height at the location of
the study. Cloud height is of importance as it determines how far into the future an ir-
radiance forecast can be determined. Figure 9 is a two-dimensional exemplary nowcast
DNI map also covering a surface area of 64 km?. In two dimensions, these maps are
displayed via 400 x 400 pixels, with each pixel representing certain geographical locations
of 20 m x 20 m. From Figure 8, it is observed that at the instant when that DNI map was
captured, the day was partly cloudy. The geographical location of the monitored PV system
(Figure 9) on top of Building 220 is 32.06613° south, 115.8371° east.

Irradiance map measuring Sky cameras at

8 %8 km Murdoch University

01.07.2021 12:07:00 Mode: 2 Ca

— 1200

S 1500 - 900

Q

£ 1000 .
c =
§ 500 €00 s
b =z
5 (=]
E O <

= W -

N -4000 300

X dimension in
m from west Lo eas!

Y dimension in
m from south to north

Figure 8. A three-dimensional virtual modelling space with cloud models and a topographical map
around Perth with spatial DNI information.

Figure 10 shows a sample output from the simulation displaying the PV power in kW.
It is observed that the output power is consistent with the input irradiance in the PF PV
model. From Figure 10, it can also be seen that there is an increase, then a decrease in the
output power as the day progresses, from 6 am to 6 pm. Additionally, Figure 10 displays
sample PV power outputs due to LTO (measured irradiance data at the time of the nowcast
LT7 value) and due LT7 (nowcast of 7 min ahead). It is observed that days 1, 3, 4, and 5
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are mostly clear sky days, whilst day 2 is intermittently cloudy. It is seen that the errors
are minimum on mostly clear days to intermittently cloudy. This is denoted by the almost
overlapping of power (LT0) and power (LT7) curves in mostly clear sky days as opposed to
intermittently cloudy days. The overlapping of the plots shows the matching between the
measured PV output power and the nowcast PV output power.

Monitored PV system
location at Murdoch

University
il

400 DNI (W/m?)
350 . ' ‘s
300 e
250 ] 500
200 400
150 300
100 200

5o 100

S0 100 150 200 250 300 350 400

Figure 9. A two-dimensional exemplary nowcast DNI map.
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Days

———powerLT0(kW) ———powerLT7(kW)

Figure 10. Sample PF PV power output.

Table 7 shows the distribution of the days under analysis. Figure 11a,b displays the
5 kWp PV system output power MADs and RMSDs, respectively. The lowest deviations
are observed in class 1 (with an LT15 MAD of 0.38kW), which represents mostly clear sky
conditions, and class 3 (with an LT15 MAD of 0.19kW), which represents overcast, whilst
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the highest deviations are observed for class 2 (with an LT15 MAD of 0.44 kW), which
represents intermittently cloudy conditions.

Table 7. Distribution of days under analysis.

Class Number of Days
1 (mostly clear sky) 17
2 (Intermittently cloudy) 24
3 (Overcast) 6
1.2 12
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Figure 11. (a) PV output power MAD:s for the three classes. (b) PV output power RMSDs for the
three classes.

Figures 12 and 13 display the DNI MADs, DNI RMSDs, GHI MADs, and GHI RMSDs,
respectively, for the same time frame as that of Figure 11a,b, classified using the developed
classification method in this study. The results displayed in Figures 12 and 13 are consistent
with those observed in Figure 11a,b. As displayed in Figure 12a, the lowest deviations
are observed in class 3 (with an LT15 DNI MAD of 50 W/ mz), which represents overcast
and class 1 (with an LT15 DNI MAD of 102 W/m?), which represents mostly clear sky
conditions whilst the highest deviations are observed for class 2 (with an LT15 DNI MAD
of 250 W/m?), which represents intermittently cloudy conditions.
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Figure 12. (a) DNI MADs for the 3 classes. (b) DNI RMSDs for the three classes.
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Figure 13. (a) GHI MADs for the three classes. (b) GHI RMSDs for the three classes.

From Figure 14a, it is observed that the DNI MAD of the ASI system at Murdoch
University is higher than the other five sites, and so is the DNI RMSD, as shown in
Figure 14b. The differences between the DNI MAD and DNI RMSD values at LT15 for the
Murdoch University ASI system to the highest DNI MAD and DNI RMSD values of the
other five sites are around 48 W/m? and 99 W/m?, respectively. These differences could
be mainly due to the evaluation periods of each site. PSA and LaAfricana were evaluated
over a year whilst Evora, Oldenburg Julich, and Murdoch University, were evaluated for
only 42, 86, 80, and 47 days, respectively, during a certain period of the year. Additionally,
the evaluation period for Evora was during the summer period where rainfall is at its
lowest with a majority of mostly clear sky conditions, whilst for Oldenburg and Julich, the
evaluation was during a heavy rainfall period where the sky is mostly overcast. On the
contrary, as shown in Table 7, the ASI system at Murdoch University was evaluated over
47 days, with the majority of the days under evaluation falling under the intermittently
cloudy class, which is associated with high errors due to high DNI variability.
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—PSA ~——LaAfricana —Evora —PSA —LaAfricana —Evora
——Oldenburg —Julich ~ ——Murdoch ——Oldenburg —Julich ~ —Murdoch
(a) (b)

Figure 14. (a) Overall DNI MAD. (b) Overall DNI RMSD.

A further performance evaluation of the ASI system at Murdoch University under
different conditions was conducted. These conditions were classified into three categories;
mostly clear sky, intermittently cloudy, and overcast. The DNI MADs and DNI RMSDs of
each class were then compared to the other five sites.

Comparing the descriptions of the three classes presented in Table 4 to the descriptions
of the eight DNI variability classes by Nouri et al. [25], in Table 8, the three classes in Table 4
were matched as shown in Table 9. However, it should be noted that there are differences in
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the variability classification methodologies employed for the Murdoch University site and
employed for the other five sites. For Murdoch University, the classification was conducted
by determining the classes using hourly sliding windows over a day and recording the
most occurring class as the overall class of the day as explained in Section 3 of this study,
whilst the classification of the other five sites involved the classification of every timestamp,
using 15 min windows over a day and then categorising them as shown in Table 8 [25]. The
matches in Table 9 were formulated by summarising the eight classes in Table 8 into: mostly
clear sky (the sky is clear/almost clear, and the clear sky index is high), intermittently
cloudy (the sky is partly cloudy, and the clear sky index is intermediate), and overcast (the
sky is overcast/almost overcast, and the clear sky index is low). From the class descriptions,
there is a possibility that classes 3 and 6 from Table 8, could be fitted into classes 2 and
3 from Table 4, respectively; however, in this study, these were matched as presented in
Table 9.

Table 8. Descriptions of the eight DNI variability classes by Nouri et al. [25].

Class Description of Temporal DNI Variability

1 Clear sky conditions with low temporal DNI variability and very high clear sky index
Almost clear sky with low temporal DNI variability and high clear sky index

Almost clear sky with intermediate temporal DNI variability and high/intermediate
clear sky index

Partly cloudy with high temporal DNI variability and intermediate clear sky index
Partly cloudy with intermediate temporal DNI variability and intermediate clear sky
index

Partly cloudy with high temporal DNI variability and low /intermediate clear sky index
Almost overcast with intermediate temporal DNI variability and low clear sky index
Overcast with low temporal DNI variability and very low clear sky index

OIS G s~ W N

Table 9. Matched classes for comparison.

Class from Table 4 Matched Classes from Table 8
1 (mostly clear sky) 1-3
2 (Intermittently cloudy) 4-6
3 (Overcast) 7-8

The DNI MADs and DNI RMSDs for classes 1 and 2 for Murdoch are showing an
alignment with the results from PSA, La Africana, Evora, Oldenburg, and Julich, as shown
in Figures 15-17. From Figure 17a,b, it is seen that in overcast conditions (Class 3), the
nowcasting system at the Murdoch University site displays the least DNI MAD and DNI
RMSD of 50 W/m? and 148 W/m?, respectively, whilst the DNI MAD and DNI RMSD
for PSA for overcast conditions are relatively higher compared to the other six sites. The
reason for this is that PSA is in a valley surrounded by mountains. When it is overcast, PSA
records a lot of thin high layer cirrus clouds with complex multilayer conditions, resulting
in higher uncertainties in cloud segmentation and tracking. Contrarily, when overcast,
Perth observes low-layer stratus clouds, which are easy to process, resulting in a higher
forecasting accuracy under such conditions.

The variations in DNI MADs and DNI RMSD:s are also dependent on the sites” prox-
imity to the ocean, resulting in coastal cloud formations. The closer a system is to the
coast, the higher the frequency of clouds, leading to increased intermittently cloudy condi-
tions [39-41]. To investigate the effect of the location of an ASI nowcasting system with
respect to the coast, an analysis of LT15 RMSDs for the intermittently cloudy class was
conducted, and the results are displayed in Table 10. It is observed from Table 10 that the
LT15 RMSD decreases as the site distance from the coast increases, and these results are
also complimented by Figure 16b.
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Table 10. ASI system’s distance from the nearest coast and LT15 RMSD.

Approximate Distance from

ASI System Site Nearest Coast (km) LT15 RMSD (W/m?)
Murdoch 8.56 359
PSA 28.97 321
Oldenburg 62.29 310
Evora 81.87 305
La Africana 132.46 268
Julich 199.13 269

5. Conclusions and Future Works

The integration of nowcasting systems in the control of IMGs might enable increased
PV penetration levels, reduced spinning reserve requirements, and reduced fossil fuel
usage. Such a system is installed at Murdoch University. In this study, nowcasts of 47 days’
worth of data were utilised to evaluate the performance of an ASI nowcasting system at
Murdoch University in Perth, Western Australia (WA). DNI and GHI maps with edge
lengths of 8 km and lead times up to 15 min ahead were generated.

The RMSD and MAD values were calculated as functions of variability classes and
lead times. A simplified classification model, comprising three classes was developed and
used for the classification exercise. Both the MAD and RMSD are relatively low for classes
1 (Mostly clear sky) and 3 (Overcast) as opposed to class 2 (Intermittently cloudy days).
These results are consistent as these two classes (1 and 3) display low temporal irradiance
variability, whilst class 2 displays high temporal irradiance variability. From the trends
outlined in these results, it could be concluded that the simplified developed classification
model works comparable with the one with eight classes. Additionally, for the integration
of nowcasting into the control of IMGs, the distinction between mostly clear sky, overcast,
and intermittently cloudy conditions, is sufficient, thus complementing the applicability of
the simplified model. The overall performance of the nowcasting system was therefore as
expected as it is consistent with previous evaluations in five other different sites namely
PSA, La Africana, Evora, Oldenburg, and Julich. As a limitation, it should be noted that
for the ASI system at Murdoch University, the number of overcast days (class 3) is very
low, 6, compared to 17 and 24 for classes 1 and 2, respectively. Additionally, a performance
comparison of different sites is difficult, even when the same classification methodology is
applied due to the availability of different datasets.

However, the discretization of the dataset into three temporal irradiance variability
classes does not take into account all effects that influence the nowcast performance such as
the cloud heights and zenith angles, which can be considered as future work. Additionally,
future work can be conducted on the possibility of integrating this nowcasting system with
the control of IMGs in which solar PV is a part of the generation mix and examine if there
is a possibility of enabling a higher solar PV penetration due to this control strategy.

Author Contributions: Conceptualization, R.S., M.C. and M.A.S.; Data curation, R.S. and S.G.B,;
Investigation, R.S.; Methodology, R.S., S.G.B., M.A.S. and B.N.; Resources, M.C.; Supervision, G.S.;
Validation, M.C., G.S. and M.M.; Writing—original draft, R.S.; Writing—review and editing, R.S.,
S.G.B,M.C, GS, M.M,, M.AS. and B.N. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Not applicable.

Acknowledgments: We would like to acknowledge the Institute for Solar Research of the German
Aerospace Center (DLR), for their assistance in the Murdoch University ASI nowcasting system
set-up, configuration and processing.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2022, 15, 6100 20 of 21

References

1. Jamal, T.; Urmee, T.; Calais, M.; Shafiullah, G.M.; Carter, C. Technical challenges of PV deployment into remote Australian
electricity networks: A review. Renew. Sustain. Energy Rev. 2017, 77, 1309-1325. [CrossRef]

2. Tsikalakis, A.G.; Hatziargyriou, N.D. Centralized control for optimizing microgrids operation. In Proceedings of the 2011 IEEE
Power and Energy Society General Meeting, Detroit, MI, USA, 24-28 July 2011; pp. 1-8. [CrossRef]

3. Sukumar, S.; Mokhlis, H.; Mekhilef, S.; Karimi, M.; Raza, S. Ramp-rate control approach based on dynamic smoothing parameter
to mitigate solar PV output fluctuations. Int. |. Electr. Power Energy Syst. 2018, 96, 296-305. [CrossRef]

4. Lonij, VP.A.; Jayadevan, V.T.; Brooks, A.E.; Rodriguez, ].J.; Koch, K.; Leuthold, M.; Cronin, A.D. Forecasts of PV power output
using power measurements of 80 residential PV installs. In Proceedings of the Conference Record of the IEEE Photovoltaic
Specialists Conference, Austin, TX, USA, 3-8 June 2012; pp. 3300-3305. [CrossRef]

5. Byrnes, L.; Brown, C.; Wagner, L.; Foster, J. Reviewing the viability of renewable energy in community electrification: The case of
remote Western Australian communities. Renew. Sustain. Energy Rev. 2016, 59, 470—-481. [CrossRef]

6.  Shivashankar, S.; Mekhilef, S.; Mokhlis, H.; Karimi, M. Mitigating methods of power fluctuation of photovoltaic (PV) sources - A
review. Renew. Sustain. Energy Rev. 2016, 59, 1170-1184. [CrossRef]

7.  Zhang, Y,; Liu, B.; Zhang, T.; Guo, B. An Intelligent Control Strategy of Battery Energy Storage System for Microgrid Energy
Management under Forecast Uncertainties. 2014. Available online: www.electrochemsci.org (accessed on 26 February 2020).

8.  Edwards, D.; Shoeb, M.A.; Calais, M.; Samu, R.; Glenister, S.; Overington, S.; Trinkl, P.; Ashraf, S.; Rupf, G.V.; Nouri, B,;
et al. Carnarvon Distributed Energy Resource (DER) Trials Technical Report #2. 2021. Available online: https://arena.gov.au/
knowledge-bank/carnarvon-der-trials-technical-report-2/ (accessed on 5 December 2021).

9.  Harris, R. Karratha Airport Solar Project 1 MWp Solar PV System. 2018. Available online: https://arena.gov.au/assets/2017/02/
karratha-solar-farm-public-impact-report.pdf (accessed on 17 December 2021).

10. Quesada-Ruiz, S.; Chu, Y.; Tovar-Pescador, J.; Pedro, H.T.C.; Coimbra, C.EM. Cloud-tracking methodology for intra-hour DNI
forecasting. Sol. Energy 2014, 102, 267-275. [CrossRef]

11. Kazantzidis, A.; Tzoumanikas, P; Blanc, P.; Massip, P.; Wilbert, S.; Ramirez-Santigosa, L. Short-term forecasting based on all-sky
cameras. In Renewable Energy Forecasting: From Models to Applications; Elsevier Inc.: Philadelphia, PA, USA, 2017; pp. 153-178.
ISBN 9780081005057

12. Blanc, P,; Remund, J.; Vallance, L. Short-term solar power forecasting based on satellite images. In Renewable Energy Forecasting:
From Models to Applications; Elsevier Inc.: Philadelphia, PA, USA, 2017; pp. 179-198. ISBN 9780081005057

13. Kassianov, E.; Long, C.N.; Christy, J. Cloud-Base-Height Estimation from Paired Ground-Based Hemispherical Observations. J.
Appl. Meteorol. 2005, 44, 1221-1233. [CrossRef]

14. Beekmans, C.; Schneider, J.; Lébe, T.; Lennefer, M.; Stachniss, C.; Simmer, C. Cloud photogrammetry with dense stereo for fisheye
cameras. Atmos. Chem. Phys. 2016, 16, 14231-14248. [CrossRef]

15. West, S.R.; Rowe, D.; Sayeef, S.; Berry, A. Short-term irradiance forecasting using skycams: Motivation and development. Sol.
Energy 2014, 110, 188-207. [CrossRef]

16. Saad Sayeef, S.R.W. Very Short-Term Solar Forecasting Using Inexpensive Fisheye Camera Sky-Imagery. 2014. Available
online: https:/ /www.researchgate.net/publication/262640112_Very_short-term_solar_forecasting_using_inexpensive_fisheye_
camera_sky-imagery (accessed on 12 August 2021).

17.  Schmidt, T.; Kalisch, J.; Lorenz, E. Small-scale solar irradiance nowcasting with sky imager pictures. In Proceedings of the 14th
EMS/10th ECAC, Prague, Czech Republic, 6-10 October 2014; Volume 11.

18.  Samu, R.; Calais, M.; Shafiullah, G.M.; Moghbel, M.; Shoeb, M.A.; Nouri, B.; Blum, N. Applications for solar irradiance nowcasting
in the control of microgrids: A review. Renew. Sustain. Energy Rev. 2021, 147, 111187. [CrossRef]

19. Reuniwatt Intra-Hour Solar Forecasts with InstaCast—Reuniwatt | Solar Energy Forecasting. 2020. Available online: http:
/ /reuniwatt.com/en/intrahour-solar-forecasts-instacast/ (accessed on 26 October 2020).

20. Boudreault, L.-E.; Liandrat, O.; Braun, A.; Buessler, E.; Lafuma, M.; Cros, S.; Gémez, A.; SAS, R.; Delmas, J. Sky-Imager Forecasting
for Improved Management of a Hybrid Photovoltaic-Diesel System. In Proceedings of the 3rd International Hybrid Power
Systems Workshop, Tenerife, Spain, 8-9 May 2018.

21. Steadysun SteadyEye—Next Minutes Solar Power Forecasting. Available online: https://www.steady-sun.com/technology/
steadyeye/ (accessed on 26 October 2020).

22.  Kuhn, P; Nouri, B.; Wilbert, S.; Prahl, C.; Kozonek, N.; Schmidt, T.; Yasser, Z.; Ramirez, L.; Zarzalejo, L.; Meyer, A.; et al. Validation
of an all-sky imager-based nowcasting system for industrial PV plants. Prog. Photovolt. Res. Appl. 2018, 26, 608—621. [CrossRef]

23. Reuniwatt. New Partnership for a Solar Microgrid in Brazil—Voltalia and Reuniwatt. 2018. Available online: http:/ /reuniwatt.
com/en/2018/02/28 /voltalia-partners-reuniwatt-first-solar-plant-brazil / (accessed on 7 July 2020).

24. DLR; CSP Services. WobaS-Nowcasting System. 2019. Available online: www.dlIr.de/sf (accessed on 14 February 2020).

25. Nouri, B.,; Wilbert, S.; Blum, N.; Kuhn, P.; Schmidt, T.; Yasser, Z.; Schmidt, T.; Zarzalejo, L.F.; Lopes, EM.; Silva, H.G; et al.
Evaluation of an all sky imager based nowcasting system for distinct conditions and five sites. AIP Conf. Proc. 2020, 2303, 180006.
[CrossRef]

26. DLR—Institute of Solar Research—Cloud Camera System Woba$S Provides Solar Power Plants with Reliable Radiation Now-

casts. Available online: https://www.dlr.de/sf/en/desktopdefault.aspx/tabid-10436/23661_read-58604/ (accessed on 26
October 2020).


http://doi.org/10.1016/J.RSER.2017.02.080
http://doi.org/10.1109/PES.2011.6039737
http://doi.org/10.1016/j.ijepes.2017.10.015
http://doi.org/10.1109/PVSC.2012.6318280
http://doi.org/10.1016/j.rser.2015.12.273
http://doi.org/10.1016/j.rser.2016.01.059
www.electrochemsci.org
https://arena.gov.au/knowledge-bank/carnarvon-der-trials-technical-report-2/
https://arena.gov.au/knowledge-bank/carnarvon-der-trials-technical-report-2/
https://arena.gov.au/assets/2017/02/karratha-solar-farm-public-impact-report.pdf
https://arena.gov.au/assets/2017/02/karratha-solar-farm-public-impact-report.pdf
http://doi.org/10.1016/j.solener.2014.01.030
http://doi.org/10.1175/JAM2277.1
http://doi.org/10.5194/acp-16-14231-2016
http://doi.org/10.1016/J.SOLENER.2014.08.038
https://www.researchgate.net/publication/262640112_Very_short-term_solar_forecasting_using_inexpensive_fisheye_camera_sky-imagery
https://www.researchgate.net/publication/262640112_Very_short-term_solar_forecasting_using_inexpensive_fisheye_camera_sky-imagery
http://doi.org/10.1016/j.rser.2021.111187
http://reuniwatt.com/en/intrahour-solar-forecasts-instacast/
http://reuniwatt.com/en/intrahour-solar-forecasts-instacast/
https://www.steady-sun.com/technology/steadyeye/
https://www.steady-sun.com/technology/steadyeye/
http://doi.org/10.1002/pip.2968
http://reuniwatt.com/en/2018/02/28/voltalia-partners-reuniwatt-first-solar-plant-brazil/
http://reuniwatt.com/en/2018/02/28/voltalia-partners-reuniwatt-first-solar-plant-brazil/
www.dlr.de/sf
http://doi.org/10.1063/5.0028670
https://www.dlr.de/sf/en/desktopdefault.aspx/tabid-10436/23661_read-58604/

Energies 2022, 15, 6100 21 of 21

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Marquez, R.; Coimbra, C.EM. Proposed metric for evaluation of solar forecasting models. J. Sol. Energy Eng. Trans. ASME
2013, 135. [CrossRef]

Marquez, R.; Coimbra, C.EM. Intra-hour DNI forecasting based on cloud tracking image analysis. Sol. Energy 2013, 91, 327-336.
[CrossRef]

Stein, J.; Hansen, C.; Reno, M. The Variability Index: A New and Novel Metric for Quantifying Irradiance and PV Output Variability;
Sandia National Laboratories: Albuquerque, NM, USA, 2012.

Skartveit, A.; Olseth, J.A.; Tuft, M.E. An hourly diffuse fraction model with correction for variability and surface albedo. Sol.
Energy 1998, 63, 173-183. Available online: https://www.academia.edu/15186467/An_hourly_diffuse_fraction_model_with_
correction_for_variability_and_surface_albedo (accessed on 31 October 2021).

Kipp & Zonen. CM11 Pyranometer for High Accuracy Solar Radiation Measurement. 2020, p. 2698000. Available online:
https:/ /www.kippzonen.com/ (accessed on 15 June 2020).

Kipp & Zonen. Instruction Manual. 2015. Available online: https://s.campbellsci.com/documents/ca/manuals/solys2_man.pdf
(accessed on 15 June 2020).

Wilbert, S.; Nouri, B.; Prahl, C.; Garcia, G.; Ramirez, L.; Zarzalejo, L.; Valenzuela, R.; Ferrera, F.; Kozonek, N.; Liria, J. Application
of Whole Sky Imagers for Data Selection for Radiometer Calibration. In Proceedings of the 32nd European Photovoltaic Solar
Energy Conference and Exhibition, Munich, Germany, 20-24 June 2016; pp. 1493-1498. [CrossRef]

Hasenbalg, M.; Kuhn, P.; Wilbert, S.; Nouri, B.; Kazantzidis, A. Benchmarking of six cloud segmentation algorithms for ground-
based all-sky imagers. Sol. Energy 2020, 201, 596-614. [CrossRef]

Nouri, B.; Kuhn, P.; Wilbert, S.; Hanrieder, N.; Prahl, C.; Zarzalejo, L.; Kazantzidis, A.; Blanc, P.,; Pitz-Paal, R. Cloud height and
tracking accuracy of three all sky imager systems for individual clouds. Sol. Energy 2019, 177, 213-228. [CrossRef]

Nouri, B.; Kuhn, P; Wilbert, S.; Prahl, C.; Pitz-Paal, R.; Blanc, P; Schmidt, T.; Yasser, Z.; Santigosa, L.R.; Heineman, D. Nowcasting
of DNI maps for the solar field based on voxel carving and individual 3D cloud objects from all sky images. AIP Conf. Proc. 2018,
2033, 190011. [CrossRef]

Nouri, B.; Wilbert, S.; Segura, L.; Kuhn, P.; Hanrieder, N.; Kazantzidis, A.; Schmidt, T.; Zarzalejo, L.; Blanc, P; Pitz-Paalf, R.
Determination of cloud transmittance for all sky imager based solar nowcasting. Sol. Energy 2019, 181, 251-263. [CrossRef]
Nouri, B.; Wilbert, S.; Kuhn, P.; Hanrieder, N.; Schroedter-Homscheidt, M.; Kazantzidis, A.; Zarzalejo, L.; Blanc, P.; Kumar, S.;
Goswami, N.; et al. Real-Time Uncertainty Specification of All Sky Imager Derived Irradiance Nowcasts. Remote Sens. 2019,
11, 1059. [CrossRef]

Mazon, J.; Pino, D. Role of the nocturnal coastal-front depth on cloud formation and precipitation in the Mediterranean basin.
Atmos. Res. 2015, 153, 145-154. [CrossRef]

Mathiesen, P.; Collier, C.; Kleissl, ]. A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance
forecasting. Sol. Energy 2013, 92, 47-61. [CrossRef]

Muiioz, R.C.; Quintana, J.; Falvey, M.].; Rutllant, J.A.; Garreaud, R. Coastal Clouds at the Eastern Margin of the Southeast Pacific:
Climatology and Trends. J. Clim. 2016, 29, 4525-4542. [CrossRef]


http://doi.org/10.1115/1.4007496/443619
http://doi.org/10.1016/j.solener.2012.09.018
https://www.academia.edu/15186467/An_hourly_diffuse_fraction_model_with_correction_for_variability_and_surface_albedo
https://www.academia.edu/15186467/An_hourly_diffuse_fraction_model_with_correction_for_variability_and_surface_albedo
https://www.kippzonen.com/
https://s.campbellsci.com/documents/ca/manuals/solys2_man.pdf
http://doi.org/10.4229/EUPVSEC20162016-5AO.8.6
http://doi.org/10.1016/J.SOLENER.2020.02.042
http://doi.org/10.1016/J.SOLENER.2018.10.079
http://doi.org/10.1063/1.5067196
http://doi.org/10.1016/J.SOLENER.2019.02.004
http://doi.org/10.3390/rs11091059
http://doi.org/10.1016/J.ATMOSRES.2014.08.004
http://doi.org/10.1016/J.SOLENER.2013.02.018
http://doi.org/10.1175/JCLI-D-15-0757.1

	Introduction 
	An Overview of the Used Nowcasting System Set-Up 
	Nowcasting System Performance Evaluation 
	Generation of Nowcast Irradiance Maps 
	Simulation of PV System 
	Error Metrics 
	DNI and GHI Variability Classification 
	Assigning High and Low Values to Metrics 
	Determining High and Low STD 
	Determining High and Low Shaded Area 
	Classification Examples 


	Results and Discussion 
	Conclusions and Future Works 
	References

