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Abstract: Climate change impacts many aspects of life and requires innovative thinking on vari-
ous issues. The electricity sector is affected in several ways, including changes in the production
components and consumption patterns. One of the most important issues for Independent System
Operators, a state-controlled organization responsible for ensuring the reliability, availability, and
quality of electricity delivery in the country, is the response to climate change. This is reflected in
the appropriate design of production units to cope with the increase in demand due to extreme
heat and cold events and the development of models aimed at predicting the probability of such
events. In our work, we address this challenge by proposing a novel probability model for peak
demand as a function of wet temperature (henceforth simply temperature), which is a weighting of
temperature and humidity. We study the relationship between peak demand and temperature using
a new Archimedean copula family, shown to be effective for this purpose. This family, the Clayton
generalized Gamma, is a multi-parameter copula function that comprises several members. Two
new measures of fit, an economic measure and a conditional coverage measure, were introduced to
select the most appropriate family member based on the empirical data of daily peak demand and
minimum temperature in the winter. The Clayton Gamma copula showed the lowest cost measure
and the best conditional coverage and was, therefore, proven to be the most appropriate member of
the family.

Keywords: copula function; dependence measures; Archimedean copula; electricity peak demand;
fitting measures

1. Introduction

Climate change leads to extreme temperatures that last for extended periods. These
have a significant impact on electricity demand, mainly due to the use of cooling and
heating systems [1,2]. The increase in electricity demand requires a systematic assessment
of both infrastructure and long-term planning. For the short term, proper evaluation of
electricity demand allows the system operator to take corrective actions. These include
delaying the shutdown of generating units for maintenance and preparing immediate
generating units to respond to a decrease in remaining reserve power. In the long term,
properly assessing electricity demand can help design the system to meet potential increases
and address peak demands [3]. Peak demand is a critical and challenging issue since it
may exceed production capacity and results in load shedding and service disruption for
consumers [4,5]. It also impacts electric utilities as production units are subject to higher
extreme temperatures, precipitation, and wind strength changes, which could lead to power
outages [6]. In Israel, global warming affects the length of the seasons. The summers are
getting longer and warmer and the transitional seasons are getting shorter. Last year (2022),
the winter was relatively extremely cold. In 2020, during one week in May (transitional
season) and in September 2021 (summer season), unpredictable extreme hot temperatures
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were observed. In January 2022 (winter season) and March (transitional season), the lowest
temperature was recorded for the last hundred years. In view of these changes, peak
demand estimation requires a better understanding of the relationship between electricity
demand and temperature. The study of this relationship has a long history, and a variety
of methods have been described in the literature. Reference [7] reviewed the models
since 1918, mostly using regression techniques. By [8], many methods have been used
for short-term load forecasting, including multiple regression, exponential smoothing,
and state-space methods. Reference [9] stated that data availability and technological
development made it possible to develop new statistical models, such as hierarchical
load forecasting (HLF), for forecasting small areas’ electricity demand. Reference [10]
used an autoregressive distributed lag model with socio-economic data to examine the
impact of climate change on electricity. A regression time series model introduced by [11]
estimated the response function of average and peak loads to weather, using daily average
temperature and total daily precipitation. Reference [12] reviewed fifty different forecasting
methods from 483 energy planning models and showed that forty percent of the energy
models use neural networks, in addition to support vector machine, ARIMA, and linear
regression models, which are also widely used. Reference [13] developed models for
estimating demand by extending a linear regression model to a probabilistic Bayesian
framework and demonstrated improvements in mean absolute error in real case studies.
Using MAPE, Reference [14] showed that multiple linear regression seasonality models
outperformed machine learning methods in predicting daily peak loads in South Korea.
A multivariate hybrid prediction model using a neural network and a pre-processing
algorithm incorporating reactive consumption, humidity, and temperature was used by [15]
to predict the hourly electricity consumption of a hospital.

In recent years, two further research directions of estimating electricity demand,
emphasizing peak demand, have gained interest. These entail reliance on a probabilistic
forecasting approach and the use of copula functions.

Probabilistic load forecasting has become very important to energy system planning
and operation. This approach addresses the pitfall in the classical forecasting approach,
which evaluates the demand for electricity in a deterministic way, i.e., a single expected
value for the predicted load is provided without considering the inherent error in the
model. This can be addressed by calculating an ensemble of multiple points for a future
load probability. Some of the approaches that assimilate the weather uncertainty were
discussed in [9,16–19].

Copula functions characterize the relations between the variables with complex non-
linear dependence structures. This is achieved through separate modeling of the marginal
distributions of the underlying variables and their dependence structure. Reference [20]
developed a probabilistic model to estimate peak demand for smart cities using smart
meters and socio-demographic data. To model the nonlinear dependence structure between
different consumers, a variable truncated R-vine copula (VTRC) was used. A short-term
deep learning prediction model for peak demand was introduced by [21]. They used a Box–
Cox transformation for the load data adaptation and a copula function to characterize the
relation between peak demand and temperature. Reference [22] modeled the relationship
between minimum daily electricity demand and maximum daily temperature and used
a multi-parameter compound Archimedean copula with a flexible dependence structure,
which increased the flexibility of the dependence structure and improved the fit to the
data. Reference [23] evaluated peak electricity demand using Gaussian mixture models and
copula functions and provided a time-correlated statistical model. For additional references
on the application of copula functions, see [24–28].

Our study addresses the significant issue of estimating peak demand with a probability
approach using a copula function. We use a novel Archimedean copula family, the Clayton
generalized Gamma, first reported in [29], to characterize the dependence structure between
the minimum temperature and daily peak demand in the winter. This three-parameter
family includes several members and permits enhanced flexibility when determining which
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copula function to use based on empirical data. In Section 2, we give a brief introduction
to copula functions, the compound Archimedean copula, and the Clayton generalized
Gamma (CGG) family. In Section 3, we derive the value-at-risk and the confidence interval
of peak demand using the CGG family. Section 4 introduces the statistical process for
parameter estimation and peak demand confidence interval evaluation. The description of
the data structure, the experiment, and the results of a numerical study are presented in
Section 5. Conclusions are given in Section 6.

2. Copula Function

Characterizing the interaction between variables is an essential tool for modeling
many phenomena, and various methods have been suggested to address this issue. Usu-
ally, two random variables are described by a bivariate distribution, where both random
variables have the same parametric univariate distribution. Using copula functions elim-
inates this restriction by separating the dependence structure of the variables from their
marginal distribution [30]. By [31], every multivariate cumulative distribution function
F(x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd) of a random vector (X1, . . . , Xd) can be uniquely
written in terms of the separate parts of its marginals Fi(xi) = P(Xi ≤ xi), which are a set of
cumulative univariate distributions, and copula C, which holds the dependence structure
between the variables, such as

F(x) = P(X1 ≤ x1, ..., Xd ≤ xd) = C(F1(x1), . . . , Fd(xd)), (1)

for xi ∈ (−∞, ∞), i = 1, . . . , d. This function was extensively reported in [32–34]. Among the
best-known family of copulas is the Archimedean family, characterized by its generator
function; hence, different choices of generator functions lead to different copulas with
their respective expression of dependence. A two-dimensional Archimedean copula is
denoted by:

Cθ(u, v) = ϕ−1
θ (ϕθ(u) + ϕθ(v)), (2)

where ϕθ(t) is the Archimedean generator and θ is the dependence parameter. The gener-
ator ϕ is a continuous, strictly decreasing convex function ϕ : [0, 1] → [0,+∞] such that
ϕθ(1) = 0.

2.1. Inverse Compound Archimedean Copula

The Archimedean family contains a wealth of parametric functions with a variety of
dependence structures. However, most of them consist of a single dependence parameter,
limiting the flexibility of fitting the data. New novel methods to expand the number of
Archimedean dependence parameters were introduced in [29]. This was based on the
creation of novel inverse Archimedean generators by compounding an existing inverse
generator ϕ−1

θ(v)(t) with respect to g̃(v), a probability density of parameter v = v(θ), which
is a one-to-one function of the dependence parameter θ. We denote the compound inverse
generator as h(t) such that

h(t) =
∫

V
ϕ−1

θ(v)(t)g̃(v)dv. (3)

A different approach reported in [35] used a compound of an existing generator
ϕθ(v)(t) with respect to g̃(v), such as

h(t) =
∫

V
ϕθ(v)(t)g̃(v)dv. (4)

2.2. Clayton Generalized Gamma Family

The CGG family is generated by compounding the inverse generator of the Clayton
copula, when the generalized Gamma is the density function of parameter v = v(θ):

g̃(v) =
[( p

αd

)
vd−1e−(v/α)p

] 1
Γ(d/p)

, (5)
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where v ∈ (0, ∞) and p, α, d > 0. The Clayton copula is the most commonly used
Archimedean copula in many areas, defined as

Cθ(u, v) =
(

u−θ + v−θ − 1
)− 1

θ , (6)

for θ ≥ 0. The generator function is given by

ϕθ(t) =
(

t−θ − 1
)

(7)

and the inverse generator function is

ϕ−1
θ (t) = (t + 1)−1/θ . (8)

We chose the generalized Gamma as a compounding distribution since it is a rich
family comprising some well-known distributions, described in Table 1.

Table 1. Members of the generalized Gamma distribution [36].

Family p α d

Gamma 1 a d
Standard Gamma 1 1 d

Wein 1 a 4
Nakagami 2 a d

Half Normal 2 a 1
Folded Normal 2

√
2 1

Rayleigh 2 a 2
Maxwell–Boltzmann 2 a 3

Wilson–Hilferty 3 a d/3
Weibull p a d = p

By using Equation (3), a new generator of the Clayton generalized Gamma family
is derived:

h(t) =
1

Γ(d/p)

∫
V

( p
αd

)
exp(−vp ln(t + 1))

[
vd−1e−(v/α)p

]
dv

=

(
(1 + α(ln(t + 1))

1
p )

)−d
. (9)

Using Equation (2), a new bivariate compound copula, the CGG, is now obtained:

C(u, v) =

1 + α

(
ln
(

exp
((

(
1

u1/d − 1)/α

)p)
+ exp

((
(

1
v1/d − 1)/α

)p)
− 1
)) 1

p

−d

, (10)

for p > 0, α > 0, d > 0. This three-parameter copula family expands the one-parameter
Clayton copula and comprises 10 notable members, each corresponding to a particular
case of the generalized Gamma distribution and dictated by the choice of α, d, and p,
as described in Table 1.

3. Value-at-Risk of Electricity Demand

We aim to assess electricity demand for any given temperature. To this end, we need to
evaluate the confidence interval that expresses the forecast error of peak demand. This can
be derived from the demand’s conditional value-at-risk (VaR), an approach to quantifying
the risk of extreme events, given the temperature, i.e., VaRq(X) = min(t|FX(t) ≥ q) is
the lower q-percentile of the random variable X with cumulative distribution function
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FX(t) = P(X ≤ t). Utilizing VaR enables the calculation of the confidence interval, which
provides a probabilistic estimate of peak demand. To establish the VaR, we need the
following proposition:

Proposition 1. Let X and Y be two random variables with cumulative distribution functions FX(x)
and FY(y). Suppose the dependence structure of the bivariate vector (X, Y) is defined with copula
C(u, v), where u = FX(x) and v = FY(y). Let C2(u, v) = ∂

∂v C(u, v) be the first derivative of the
copula function with respect to v and C1,2(u, v) = ∂2

∂u∂v C(u, v) be the derivative of C2(u, v) with
respect to u. Then, the q-level value-at-risk of the first variable X given Y = y, VaRq(X|Y = y) is
defined by the solution of the following equation with respect to t:

C2(FX(t), FY(y)) = q, q ∈ (0, 1). (11)

Proof. Clearly, we need to establish that FX|Y(t|Y = y) = C2(FX(t), FY(y)). The joint
density function of X and Y is given by

fX,Y(x, y) = C1,2(FX(x), FY(y)) fX(x) fY(y).

Then

FX|Y(t|Y = y) =
∫ t

−∞

C1,2(FX(x), FY(y)) fX(x) fY(y)
fY(y)

dx

=
∫ t

−∞
C1,2(FX(x), FY(y)) fX(x)dx

=
∫ t

−∞
C1,2(FX(x), FY(y))dFX(x)

=
∫ FX(t)

0
C1,2(ξ, FY(y))dξ

= C2(FX(t), FY(y))

To obtain a confidence interval for the demand given the temperature using the CGG
family (10) and Proposition 1, we need to obtain the first derivative of the copula with
respect to v. Let K(u, v) be denoted by

K(u, v) = ln[exp((
(u−1/d − 1)

α
)p) + exp((

(v−1/d − 1)
α

)p)− 1].

Then the first derivative of bivariate copula C(u, v) with respect to v is

C2(u, v) =
d

dv

([
1 + a(K(u, v))

1
p

])−d

=


((

v−1/d−1 exp
(
(v−1/d − 1)/a

)p)(
(v−1/d − 1)/a

)p−1
)

(
v−1/d−1 exp(( (v

−1/d−1)
α )p)( (v

−1/d−1)
α )p−1(K(u, v))

1
p−1
([

1 + a(K(u, v))
1
p

])−d−1
)


(
exp(( (u

−1/d−1)
α )p) + exp(( (v

−1/d−1)
α )p)− 1

) .

(12)

Equation (12) is used to calculate the confidence interval of the daily peak demand as
described in the next section.
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4. Statistical Process

In this section, we present the statistical method for calculating the confidence interval
for peak electricity demand, using VaRq(X|Y). The method consists of four steps, as shown
in Figure 1.
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The following is a detailed description of each step.

4.1. Identification of the Marginal Distributions

The first step in finding a copula is to determine the marginal distributions of the
underlying variables, as defined in Equation (1). The EasyFit software was used to analyze
the empirical data, to identify the desired best-fitting distributions, and to estimate their
parameters. The distribution with the lowest Anderson–Darling test score was chosen for
each of the variables.

4.2. Estimation of the Parameters for Members of the CGG Family

The conditional distribution shown in Equation (12) contains three parameters, i.e.,
(p, a, d). Changing the parameter values results in a different member of the CGG family.
For example, when p = 1 and a and d are the estimated parameters, the first member
in Table 1 is the Clayton Gamma copula, which results from compounding the Clayton
copula with the Gamma distribution. In order to estimate k parameters, one would need
to consider k dependence measures. In our work, we needed two dependence measures
at most for estimating the parameters. The parameter values are those for which the
theoretical dependence measure of the copula function is equal to their empirical values.
A description of the estimating methodology can be found in [35].

In this work, since k ≤ 2, we used two copula-based measures of multivariate associa-
tion, the Gini Gamma and the Blomqvist beta. These two measures are tools for quantifying
the dependence of nonlinear association. Gini’s Gamma is a measure of association based
on the concordance between a pair (X, Y) with copula C(u, v), the Fréchet upper bounds
M, and the Fréchet lower bounds W [29,37,38]. Blomqvist’s beta is a measure that de-
scribes the relationship between a pair of observations regarding their quadrants [29,39].
The measures are given by the following.

Gini’s Gamma (Γ):

The Gini Gamma is defined by

Γ = 4
[∫ 1

0
C(u, 1− u)du−

∫ 1

0
[u− C(u, u)]du

]
. (13)
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For a random sample (X1, Y1), . . . , (Xn,Yn) with associated ranks (R1, S1), . . . , (Rn,Sn),
the estimated measure is given by

Γ̂ =
2
n2

n

∑
i=1
{|(n + 1− Ri)− Si| − |Ri − Si|}, (14)

Blomqvist’s beta (βl):

Blomqvist’s beta is defined by

βl = 4C
(

1
2

,
1
2

)
− 1. (15)

The estimated measure is given by

β̂l =
2
n

n

∑
i=1

I
((

Ri −
n + 1

2

)(
Si −

n + 1
2

)
≥ 0

)
− 1. (16)

To establish the parameters of each member of the CGG, one needs to equate
Equation (13) to Equation (14) and/or Equation (15) to Equation (16), depending on the
number of unknown parameters.

4.3. Calculation of Confidence Intervals of Electricity Peak Demand

Recall that X is the daily peak demand, Y is the daily minimum temperature, and
u = FX(x) and v = FY(y), then by placing u, v, and the estimated copula parameters, ex-
plained in Section 4.2, into Equation (12), VaRq(X|Y = y), characterized by the conditional
copula function C2(u, v), can be established. For each temperature value, we can obtain the
(1− α) confidence interval for the demand peak:

[VaR α
2
(X|Y = y) ; VaR1− α

2
(X|Y = y)]. (17)

This procedure is performed for each member of the CGG family in Table 1.

4.4. Finding the Best Copula Function

Given the large number of copula functions available, it is challenging to select the best
one. Reference [40] used minimization of the distance between the parametric distribution
function kθ(v) = P(C(X, Y) ≤ v) and its empirical counterpart kn(v), i.e., minimizing∫
[Kθ(v)− Kn(v)]

2dKn(v), to determine the appropriated Archimedean copula function
that fits the data best. Reference [41] used the QQ-plot of these functions. Reference [42]
suggested that the best-fitting copula is the one closest to the empirical copula in the L2-
norm, i.e., d2(Cn, Cθ) = ‖Cθ − Cn‖L2 . We attempted to identify the member of the CGG that
fits the data best through two fitting measures: the conditional coverage measure denoted
by (CC) and the economic cost measure denoted by (CM).

4.4.1. The Conditional Coverage Measure

This measure examines the percentage of the number of observations that are con-
tained within the (1− α) confidence interval boundaries, as defined by the conditional
VaRq(X|Y = y).

Let Zi be an indicator of (i = 1, . . . , n), such as

Zi =

{
1 C2(u, v)[0.005]i < MDi < C2(u, v)[0.995]i
0 otherwise

,

where MDi is the max electricity demand in day i. Then, the average conditional coverage is

CC =
∑n

i=1 Zi

n
, (18)
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where n is the number of observations. The most appropriate copula function is the one for
which CC is closest to (1− α).

4.4.2. Example

In this example, we illustrate the calculation of the conditional coverage. In Figure 2
below, we show one member of the CGG family, the Clayton–Wien copula. The red dots
are the empirical daily peak demand, and the blue and gold lines are the 0.99% confidence
boundaries. All the observation below the blue line (the upper 0.995 confidence limit) and
above the gold line (the lower 0.005 confidence limit) are the covered observations. Using
Equation (18), the CC measure can be obtained.
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4.4.3. The Economic Cost Measure

The Independent System Operator organizations are responsible for ensuring the
reliability and availability of electricity delivery. In particular, they are entrusted with the
responsibility to ensure the economic well-being of their customers. Hence, choosing a
model should be based on probabilistic and economic considerations. Much work has
been invested in attempting to estimate the price of underestimating peak demand, i.e., the
value of lost load (VOLL). This depends on several factors, including the type of customer,
regional economic and demographic conditions, the timing and duration of power outages,
and others [43]. For more details, see [44–46]. In our work, we assumed that the VOLL was
set at USD 30 per KW and the cost of overestimation was set at USD 0.15 per KW. The cost
measure’s (CM) definition is presented as follows:

Let MDi be the maximum demand in day [i] and CMi be a cost function that expresses
the magnitude of the cost of error with respect to the upper bound C2(u, v)[0.995]i :

CMi =

{
0.15$ ∗ |MDi − C2(u, v)[0.995]i | MDi < C2(u, v)[0.995]i
30$ ∗ |MDi − C2(u, v)[0.955]i | MDi > C2(u, v)[0.995]i

. (19)

A possible procedure is to calculate the average of CMi across all days [i]. This
approach is inappropriate since it ignores the underestimation of peak demand, which is
much more detrimental at low winter temperatures, the season this work focused on. This
is because low temperatures lead to a significant increase in heating, which leads to high
peak demand and requires special evaluations of the operation system. In order to address
this, we offer a new weight cost measure, which is a multiplication of CMi with a weight
index, which we call the power exponential linear weight (PeLw).

Let T be a continuous random variable with ti ∈ [0, 22], a range representing the
minimum temperature in the Israeli winter, i.e., min(ti) = 0 and max(ti) = 22. Then, the
linear weight for each temperature is given by

LWi =
ti −min(ti)

max(ti)−min(ti)
.
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Using LWi, the PeLw is defined by

PeLwi = exp(k · LWi)− 1, (20)

and the new weighted cost measure is

CMw =
∑n

i CMi · PeLwi

n
, (21)

where n is the number of observations. This index gives higher weight for low temperatures
and lower weight for high temperatures. The strength of the weight and the rate of decrease
are determined by the parameter k.

In Figure 3, we show the weight values and the decrease rates for four different values
of k. The orange, blue, green, and red lines represent k : 0.5, 1, 1.5, 2, respectively. It can be
seen that the higher k is, the faster the decrease rate is.
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In our work, the weight parameter k for the calculation of PeLw was set to 1.5.

5. Experiment with Real Data
5.1. Data Description

The database we used included daily peak demand and minimum wet temperatures
from 1996 to 2022 in Israel. It excludes weekends and holidays when electricity demand
is lower. This work focused on the winter season, which occurs in December, January,
and February, with a total of 1689 daily observations with a minimum temperature in the
range of 2.8 to 21.9 degrees and normalized maximum electricity demand in the range
of 7700 MW to 14,700 MW. The scatter diagram in Figure 4 represents the dependence
structure between minimum temperature and maximum electricity demand. In Table 2,
five measures of the strength of the association between the variables are presented.
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Table 2. Empirical dependence measures.

Pearson’s Correlation Spearman’s Rho Gini’s Gamma Kendall’s Tau Blomqvist’s Beta

−0.493 −0.500 −0.463 −0.353 −0.34

Following the procedure presented in Section 4.1, the marginal distributions of the
two random variables were examined.

Using the Anderson–Darling criterion, the marginals are as follows.
Let X be a random variable representing the daily peak demand in the winter, then

the fit distribution is X ∼ Gamma(α, β) :

fX(x) =
βαe−βvvα−1

Γ(α)
,

where α = 79.56 and β = 139.42. Here, α > 0 is the shape parameter and β > 0 is the
scale parameter.

The fit distribution for the minimum temperature is Y ∼ Logistic(µ, σ) :

fY(y) =
e−(u−µ)/σ

σ
(
1 + e−(u−µ)/σ

)2 ,

where µ = 9.74 and σ = 1.56. Here, µ is the location parameter and σ > 0 is the scale
parameter. Figure 5 represents the density functions of the two variables, where the
empirical distribution is described by the histogram and the theoretical by the black line.
The goodness of fit parameters for both of distributions are shown in Table 3.

Table 3. Goodness of fit values.

Variable Distribution Kolmogorov–Smirnov Anderson–Darling p Value

X Gamma 0.016 0.8143 p < 0.01
Y Logistic 0.022 0.823 p < 0.01
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Table 3. Goodness of fit values

Variable Distribution Kolmogorov-Smirnov Anderson-Darling P value
X Gamma 0.016 0.8143 p < 0.01
Y Logistic 0.022 0.823 p < 0.01
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Figure 5. Density of Min. temperature and Max. electricity demand.

5.2. The Experiment

By using Equations (14) and (16), the estimated parameters of Gini’s Gamma and
Blomqvist’s beta are Γ̂ = −0.463, β̂ = −0.34, respectively. Then, by using the procedure
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described in Section 4.2, the parameters of the CGG family members are obtained and
reported in Table 4.

Table 4. Estimated parameters of the Clayton generalized Gamma members.

Family p a d

Gamma 1 0.1 8.9
Standard Gamma 1 1 1.9

Wien 1 0.3 4
Nakagami 2 6.4 9.9

Half Normal 2 10.7 1
Folded Normal 2

√
2 1

Rayleigh 2 9.8 2
Maxwell–Boltzmann 2 7.6 3

Wilson–Hilferty 3 8.5 2.6
Weibull 1.7 10 1.7

The confidence interval was calculated for each CGG family member and for the
Clayton and Gumbel copulas using the method presented in Section 4.3. Figure 6 displays
the confidence interval boundaries for each member. The dotted blue represents the upper
limit of the confidence interval of the peak demand, and the red dots are the empirical
values of peak demand given the minimum temperature.
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Figure 6. Lower confidence interval (orange dashed line) and upper confidence interval (blue dashed
line) for members of the CGG family.

Note that underestimation occurs when the red dot is above the blue line and overesti-
mation when the red dot is below it. From Figure 6, it can easily be seen that the three family
members at the top of Figure 6 fit the upper limit of the probabilistic confidence interval for
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the relevant range of minimum temperatures below 15 °C. When the temperature exceeds
15 °C, these family members underestimate the peak demand. The rest of the models
offer a poorer prediction of the demand, and they all underestimate the peak values for
temperatures below 15 °C. The best-fit family member was selected by two fitting measures
discussed in Section 4.4. Table 5 shows the calculated values of CC and CM for each family
member and for the Clayton and Gumbel copulas.

Table 5. Cost and conditional coverage measures’ values for the CGG family members and Clayton
and Gumbel copulas.

Family CM CC

Gamma 4.9 95%
Standard-Gamma 14.3 87%

Wien 7.9 94%
Nakagami 6.5 89%

Half Normal 20.3 78%
Folded Normal 85.6 55%

Rayleigh 11.3 84%
Maxwell–Boltzmann 7.7 86%

Wilson–Hilferty 8.5 85%
Weibull 8.8 87%

Clayton 8.9 93%
Gumbel 16.3 92%

CM values presented in terms of USD 103.

These values are graphically presented in Figure 7.
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From Figure 7, it is easy to see that the most appropriate copula function for predicting
peak demand using the minimum temperature in the winter season belongs to the Clayton
Gamma family member (the orange dot in the figure). This function has the lowest economic
loss value and a probability coverage measure closest to 99%.
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5.3. Major Contributions

∗ The confidence interval of the peak demand based on temperature was estimated,
and a probabilistic copula family, the Clayton generalized Gamma, which is comprised
of several copula functions and aims at characterizing the dependence structure,
was suggested.

∗ This innovative three-parameter family enhances flexibility in adjusting the depen-
dence structure between peak demand and temperature, thus allowing a more accurate
estimation of the former.

∗ The superiority of the Clayton Gamma copula over other members of the Clayton
generalized Gamma family, as well as popular one-dimensional copulas such as the
Clayton and Gumbel copulas was demonstrated in the numerical study provided.

∗ The proposed methodology significantly enriches the number of candidate copulas
available for peak demand estimation and, thus, reduces the probability of unmet
demand with its dramatic consequences.

6. Conclusions

This work aimed to accurately estimate peak demand, which is one of the fundamental
challenges for Independent System Operators responsible for managing power systems.
Using temperature, we proposed a probabilistic model to estimate the confidence interval
of the peak demand using a new Archimedean family, the Clayton generalized Gamma,
comprising several members of copula functions, used to characterize the dependence
structure. A conditional value-at-risk VaRq(X|Y = y) of the daily electricity peak demand
(X) given the daily minimum temperature (Y) was established and used to evaluate the con-
fidence limits of peak demand. Two new measures of the fit were introduced to determine
the most appropriate copula: a conditional coverage measure, estimating the proportion
of observations covered by the confidence interval, and an economic measure, assessing
the economic loss due to an incorrect estimation of peak demand. The latter incorporates a
new weight index to better represent the importance of low winter temperatures. Daily
data, between 1996 and 2022, in the winter (December–February), were used to examine the
proposed methodology. The Clayton Gamma copula member was shown to have the lowest
economic loss and the closest conditional coverage to the confidence limit value and is,
therefore, the one our study suggests as the most suitable for peak demand prediction. This
CGG member clearly provides a more accurate estimate of peak demand, thereby resulting
in a system better suited to meet the challenges of climate change. A more accurate estima-
tion of peak demand may require the consideration of several additional variables such
as precipitation and radiation intensity. Adding variables requires a higher-dimensional
copula and will be the subject of future research.
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