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Abstract: Real-time and accurate state-of-charge estimation performs an important role in the smooth
operation of various electric vehicle battery management systems. Neural network theory represents
one of the most effective and commonly used methods of SOC prediction. However, traditional
neural network methods are disadvantaged by such issues as the limited range of application,
limited generalization ability, and low accuracy, which makes it difficult to meet the increasing
safety requirements on electric vehicles. In view of these problems, an ensemble learning algorithm
based on the AdaBoost.Rt is proposed in this paper. AdaBoost.Rt recurrent neural network model is
purposed to ensure the accurate prediction of lithium battery SOC. Relying on a chain-connected
recurrent neural network model, this method enables the correlation adaptability of sample data in
the spatio-temporal dimension. The ensemble learning method was adopted to devise a method
of multi-RNN model integration, with the RNN model as the base learner, thus constructing the
AdaBoost.Rt-RNN strong learner model. According to the results of simulation and experimental
comparisons, the integrated algorithm proposed in this paper is applicable to improve the accuracy
of SOC prediction and the generalization performance of the model.

Keywords: lithium battery; neural networks; state-of-charge; ensemble learning; AdaBoost.Rt

1. Introduction

Lithium batteries are regarded as an ideal power source for the new-generation electric
vehicles due to their stable operating voltage, high energy density and charging efficiency,
low self-discharge rate, no need for memory, and long service life [1]. The BMS electric
vehicle battery management system performs an important role as the intermediary be-
tween the vehicle power battery and the electric vehicle [2]. As one of the technologies
essential for the development and application BMS, battery SOC estimation is requisite for
ensuring its accuracy and stability. Therefore, an accurate prediction of SOC for the battery
performs a crucial role in achieving the best possible performance of the electric vehicle
and predicting the driving range of the electric vehicle [3,4].

It is difficult to measure the battery SOC directly, and its size can be estimated only by
using such parameters as battery terminal voltage, charge, and discharge current, and inter-
nal resistance [5]. However, these parameters tend to be affected by various uncertainties
such as battery aging, ambient temperature changes, and driving conditions [6]. Therefore,
it is imperative to achieve accurate SOC estimation for the future development of electric
vehicles [7].

Instead of requiring a complex mathematical modeling process, the neural network
algorithm learns the mapping relationship directly through the data. The model can be
established in a simple yet accurate way. The battery is equivalent to a complex collection
of time-varying nonlinear systems, while the neural network performs such functions as
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self-organization, self-adaptation, self-learning, etc. It can be used to model and simulate
complex nonlinear objects, which makes it capable to capture the battery system [8]. There-
fore, the neural network related algorithms are most commonly used for SOC estimation in
various battery management systems.

In the literature [9], the estimation algorithm is realized by adopting a gradient correc-
tion method for system identification and the unscented Kalman filter and H∞ observer
for state estimation, which can select a suitable model from the model library online. In
the literature [10], the mathematical programming method was adopted to improve the
BP neural network, with the overfitting of the model addressed through regularization.
In the literature [11], Radial-based function neural network (RBF) which introduces the
concept of saliency was applied to predict SOC, with a different estimation models set for
different input parameters of the network. It was found that the ampere-hour model based
on the ampere-hour integration method performed best. In the literature [12], the Back
Propagation neural network (BP) was adopted. After the training of large data samples, the
genetic algorithm was used to denoise the prediction. Then, the SOC was predicted and
a good prediction effect was achieved. Moreover, the convergence speed was improved,
and the risk of falling into a local minimum was reduced. In the literature [13], a genetic
algorithm was applied to optimize the initial weight of BP neural network, and the opti-
mized BP neural network was used to predict SOC. It was found that the initial weight
of the optimized neural network was much more desirable than that of the unoptimized
neural network, which significantly improves the convergence speed of the neural network.
In the literature [14], the least squares support vector machine was employed to predict the
SOC of electric vehicle battery, and the support vector machine was compared by using
polynomial kernel function and radial basis kernel function to predict the advantages and
disadvantages of each SOC. For the specific application, it is necessary to choose different
kernel functions according to the real-world conditions.

It can be seen from above that the neural network and its improved algorithm have
been widely used and are highly feasible in the research of battery SOC estimation. How-
ever, there remain many problems with the improved traditional neural network algorithm,
such as overfitting, gradient disappearance, local minimization, and others. The more
typical neural networks belong to feedforward neural networks, such as Perceptrons, Back
Propagation (BP) networks, Radial Basis Function (RBF) networks, etc. Due to a lack of the
time series memory mechanism, these algorithms place a demanding requirement on data
sample capacity.

As a type of recurrent neural network, Recurrent Neural Network (RNN) takes se-
quence data as input to perform recursion in the evolution direction of the sequence and
to connect all the nodes (recurrent units) in a chain. With memory, parameter sharing
and Turing completeness, the network shows certain advantages in learning the nonlinear
characteristics of the sequence, which compensates for the correlation and adaptability
of the sample data of the feedforward neural network in the spatiotemporal dimension.
Therefore, this paper takes into account the research route of battery SOC based on cyclic
neural network.

An ensemble learning algorithm is defined as a machine learning method that adopts
multiple models and fuses the prediction results of multiple models to obtain the best
prediction result out of the model. In the literature [15], the GBDT ensemble learning
algorithm was proposed to extract the statistical and spectral features of the data, with
Pearson used for correlation verification. In the literature [16], the ampere-hour integra-
tion method and the open-circuit voltage method with fuzzy control were combined to
obtain the initial SOC value, and then the RBF neural network was used to estimate the
dynamic SOC model. Despite the combined advantages of each model, the battery SOC
estimation results remain short of the SOC accuracy requirements in the actual operation
of electric vehicles. As one of the representatives of classical ensemble learning, the Ad-
aBoost algorithm is frequently used to perform binary classification. In 1999, Freund and
Schapire et al. [17] proposed the classic AdaBoost algorithm, and then the AdaBoost.M1
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and AdaBoost.M2 algorithms to solve multi-classification problems. In terms of regression,
Freund and Schapire proposed the AdaBoost.R algorithm which is capable to simplify
the regression problem into a classification problem by finding an error boundary, thus
ascertaining whether the sample is correctly predicted. Proposed by Solomatine [18] in
2004, the AdaBoost.Rt algorithm is effective in improving the usability of the AdaBoost.R
algorithm. The AdaBoost.Rt algorithm demonstrates such advantages as high accuracy
and excellent generalization performance in dealing with prediction regression problems.

To sum, for addressing the low accuracy and poor generalization of neural network
algorithm in lithium battery SOC estimation research, this paper proposes that an integrated
learning algorithm of AdaBoost.Rt cyclical neural network model can be adopted to ensure
the accurate prediction of lithium battery SOC. Through a chain-connected recurrent neural
network model, this method addresses the correlation adaptability of sample data in
the spatio-temporal dimension. Moreover, the ensemble learning method was adopted
to construct a multi-RNN model integration method, with the RNN model as the base
learner, AdaBoost.Rt-RNN strong learner model. As suggested by the simulation results,
the method proposed in this paper is capable of improving the accuracy of estimation for
lithium battery state-of-charge under various complex operating conditions, and the model
is highly effective.

2. AdaBoost.Rt-RNN Algorithm Principle
2.1. Recurrent Neural Network

As a vitally important neural network framework in the field of deep learning, Recur-
rent Neural Network (RNN) can be used to process and predict the neural network model
of sequence data [19]. Compared with the traditional neural network, RNN takes sequence
data as input, and the output of its internal neurons at a certain time can be inputted
into the neurons again as input. The network cannot handle the input problem that is
contextual in time or space [20]. Recurrent neural network can be used to predict various
event sequences due to its memory, and it is widely used in the field of natural language
processing, such as speech recognition, language modeling, and machine translation.

In the traditional neural network, the value of its hidden layer only depends on the
input value and is irrelevant to the output. A schematic diagram of the traditional neural
network is shown in Figure 1.
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Figure 1. Schematic diagram of traditional neural network.

The most striking difference between the recurrent neural network and the traditional
neural network is that the RNN is capable of maintaining the state of the hidden layer at
the previous moment, which shows that the value of the hidden layer depends not only on
the current input value, but also on the value of the hidden layer at the previous moment.
Therefore, RNN has a strong learning ability. The structural diagram of RNN is shown in
Figure 2.
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Figure 2. Schematic diagram of recurrent neural network.

The output layer and hidden layer of RNN are calculated as follows.

ot = g(Vst) (1)

st = f (Uxt + Wst−1) (2)

where ot denotes the output value of the RNN at time t, V denotes the weight matrix
between the output layer and the hidden layer, st denotes the value of the hidden layer
of the RNN at time t, xt denotes the input value of the RNN at time t, U denotes the
weight matrix between the input layer and the hidden layer, W represents the weight
matrix between st and st−1, and f represents the activation function of the hidden layer. By
combining the two formulas, it can be known that:

ot = g(Vst)
= V f (Uxt + Wst−1)
= V f (Uxt + W f (Uxt−1 + Wst−2))
= V f (Uxt + W f (Uxt−1 + W f (Uxt−2 + · · ·)))

(3)

where the output value ot shows a relationship with the input quantity x1, x2, . . . , xt.

SOC Estimation of Lithium Battery Based on Recurrent Neural Network

In this paper, the SOC of lithium-ion power batteries was estimated by using a recur-
rent neural network. The RNN used in this study consists of 6 input neurons, 1 hidden
layer and 1 output neurons. The layers of the neural network are described below.

1. Input layer: open-circuit voltage OCVt at time t, high-frequency resistance (real
part) Rh ft, ohmic resistance Rdt, time constant τt, voltage change rate ∆Vt and the
differential value of specific capacity Qt

′ as the input to the model, among them, the
open-circuit voltage of the battery OCVt, the high-frequency resistance (real part)
Rh ft, ohmic resistance Rdt and time constant τt are tested through the HPPC working
condition test, ∆Vt = dV/dt and Qt

′ = dV/dQ = (V2 −V1)/(Q2 −Q1);

xt =
[
OCVt, Rh ft, Rdt, τt, ∆Vt, Qt

′]T (4)

2. Hidden layer: The hidden layer node St at time t, where n represents the number of
hidden layer nodes:
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St = [st,1, st,2, · · · , st,n]
T


st,1
st,2
· · ·
st,n

 = tanh




u11u12 u13u14u15u16
u21u22u23u24u25u6

· · · · · ·
un1un2un3un4un5un6




OCVt
Rh ft
Rdt
τt

∆Vt
Qt
′

 +


ω11ω12 · · · ω1n
ω21ω22 · · · ω2n

· · · · · ·
ωn1ωn2 · · · ωnn




st−1,1
st−1,2
· · ·

st−1,n


 (5)

where tanh represents the activation function of the hidden layer;
3. Output layer: The SOC at time t is treated as the output of the model.

[SOCt] = [v11v12 · · · v1n]


st,1
st,2
· · ·
st,n

 (6)

Figure 3 shows a comparison of the absolute value of the error in estimating the SOC
of a lithium battery as performed by a single recurrent neural network and by integrating
multiple RNNs into a strong predictor according to weight. It can be seen from the
figure that the error of the strong predictor is closer to 0, which is less significant than the
prediction error result of a single RNN. Therefore, in order to improve the accuracy of
lithium battery SOC estimation results, this paper adopts an ensemble learning algorithm,
with RNN as a basic learner to estimate the SOC of lithium batteries.
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Figure 3. Strong predictor prediction error absolute value.

2.2. AdaBoost.Rt Ensemble Algorithm
2.2.1. Ensemble Learning

Ensemble learning refers to a machine learning method that uses a series of learners
to learn, with certain rules applied to integrate each learning result for obtaining a better
learning effect than a single learner. In general, the multiple learners in ensemble learning
are homogeneous “weak learners”.

The boosting algorithm of integrated learning generates multiple weak learners in
series and generates strong learners according to a certain combination strategy. The
AdaBoost.Rt algorithm [21] is one of the boosting series of algorithms.

2.2.2. AdaBoost.Rt Ensemble Algorithm

The AdaBoost.Rt algorithm improves the accuracy of any given learning algorithm,
and each individual predictor has dependencies. The entire learning process improves
performance by increasing the weight of the previous misclassified data, that is, the con-
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struction of the next predictor related to the previous predictor. The implementation
method is shown in Figure 4.
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The calculation process of the AdaBoost.RT algorithm is as follows:

1. Given a training set S of m samples, determine the number of iterations T and the
threshold ϕ. According to relevant research, when ϕ > 0.38, the prediction error begins
to shake violently, and the performance of the strong learning machine is gradually
unstable. Therefore, the selected threshold should not exceed 0.38;

S = {(x1, y1), (x2, y2), · · · , (xm, ym)} (7)

2. Initialize the sample weight Dt(i) = 1/m, where i is the number of training sets, t is
the current number of iterations; the error rate is εt = 0;

3. Train a weak predictor ft(x)→ y and calculate the relative error of each sample
AREt(i);

AREt(i) =
∣∣∣∣ ft(xi)− yi

yi

∣∣∣∣ (8)

4. Calculate the error rate εt = ∑
i

D(i), i : AREt(i) > ϕ;

5. Update sample weights D;

Dt+1(i) =
Dt(i)

Zi
×
{

εt, AREt(i) ≤ ϕ
1, others

(9)

Among them, Zi is the normalization factor, which means the sum of the updated
weights of all samples is 1.

6. Determine t < T whether it is established. If so, let t = t + 1, and continue to iterate;
if t = T, build a strong predictor and output.

2.3. AdaBoost.Rt-RNN Ensemble Algorithm

In this paper, the SOC of the battery was predicted by establishing the AdaBoost.Rt-
RNN model. The preprocessed battery data set is inputted into the model using the initial
weight training within the network to obtain a predictor, the learning error rate of the
predictor is calculated, and the weight of the training sample is updated according to
the error rate. Among them, the combination strategy of each sub-model of AdaBoost.Rt
adopts the weighted average method and the initial weights Dt(i) = 1/m. Moreover, the
sample points with high a learning error rate in the predictor are improved, and the next
trainer is trained based on the weighted training set until all predictors are completed.
Finally, all trainers are assembled into a strong learner to predict the lithium battery SOC
accurately. Figure 5 shows its implementation method.
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Figure 5. Schematic diagram of AdaBoost.Rt-RNN algorithm.

Training phase:

1. Input the sample training set S, where xi, yi, and zi represent the ith feature vector
of the voltage, current, and capacity [16] in the lithium battery training samples,
respectively; m represents the number of training samples;

S = {(xi, yi, zi)}m
i=1 (10)

2. Initialize the initial weight of the sample training set Dl = 1/m, train the weak
predictor RNN1, calculate the relative error, update the weight of the training sample
according to the error result, and iterate continuously until the weight D of the
K weak predictor RNNs is determined. The calculation method is expressed as
Formula (9) below;

3. In combination with the independent evaluation data set P, K RNN models are
assembled through AdaBoost.Rt. Finally, the AdaBoost.Rt-RNN model is constructed.

P =
{(

xj, yj, zj
)}M

j=1 (11)

AdaBoost.Rt− RNN=
K

∑
l=1

Dl ·RNNl (12)

Test phase:

1. Input the test data set U;
U = {(xk, yk, zk)}m

k=1 (13)

2. Use the K RNN models formed by the AdaBoost.Rt-RNN model to predict the test
data set, and obtain the prediction result Y;

Y = {Yl |l = 1, 2, · · ·K} (14)

3. Finally, the prediction result of the final lithium battery SOC is obtained.

SOC=
K

∑
l=1

Dl ·Yl (15)
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3. Simulation Experiment and Result Analysis

To verify the model, the single RNN model and the AdaBoost.Rt-RNN model were
applied to estimate the state-of-charge of lithium-ion batteries under the same conditions.

3.1. Experimental Data
3.1.1. Experimental Data Selection

The experimental data used in this paper were obtained on two experimental plat-
forms, such as Figure 6, the Arbin BT-ML-30V/10A power battery tester produced by Arbin
Instruments in University City, Texas, USA and the ZM-7520 battery performance tester
produced by Harbin Zimu Company in Harbin, China.

Energies 2022, 15, x FOR PEER REVIEW 8 of 15 
 

 

( ){ }
1

, ,
M

j j j j
P x y z

=
=  (11)

AdaBoost.Rt RNN−
1

K

l
l
D

=

= ⋅ lRNN  (12)

Test phase: 
1. Input the test data set U ; 

( ){ } 1
, , m
k k k k

U x y z
=

=  (13)

2 Use the K RNN models formed by the AdaBoost.Rt-RNN model to predict the test 
data set, and obtain the prediction result Y ; 

{ }| 1,2,lY Y l K= =   (14)

3 Finally, the prediction result of the final lithium battery SOC is obtained. 

SOC
1

=
K

l l
l
D Y

=

⋅  (15)

3. Simulation Experiment and Result Analysis 
To verify the model, the single RNN model and the AdaBoost.Rt-RNN model were 

applied to estimate the state-of-charge of lithium-ion batteries under the same conditions. 

3.1. Experimental Data 
3.1.1. Experimental Data Selection 

The experimental data used in this paper were obtained on two experimental plat-
forms, such as Figure 6, the Arbin BT-ML-30V/10A power battery tester produced by Ar-
bin Instruments  in University City, Texas, USA and the ZM-7520 battery performance 
tester produced by Harbin Zimu Company in Harbin, China. 

 
Figure 6. Schematic diagram of battery experiment platform. 

Among them, the voltage measurement range of the Arbin device is 0–30 V, the cur-
rent measurement range is 0–10 A, and the measurement resolution of voltage and current 
can reach 0.1 mV and 0.1 mA, respectively. In this article, the ZM-7520 battery perfor-
mance tester was used to carry out the aging test of the lithium battery. The instrument 
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Among them, the voltage measurement range of the Arbin device is 0–30 V, the current
measurement range is 0–10 A, and the measurement resolution of voltage and current can
reach 0.1 mV and 0.1 mA, respectively. In this article, the ZM-7520 battery performance
tester was used to carry out the aging test of the lithium battery. The instrument consists of
two devices, each with 16 channels. The experimental conditions are shown in Table 1.

Table 1. Lithium battery experimental conditions.

Parameter Number

Nominal voltage 3.7 V
Discharge termination condition Voltage < 2 V

Charge termination condition Current < 0.05 C
Ambient temperature 24 ◦C

Quality 1080 ± 10 g

The actual SOC value of the lithium battery is obtained by the ampere-hour integration
method. Assume that the initial state of battery charge and discharge is SOC0 [22]. The
current state of the SOC is shown in the following formula:

SOC= SOC0 −
1

CN

t∫
0

η Idτ (16)

where CN is the rated capacity, I is the charging and discharging current of the battery,
and η is the charging and discharging efficiency. In summary, the ampere-hour integration
method needs to measure the charge and discharge current of the battery and the initial
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SOC value of the battery to estimate the SOC of the battery. In this paper, the charging and
discharging voltage and current of the battery were obtained through the above-mentioned
experimental equipment. Since the initial capacity of the battery is known, the initial SOC
value of the battery can be obtained, and the charging and discharging capacity is known.
Therefore, the experimental data are obtained through the ampere-hour integration method
to estimate the battery SOC authenticity.

In this paper, the open-circuit voltage of the battery OCVt, the high-frequency resis-
tance (real part) Rh ft, ohmic resistance Rdt and time constant τt were tested through the
HPPC working condition test. The specific test steps are as follows:

1. Allow the lithium battery to stand for 60 min;
2. Charging at 1 C constant current to 3.65 V, keep the voltage constant at 3.65 V, and

stop charging when the current is less than 0.05 C;
3. After standing for 60 min, use 1 C rate to discharge 10% SOC.

The simulation results of HPPC are shown in Figure 7.

Energies 2022, 15, x FOR PEER REVIEW 9 of 15 
 

 

consists of two devices, each with 16 channels. The experimental conditions are shown in 

Table 1. 

Table 1. Lithium battery experimental conditions. 

Parameter Number 

Nominal voltage 3.7 V 

Discharge termination condition Voltage < 2 V 

Charge termination condition Current < 0.05 C 

Ambient temperature 24 °C 

Quality 1080 ± 10 g 

The actual SOC value of the lithium battery is obtained by the ampere-hour integra-

tion method. Assume that the initial state of battery charge and discharge is 0SOC  [22]. 

The current state of the SOC is shown in the following formula: 

SOC 0

0

1
t

N

SOC Id
C

= −    (16) 

where NC  is the rated capacity, I  is the charging and discharging current of the bat-

tery, and   is the charging and discharging efficiency. In summary, the ampere-hour 

integration method needs to measure the charge and discharge current of the battery and 

the initial SOC value of the battery to estimate the SOC of the battery. In this paper, the 

charging and discharging voltage and current of the battery were obtained through the 

above-mentioned experimental equipment. Since the initial capacity of the battery is 

known, the initial SOC value of the battery can be obtained, and the charging and dis-

charging capacity is known. Therefore, the experimental data are obtained through the 

ampere-hour integration method to estimate the battery SOC authenticity. 

In this paper, the open-circuit voltage of the battery tOCV , the high-frequency re-

sistance (real part) tRhf , ohmic resistance tRd  and time constant t  were tested 

through the HPPC working condition test. The specific test steps are as follows: 

1. Allow the lithium battery to stand for 60 min; 

2 Charging at 1 C constant current to 3.65 V, keep the voltage constant at 3.65 V, and 

stop charging when the current is less than 0.05 C; 

3 After standing for 60 min, use 1 C rate to discharge 10% SOC. 

The simulation results of HPPC are shown in Figure 7. 

 

Figure 7. The experimental process of HPPC. 

The test principle is to calculate the ohmic internal resistance of the lithium-ion bat-

tery by applying a large inrush current at both ends of the lithium-ion battery, in 

Figure 7. The experimental process of HPPC.

The test principle is to calculate the ohmic internal resistance of the lithium-ion battery
by applying a large inrush current at both ends of the lithium-ion battery, in accordance
with the change in battery terminal voltage [23]. As shown in Figure 8, Ut is the voltage
point at the beginning moment of discharge and U0 is the voltage point at the end moment
of discharge, respectively, and the ratio of the voltage difference to the current change is
the ohmic internal resistance value, as shown in Formula (17).

Rd =
∆U
∆I

=
Ut −U0

It − I0
(17)

where Ut is the terminal voltage of the battery at time t; U0 is the terminal voltage of the
battery before the current changes; It is the current after the change; and I0 is the current
before the change.
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3.1.2. Data Normalization

In order to reduce computational complexity for the neural network, the lithium
battery input data are normalized in this paper. The min-max normalization method was
used to normalize the data, which speeds up the solution and improves the accuracy
of the optimal solution [24]. The result falls within the [0, 1] interval, as shown in the
following formula:

Xinew =
Xi − Xmin

Xmax − Xmin
(18)

where xi and xinew are the data before and after normalization, respectively, while xmax and
xmin are the maximum and minimum values of the data before normalization, respectively.

3.2. Algorithm Evaluation Index

In order to evaluate the established SOC estimation model and compare the predicted
data with the actual data, this paper selected two indicators, mean absolute error (MAE)
and root mean square error (RMSE) [25]. The calculation of the error is detailed as follows:

Mean Absolute Error (MAE):

MAE =
1
m

m

∑
i=1

∣∣∣∣Yi −
∧
Yi

∣∣∣∣ (19)

Root Mean Square Error (RMSE):

RMSE =

√√√√ 1
m

m

∑
i=1

(
Yi −

∧
Yi

)2

(20)

3.3. Simulation and Results Analysis

In this paper, based on the MATLAB platform, the simulation test was carried out, and
the number of input layer nodes of the weak predictor RNN was set to 6, including the open-
circuit voltage of the battery OCVt, the high-frequency resistance (real part) Rh ft, ohmic
resistance Rdt, time constant τt, voltage change rate ∆Vt and the differential value of specific
capacity Qt

′. Among them, the open-circuit voltage of the battery OCVt, the high-frequency
resistance (real part) Rh ft, ohmic resistance Rdt and time constant τt were tested through
the HPPC working condition test, ∆Vt = dV/dt and Qt

′ = dV/dQ= (V2 −V1)/(Q2 −Q1).
The number of hidden layer nodes is 1, which contains 16 neurons, the number of nodes in
the output layer is 1, which is the predicted value of the battery SOC, and the number K of
weak predictors is 10.

In the data set, the first group, the 17th group, the 38th group, the 57th group, the 82nd
group, and the 86th group were randomly selected to comprise the training data set of the
model. The 61 groups and the 72nd group of data were used as the independent evaluation
data sets of the model. The 91st group of data were selected as the test data set of the model.
The SOC estimation results of the single RNN model and the AdaBoost.Rt-RNN model
obtained according to the experimental steps are shown in Figures 9 and 10, respectively.

The simulation in this paper was carried out under FUDS. From the comparison shown
in Figures 9 and 10, it can be seen that compared with the single RNN model, the SOC
estimation value of the AdaBoost.Rt-RNN model is more consistent with the true value.
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Figure 11 show the mean absolute error. The abscissa in the figure is the test data of
the battery SOC, where MAE represents the average value of the absolute value of the error
between the observed value and the actual value, and the stability of the MAE change
map of the battery SOC indicates that the predicted battery SOC is closer to the actual
value of the battery SOC. Figure 12 shows the root mean square error (RMSE) values of a
single RNN and AdaBoost.Rt-RNN models under different SOCs, which can describe the
dispersion degree of battery SOC error more accurately. The RMSE values under different
SOCs are different, and more representative values are selected from 0 to 100% SOC to
compare the RMSE values of the two models under different SOCs more intuitively. In the
figure, we can find that the RMSE values of the AdaBoost.Rt-RNN model under different
SOCs are all smaller than that of the single RNN model. These show that the SOC estimated
by the AdaBoost.Rt-RNN model used in this paper is closer to the real value, and the model
is highly feasible.
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Table 2 shows the mean absolute error and root mean square error of BP neural
network [26], RNN, XGBoost [27], H∞ [28], UKF [28], and AdaBoost.Rt-RNN model. It can
be seen that the mean absolute errors of BP, RNN, XGBoost, H∞, UKF, and AdaBoost.Rt-
RNN prediction results are 4.26%, 3.02%, 2.35%, 3.66%, 4.39%, and 1.58%, and the root
mean square errors are 5.26%, 3.78%, 3.04%, 1.73%, 1.62%, and 2.05%, respectively.

Table 2. Comparison of prediction accuracy of lithium battery.

Model MAE RMSE

BP 0.0426 0.0526
RNN 0.0302 0.0378

XGBoost 0.0235 0.0304
H∞ 0.0366 0.0173
UKF 0.0439 0.0162

AdaBoost.Rt-RNN 0.0158 0.0205

From the results of the mean absolute value error and the root mean square error,
it can be seen that the error of the RNN prediction result is lower than that of the BP
neural network, which confirms that the cyclic neural network algorithm achieves a higher
prediction accuracy than the traditional neural network. Compared with other methods,
such as H∞ and UKF, AdaBoost.Rt-RNN has relatively higher accuracy. However, in terms
of calculation speed, AdaBoost.Rt-RNN needs to be improved. Compared with the single
RNN algorithm and the XGBoost integration algorithm, the AdaBoost.Rt-RNN further
improves the accuracy of SOC estimation and performs well in generalization, which not
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only reflects the feasibility of combining the AdaBoost.Rt algorithm and RNN, but also
proves that AdaBoost.Rt-RNN model algorithm is effective in improving the accuracy of
SOC estimation. Figure 13 can more intuitively describe the prediction accuracy of lithium
battery SOC by different methods.
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4. Conclusions

The real-time and accurate estimation of lithium battery SOC is essential but challeng-
ing for the electric vehicle battery management system. The neural network algorithm
proposed in this paper is one of the most effective and commonly used methods of lithium
battery SOC prediction. To solve the problems facing traditional neural network, such
as the limited range of application, poor generalization performance, and low accuracy,
this paper proposes an improved AdaBoost.Rt recurrent neural network model algorithm.
Through a chain recurrent neural network model, this method solves the correlation adapt-
ability of sample data in the space-time dimension. In addition, the AdaBoost.Rt ensemble
learning algorithm is adopted to form a AdaBoost.Rt according to the weight of multiple
weak learner RNNs. The RNN strong learner model significantly improves the accuracy of
prediction for the SOC of lithium batteries. According to the simulation and experimental
results, the average absolute value errors of the prediction results of the single RNN and
the AdaBoost.Rt-RNN are 3.02% and 1.58%, respectively, while the root mean square errors
are 3.78% and 2.05%, respectively. That is to say, the AdaBoost.Rt-RNN achieves high
estimation accuracy and performs well in convergence. Thus, the AdaBoost.Rt-RNN model
in estimating the SOC of lithium batteries is verified as feasible.

Despite the excellent performance of the AdaBoost.Rt-RNN model in estimating the
SOC of lithium batteries, there remains room for improvement in the following aspects.
Since the SOC estimation of lithium batteries in this paper was carried out at a room
temperature of 24 ◦C, it is impossible to verify the algorithm as applicable for Lithium
Battery SOC Estimation at other temperatures. Therefore, the focus of future research is
how to integrate the cross-correlation between temperature and lithium battery SOC into
the lithium battery SOC estimation model based on AdaBoost.Rt-RNN, for the improved
accuracy of lithium battery SOC estimation. In addition, it is also necessary to improve the
calculation speed of the AdaBoost.Rt-RNN model.
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Abbreviations

SOC State-of-charge
RNN Recurrent neural network
BMS Battery management system
RBF Radial-based function neural network
BP Back Propagation
FCL Fuzzy logic control
GBDT Gradient Boosting Decision Tree
XGBoost eXtreme Gradient Boosting
OCV Open-circuit voltage
HPPC Hybrid Pulse Power Characteristic
MAE Mean absolute error
RMSE Root mean square error
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