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Abstract: High-speed vehicles traveling in a tube with pressures similar to those experienced by
aircraft at their maximum altitude are presented. Although the concept resembles Hyperloop, the
pressure level investigated here is much higher and safer than that suggested by Hyperloop, and,
therefore, the system design is markedly different. Calculating a vehicle’s aerodynamic performance
in the initial design stages requires low-budget computational tools to enable iterative design pro-
cesses. This study presents an algorithm for rapid flow-field prediction based on a one-dimensional
Reimann solution, including viscosity and heat transfer effects. The flow-field is divided into near-
and far-fields, where the near-field represents the solution directly around the vehicle. The far-field
demonstrates the impact of the vehicle’s motion on the vehicle’s flow-field upstream and downstream.
Two-dimensional URANS models are compared to the current numerical scheme. The developed
algorithm analyzes the flow-field and the propagation of pressure waves along the tube to simu-
late the vehicle’s movement. The one-dimensional model shows the robustness and predictability
of the near and far flow-fields. The results from the developed scheme provide good agreement,
with less than a few percent deviations, compared to CFD simulations but with significantly lower
computational resources.

Keywords: Hyperloop; numerical scheme; Method of Characteristics; 1-D viscous compressible model

1. Introduction

High-speed travel using vehicles in an evacuated tube, known popularly today as
Hyperloop, has attracted global attention as an extension to high-speed land transportation.
Aero-propulsion engines to propel the vehicle within a non-evacuated tube were initially
conceived by Foa [1], and this necessitates the presence of air. The tube pressure level advo-
cated by Hyperloop of 100 Pascals, equivalent to traveling at 150,000 ft, requires a vehicle
design with space-rated standards and raises more significant concerns for passengers’
safety. The pressure levels promoted in the current study are ones used in aviation experi-
enced by jet aircraft at their maximum flight altitude. Airliners flying today reach 45,000
feet, while business jets reach 51,000 feet. The lowest acceptable pressure advocated in this
work would be that equivalent to an altitude of 60,000 ft for the flight-proven Concord.

The aerodynamic phenomenon caused by the vehicle’s movement traveling in a tube
includes the propagation of compression waves and expansion waves, studied theoret-
ically [2–4] and experimentally [5–7]. CFD has been increasingly used in developing
high-speed vehicles [8–16]. Most relevant to a vehicle in a tube include those investigating
high-speed trains traveling through tunnels. Similar to the tube, the tunnel introduces
a blockage effect, highlighted as a constraint to the train’s performance and the tube op-
erating pressure [17–20]. Significant time and cost reductions are achieved, particularly
in the initial design, if a simpler but accurate theoretical model is well established [2,21].
High-order computational models such as Unsteady Reynolds-Averaged Navier–Stokes
(URANS) are more expensive than lower-order models, since the lower-order models
usually simplify the model into fewer dimensions in the spatial and temporal schemes [22].
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However, theoretical analysis using the Method of Characteristics (MoC) has been applied
successfully to unsteady problems in high-speed land transportation [8–12]. Early work [4]
on a vehicle in a tube using 1-D analysis demonstrated that the flow-field near the vehicle
is not affected by the unsteadiness of the distant traveling waves. More recently, Woods [2],
Juan Rivero et al. [23,24], and Gilbert [25] used the MoC to tackle the flow-field generated
by a high-speed train entering a tunnel, and a semi-empirical method was introduced to
negotiate the sonic boom of the strong wave exiting the tunnel [26–30]. Experimental data
on the vehicle traveling in a long tube are scarce [31]. A 26 km open-ended tunnel with
a square cross-section was built [32] to investigate techniques to reduce the compression
wave strength generated by the train traveling within the tunnel [33,34].

The current work defines an algorithm to solve the flow-field around and far from the
vehicle, assuming 1-D axisymmetric flow with a viscous and conductive ideal gas. The
theoretical model is similar to that developed by Hammit [3] but includes the influence
of the vehicle’s shape and heat transfer through the tube. The solution for the flow-
field around the vehicle and far-field is obtained utilizing Reimann numerical schemes.
The solutions obtained from the developed algorithm are then compared to 2-D CFD
simulations with the k-ε realizable turbulent models. The extended theoretical scheme’s
results agree with the CFD simulation predictions for the pressure wave propagation and
the vehicle’s drag and power estimates, indicating the solver’s reliability in facilitating
the design process and in cutting time and costs during the development phase of the
system [35].

2. Theoretical Approach

This section discusses the developed in-house numerical algorithm based on the
1-D unsteady solution for the compressible viscous flow over the vehicle moving in a
tube, utilizing the Method of Characteristics (MoC) with appropriate boundary conditions.
Vehicle shape and operating conditions are the required inputs for the algorithm. The
solution domain comprises a near-field located around the vehicle, where the vehicle shape
and its velocity define the time-varying boundary conditions of the far-field. Although
previous works’ emphasis is on the compression wave [18,25,29,36–42], the current work
successfully predicts the propagation of upstream and downstream pressure waves.

The vehicle dimensions, shown in Figure 1a, include an inlet fan and an exhaust to
provide the propulsion needed to move the vehicle. The configuration is assumed to carry
100 passengers and operates at a pressure range of 10 kPa to 20 kPa. The compressor is
an aero-engine fan based on data available in Ref. [43]. Figure 1b shows a simplified 2-D
configuration generated by closing the pod compressor inlet with a circular arc and the
body aft with an extended ellipse. The design, suggested here as a proposed canonical
configuration to study the vehicle’s characteristics in tube travel, is the subject of the current
study and serves as the basis for upcoming investigations on the impact of the compressor
and the aft jet on the vehicle’s performance. The operating conditions and the vehicle’s
overall dimensions are shown in Table 1.
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Table 1. Pod tube specifications.

Parameter Symbol Value
Operating Pressure p 10, 000 Pa

Operating Temperature (k) T 300 k
Vehicle’s Diameter Dp 3.75 m

Tube Diameter D 5.0 m
Vehicle’s Length Lp 41 m

Vehicle’s Mach No. M 0.60
Baseline Design Blockage

Ratio β 0.56

2.1. Steady State near Flow-Field Scheme

The variation in the cross-sectional area altered the flow-field near the vehicle. The flow
is assumed to be steady, i.e., the vehicle operating in cruise condition without acceleration.
Equation (1) provides the steady-state conservation of continuity, momentum, and energy.
Figure 2 shows a sketch of the flow-field. Similar to Hammit [2,3,27], the stations of the
near-field are dictated by A and E.

1
ρ

dρ
dx + 1

v
dv
dx + 1

A
dA
dx = 0

dp
dx + τw

1
A

dAw
dx + τv

1
A

dAvw
dx + ρv dv

dx = 0[
cp

dT
dx +

d
(

v2
2

)
dx

]
ρv = (τwus + q) 1

A
dAw
dx + qc

A
dAvw

dx

(1)

where A is the local area, Avw is the area between the vehicle and tube, Aw is the tube area.
The wall heat fluxes at the tube wall q and the vehicle wall qc are zero because the adiabatic
wall is applied in the present calculation. The equation of state, shear stress on the pod
wall, pod tube wall, and the heat flux applied to the wall are given in Equations (2)–(5) [4].

p = ρRT (2)

τw =
1
2

ρu2c f (3)

τvw =
1
2

ρv2c f (4)

q =
1
2

ρc f cpu(Tw − Taw) (5)
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The adiabatic wall temperature Taw is determined with a recovery factor of 3
√

Pr, and
the Stanton number is given by Reynolds’ analogy CH =

c f
2 [31], which is used to calculate

the heat flux in Equation (5), given that

1
A

dAww

dx
=

4
d(1− β)

,
1
A

dAvw

dx
=

4
d

β
1
2

(1− β)
,

Equations (1)–(5) can be combined, for annular flow passages about the vehicle, to
give the following system of Equation (6) written in matrix form.

dv
dx
dp
dx
dT
dx

 =

 1
v

1
p − 1

T
ρv 1 0
v 0 cp


−1


− 1
A

dA
dx

− 1
2 ρu2c f

4
d(1−β)

+ 1
2 ρv2c f

4
d

β
1
2

(1−β)
2c f

v(1−β)

(
u2us − u3 + ucp(Tw − T)

)
 (6)

Equation (6) is solved using the initial values generated in each time step from the
previous value of the flow domain, an artificial interface located at points (A) and (E), as
per Figure 2. Simplified skin friction coefficient formula C f = 1.328/

√
Rex based on the

Reynolds number for a laminar boundary layer over a flat plate is used. Figure 3 describes
the scale for the duct net shape for the axisymmetric model describing the near-field domain.
The vehicle radius location corresponds to the 0.56 blockage ratio, and other ratios will
be addressed when highlighting its effect. When varying the blockage ratio, the effective
vehicle radius is the crucial variable to apply this change.
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2.2. The Formulation for Reimann Problem for the Far-Field Flow Solution

The governing equations for the unsteady flow-field at the far-field are as follows [31]:
dρ
dt + ρ du

dx + u dρ
dx = 0

du
dt + u du

dx + 1
ρ

dp
dx + F = 0

dρ
dt + u dp

dx − c2
(

dp
dt + u dp

dx

)
= (γ− 1)ρ(q + uF)

(7)

The friction force F =
2c f
d u2 and the heat flux q are given by Equation (5). The

characteristic lines are defined by dx/dt = u± a, and the pathline is along u. The change in
velocity due to viscous and heat transfer effects is given by

du = ∓ 2
γ− 1

dC +

[
±4γqw

ρdC
− 4τw

ρd

(
1∓ u

C

)
+

C2

γ

∂

∂x

( s
R

)]
dt (8)

The entropy change is given by

(ds)path =
uF + q

T
(dt)path (9)
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where local velocity u = 1
2 (R+ − R−), and the local speed of sound a = γ−1

4 (R+ + R−).
The wave location is given by

x− xp
(
tp
)
=

[
aa +

γ + 1
2

up
(
tp
)](

t− tp
)

(10)

where xp
(
tp
)

is the wave location in time tp.
Given the vehicle cross-sectional and wetted areas Avw, Avt, the drag is calculated from

Dv = dpAvwn︸ ︷︷ ︸
pressure

+
∫ L

0
ρu2dx︸ ︷︷ ︸

momentum

+
1
2

ρu2c f Avt︸ ︷︷ ︸
viscous

(11)

2.3. MOC Initial Conditions

The pressure p∞ upstream and downstream is undisturbed because the tube is as-
sumed long enough. The disturbances from the vehicle motion should never reach the
ends before the termination of the computation. The vehicle’s motion is simulated by the
moving duct shape in the tube x-axis.

The near-field stagnation point provides the total values for the pressure, temper-
ature, and enthalpy, according to Figure 2. The initial value problem used to solve
Equations (7)–(10) shows its values from the total values described. At the undisturbed
conditions [31],

pA,

p∞
=

[
1 +

γ− 1
2

M∞
2
] γ

γ−1
,

v2

v1
=

(
p1

p2

)1/γ

.

Initially, points 1, 2 are exactly the same as points A, E, as per Figure 1. At each time t,
points 1, 2 are calculated based on Equation (10), which describes a wave traveling. The
numerical scheme’s implementation is presented in the following Algorithm 1.

Algorithm 1 Method of Characteristics Solution Algorithm

Step 1: Input: define the area distribution for the vehicle, tube dimensions, and flow properties.
Step 2: Initialize: the solution uk, pk, ρk, Tk at t = 0

for
(

k = 1 : nmax @t = t f inal

)
do

step-3: Apply the near-field/ far-field boundary conditions.
step-4: Compute near-field flow properties using Equation (6).
step-5: Solve the 1-D Reimann problem utilizing the wave equation of Equations (7)–(10).
step-6: Apply movement of the vehicle in new time step.
step-7: Transfer the solution to the new mesh solution xk+1, uk+1, pk+1, ρk+1, Tk+1

end loop
step-9: return Final report of flow-field properties x, u, p, ρ, T

3. Numerical Simulations Using the 2-D URANS Model

A 2-D CAD model, shown in Figure 4, was utilized to simulate the vehicle. The
movement was applied to the overset cell zone to simulate the vehicle’s movement within
the tube. The overset grid method [44–46] was implemented to generate the relative
motion between the vehicle and the tube. Two subdomains share the computational
domain (Figure 5): a stationary subdomain defined by the tube (Figure 5a) and a moving
subdomain (Figure 5b) surrounding the vehicle in close proximity.
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A structured grid was constructed using quadrilateral elements modeled by ANSYS
ICEM Meshing tools. A background grid is defined as a cell zone with no boundary zone
of type overset. The overset interface is used to pair multiple component grids with the
background grid. The Metis-DR method [47] is utilized to allow parallel computations.
The y+ value for the overset zone vehicle walls is 1, and that for the tube walls in the
background zone is 2.

The solver setup for this simulation is a finite-volume 2-D space, density-based [48],
unsteady, axisymmetric [49], flux-difference splitting ROE [50] with the implicit formu-
lation. A second-order upwind [51] is used for the flow equations and turbulent closure
models [52,53]. The energy equation is enabled. An ideal gas material model with viscosity–
temperature relations governed by the Sutherland law is applied [54]. The flow conditions
p and T are defined.

The tube and vehicle walls are adiabatic with no-slip conditions, and the tube portals
are pressure inlet boundary types. The overset boundary type is assigned automatically
when the overset interface is defined between the background and overset zones. Evalua-
tion of the Knudsen number suggested continuum flow down to the finest grid size.

4. Results

In this section, the results for the developed algorithm are shown. These results
are compared with the 2-D CFD analysis with the k-ε realizable model. The results are
provided in the following sequence: the power required variations with the blockage
ratio and different operating pressure, and various Mach numbers are studied. Then, we
can illustrate the pressure coefficient distribution and the near-field flow characteristics.
Following the URANS solution and flow-field predictions, a grid independency check
is performed, and the results are illustrated by means of contour plots. Finally, the far-
field results provide the time history for the flow-field pressure, velocity, and temperature
distribution along the finite length of the tube.

4.1. Power Estimations

Power estimation is pivotal to the design process of the vehicle. The Mach number,
which represents the vehicle’s speed, is desired to be as high as possible. The blockage
ratio is related to the vehicle and the tube diameters. The vehicle diameter is defined by
the interior space required, while the tube diameter is desired to be as large as possible to
reduce the blockage but as small as possible to reduce its cost. The vehicle’s surrounding
pressure, i.e., the tube pressure, is desired to be as low as possible for drag reduction
but as high as possible for safety reasons and vehicle heat rejection. These contradictory
requirements demand intensive parametric studies to optimize the system’s aerodynamic
performance.

Figure 6 shows the power map due to the vehicle drag, with the blockage ratio and
operating pressure as variable parameters for a vehicle traveling at Mach 0.6, using the
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rapid 1-D algorithm described earlier. The maximum power occurs at a higher blockage
ratio and pressure pair. The minimum power is as expected at a lower blockage ratio
and pressure. The influence of the operating pressure effect is more dominant than the
blockage effect for the lower blockage ratio values. However, for the high blockage ratio,
the opposite trend is displayed.
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Figure 6. Effect of blockage ratio on vehicle’s power at various operating pressures, M = 0.6.

Figure 7 shows the power variation for a fixed pressure of 10 kPa, with blockage ratio
and Mach number variations. Similarly, the power increases with the blockage ratio and the
Mach number as chocking in the passage is approached and causes a piston effect, causing
a rapid increase in the pressure drag. The contours discussed are tools for a power-driven
design. A limiting power range can be specified corresponding to a color code indicated in
the graduated power column. The contours shown are two-dimensional slices of a broader
three-dimensional performance map. A power value or range of values can be specified
and displayed as a single three-dimensional surface, aiding the selection of optimum
parameters of Mach number, block ratio, and pressure. Such elaborate contours are feasible
to construct using the rapid technique presented here. Such construction utilizing CFD
would require significant resources. Once the design parameters are selected, CFD is used
to hone and fine-tune the final parameters. CFD studies are presented in the following
sections and compared to the 1-D rapid results.

4.2. Near-Field Flow Results

Figure 8 shows the axisymmetric vehicle model and the near flow-field. The pressure
coefficient distributions over the model using the developed algorithm and the CFD k-ε
realizable turbulence model solution are compared. However, the developed algorithm is
one-dimensional and naturally produces mean values for Cp. The current method provides
an approximation for the near-field. However, the minimum and maximum pressure values
are near the k-ε 2D results. The difference between the results shown in Figure 8 stems from
the current model being 1-D, while the k-ε is 2-D.
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Figure 8. Pressure coefficient Cp distribution at t = 1 s, M = 0.6, p = 10 kPa, β = 0.56.

4.3. 2-D URANS Model Results

A grid convergence study is performed. The vehicle motion is repeated under coarse,
medium, and fine meshes comprising 3.82 × 105, 5.7 × 105, and 1.05 × 106 elements,
respectively, as shown in Table 2. The pressure wave propagation along the tunnel is
estimated utilizing these grid sizes. Figure 9 shows that fine and medium grid sizes
have similar trends, but the coarse grid has a higher amplitude of the pressure value, at
t = 1, 2.5 s. The coarse grid predictions agree with the other grid levels and are selected for
further investigations due to the lower computational cost and time saving calculations.

Table 2. Grid refinements.

Overset Zone Background Zone Number of Elements

Coarse 50 × 150 50 × 7500 382,500

Medium 75 × 200 75 × 7500 577,500

Fine 100 × 500 100 × 10,000 1,050,000
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Figure 9. Pressure distribution at y = 2 m (between the tube and the vehicle), t = 1, 2.5 s, with different
grids using the k-ε realizable model. The pressure and Mach number contours provided in Figure 10
were obtained with the k-ε turbulent model. The solution represents a compression in front of the
vehicle that causes the “piston effect” [52].
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Figure 10a indicates the static pressure contour around the vehicle. The pressure is
exceptionally high downstream (red colormap) and expanded into the left. The calculations
performed by MOC show a value of 23 KN. Figure 10b reveals the high Mach number
experienced at the rear part of the vehicle due to flow expansion.

4.4. Comparing the Developed Algorithm with the 2-D CFD Model

The far-field flow solution for the compression wave propagation along the tube
requires a time–space-dependent solution. The methods described in Section 1 for the 1-D
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algorithm solutions support a time history for the flow-field variables. The new algorithm
results were compared with an unsteady turbulent k-ε model. Obtained results agree in
predicting the pressure wave and flow properties’ distribution along with the tube domain.
For the near-field flow properties around the vehicle, Figure 11 shows the time history
for pressure (a) and temperature (b) measurements monitored using artificial probes fixed
at different x-locations along the tube (x = 200, 600, 1000, 1500 m). URANS results are
in excellent agreement with the developed algorithm. The 1-D algorithm and URANS
estimate the temperature variations at prescribed locations. The numerical results agree
very well, but the 1-D provides a lower maximum pressure and temperature value than the
turbulent model of k-ε The temperature measurement shows a maximum of around 72 ◦C,
which means that a higher operating temperature is expected. The system is adiabatic, and
no heat source is defined. The temperature variation generated from the flow-field area
changes and the domain’s expansion/compression causes the waves’ appearance. Another
explanation as to why the turbulence model of k-ε expects a higher temperature may be
that also the viscous dissipation into thermal energy is the source of the higher temperature
levels shown in Figure 11b [53].
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Figure 12a,b show the pressure wave propagation in space and time. Figure 12a
shows the pressure wave propagation at two flow times. During the flow time = 1 s, the
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developed algorithm and the CFD solutions for the pressure wave propagation predict that
the propagation distance lies near 300 (m), which (7.3 L), but at t = 2.5, the wave propagates
to more extended spaces, almost twice the previous wave propagating period (15 L). The
good agreement between the developed algorithm and the 2-D URANS provides high
robustness for the model, requiring less computing time for the rapid prediction of the
flow-field of high-speed vehicles traveling in a tube. The current method’s computational
time is negligible compared to the complex grid motion applied to generate the results of
the k-ε model. The computational time calculated with different grid sizes is shown clearly
in Table 3 below.
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Table 3. Comparison of computational time for 1-sec travel time.

Calculation Time for 1 s Motion Difference in Drag Force Estimations
(Compared with Fine Grid)

CFD

Coarse grid 24 h 96%

Medium grid 28 h 97%

Fine grid 32 h -

1-D Method of Characteristics (current) 15 min 95%

The 1-D Method of Characteristics’ challenges includes selecting suitable boundary
conditions and coupling between the near-field and far-field flow regimes. The near-field
flow solver could extend to a higher order to improve the accuracy, but the numerical
budget would increase substantially. In contrast, the current method is simple and provides
greater than 95% accuracy compared to the more complex solution utilizing the k-ε model.

5. Conclusions

The introduction of Hyperloop has increased the interest in rapid land transportation
technology, but the near-space pressure level is of concern regarding safety and cost. A
tube pressure range comparable to flight conditions is studied to tackle the significant
challenges in designing such a vehicle and predicting its motion. In this paper, we de-
veloped an algorithm employing an in-house code for near-field and far-field analysis
utilizing Reimann numerical schemes. The developed algorithm was tested against 2-D
CFD modeling and produced similar results. The benefits of rapid flow models include a
decreased computational burden. The complete flow-field solution was acquired in less
time than the URANS simulations, which require a complex gird and mesh motion to
capture the flow-field accurately, and it allows parametric studies of a large number of
vehicle flow conditions deemed necessary for system design. Such simplified, low-cost
tools have been developed and shown to decrease the design and development costs of the
vehicle–tube system.

The aerodynamic drag and power levels related to blockage effects and operating
pressure were also presented, including power contours. The power increases with the
blockage ratio, operating pressure, and Mach number. The time-varying solution for the
flow-field captures the long-distance wave propagation.
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Nomenclature

Av Vehicle area varied along vehicle’s x-axis, i.e., Av = f (x)
Avw area between pod and tube
a speed of sound
Cp pressure coefficient or specific heat at constant pressure
Cf skin friction coefficient
cH convection heat transfer coefficient
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D drag component
Dp pod diameter
dt time step
L vehicle’s length
M Mach number
.

m mass flow rate
p operating pressure
q heat transfer rate
qc vehicle’s heat transfer rate
R gas constant
R± Reimann invariants = 2a

γ−1 ± u
Tw wall temperature
Taw adiabatic wall temperature
us velocity at point A as per Figure 2
v velocity at point 1 as per Figure 2
u velocity at arbitrary point in the vehicle
β blockage ratio = Av

Atube

γ
cp
cv

= 1.4 for ideal air
λ friction parameter
ρ density
τw wall shear stress
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