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Abstract: This paper started with the explanation of the conditions for using the momentum equation
and with the presentation of the actuator disc theory. Focusing on the flow model used in actuator
disk theory, both the Froude-Rankine theorem and Betz’s law have been examined. It has been found
that the Froude-Rankine theorem is not justified because a stream-tube that is used as the control
volume does not really exist (pseudo stream-tube). The theorem is also not justified because an
unfounded velocity (v2) is used to connect the thrust of the actuator disc with the total power loss.
Two flaws have been identified in Betz’s law. First, the use of both the unjustified Froude-Rankine
theorem and the incorrect flow model totally violates the condition of determining the thrust of
the actuator disc using the momentum equation. Second, the unfounded velocity (v2) from the
Froude-Rankine theorem is misinterpreted and used for the volumetric flow rate through the actuator
disc. These two main flaws lead to diverse computational contradictions and paradoxes, particularly
when considering the case of an impermeable circular disc. The flaws in Betz’s law become evident
when the law is applied to a rectangular actuator plate of infinite length. The possible solution
for the actuator disc flow has been presented. This includes the additional consideration of energy
dissipation in the flow downstream of the actuator disc, similar to the method used to calculate the
Borda-Carnot shock loss.
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1. Introduction

In connection with the increasing use of renewable energies, wind energy is rapidly
becoming an important energy resource for power generation. More and more wind farms
are being built both offshore and onshore. Accordingly, extensive research has been carried
out for decades. These have mainly contributed to the optimum design, manufacture,
and operation of large-scale wind turbines, as they have significant advantages over small
turbines (more productive, less noisy). In recent years, as widely reported in the mass
media, wind turbines with a rotor diameter of more than 200 m have been built. The rated
power of a wind turbine has exceeded 10 MW and is tending towards 15 MW.

Wind power technology encompasses the aerodynamic design, manufacture, and
operation of wind turbines. In both rotor blade design and operation, aerodynamics is
the most central discipline for predicting blade loading and turbine unit performance. In
common practice, aerofoil theory in aerodynamics is applied, which seems to be a fairly
mature application as it can be found in dozens of textbooks [1–4]. In addition, much
research has been accomplished on this topic using CFD simulations and, in particular, the
Blade Element Momentum Method (BEM). The latter is suitable for determining the blade
loading based on the aerofoil theory [2,5–8], in details, based on the calculation of the lift
and drag forces acting on the blades. Although assumptions and simplification are often
made, the calculations are still quite complex. They are also not as accurate as those for
hydraulic turbines. In addition, all the methods used to design the rotor blades are not
capable to automatically ensure a constant extraction of the wind energy along the rotor
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blade from the hub to the rotor blade tip. This would lead to the wind energy not being
optimally utilized. For a better design of the blade profiles, as shown in [9], it seems much
more favourable to use the turbine theories proven in the field of water turbines. Using
the Euler equation for specific work, for instance, the blade profile can be designed which
automatically ensures constant energy extraction from the wind along the blade. Moreover,
the non-uniform pressure distribution in the flow behind the rotor plane is automatically
determined either.

Another important aspect in connection with wind energy is the maximum achievable
power at a wind turbine. This has so far been given by Betz’s law, if the errors contained in
this law are ignored.

In the technology of wind energy and its applications, Betz’s law [10] has been funda-
mental for about a century. It has been widely used to represent the maximum achievable
power coefficient, which is given as about 0.59. According to Okulov and van Kuik [11],
Betz’s law and the upper limit of the attainable power coefficient were also recognized by
Joukowsky. Therefore, it should be better called the Betz–Joukowsky limit.

In fact, in both research and application of wind turbines, Betz’s limit has never been
reached. The highest power coefficients achieved are mostly below 0.5, which seems
relatively low. By separating the power coefficient from the blade efficiency of the wind
turbine, as given in [9], a power coefficient of 0.5 corresponds to a blade efficiency of only
about 75%. For Betz’s limit (0.59), the maximum blade efficiency would be 1 − 1/9 = 88.9%.
This maximum value still seems somewhat low when compared to the hydraulic efficiency
of water turbines, which reaches 90% or even more.

It should be noted that Betz’s law is not applicable for design purposes, as it does
not take into account the rotation of the flow in the downstream region and thus does not
provide any guidance for wind turbine design and operation.

Betz’s law was derived on the basis of the flow model of a permeable actuator disc and
by applying the Froude-Rankine theorem. The latter is based on the momentum and energy
equations applied to the flow within a control volume. It has long been disputed whether
Betz’s limit can be exceeded; the use of shrouds to guide the flow around the blade tips and
thus to enhance the power coefficient beyond the Betz limit does not count. However, there
has been almost no discussion about the correctness of Betz’s law itself and the flow model
used. One sees almost only the imperfection of Betz’s law by neglecting the flow rotation
in the downstream flow. Only in few papers, e.g., in [12], Betz’s law was clearly stated as
not valid. Unfortunately, this well-presented work has never been seriously considered in
the past more than 40 years. In Ref. [9], where water turbine theories were applied to the
wind turbine, the flow model used in Betz’s law was also said to be incorrect. Two flaws in
Betz’s law and many associated contradictions were outlined. For instance, one is always
confused, at least, by the absurd conclusion in Betz’s law that the power coefficient is
non-zero (cp = 0.5) when the disc is impermeable. In general, this false result is simply
ignored, and accordingly, no in-deep investigations of the related cause have ever been
carried out.

Although Betz’s law is not directly applied in the aerodynamic design and operational
optimisation of wind turbines, the consequences of the flaws found in Betz’s law are large.
This is because the incorrect computational concept of the actuator disc flow model is still
used in almost all wind turbine design processes. This means that using the same disc flow
model, one only additionally account for the presence of swirling flows downstream of
the turbine wheel, which is referred to as 2D momentum theory. The use of the incorrect
flow model often leads to irrational inferences, so that both fluid mechanical designs and
performance calculations have still not been unified. As a matter of fact, different textbooks
describe quite different calculation bases, not to mention the large discrepancies in research
papers. This issue is not part of the content of the present paper, so no references are
given here.
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In fact, the flaws in Betz’s law arise, on the one hand, from the use of the baseless
Froude-Rankine theorem and, on the other hand, from the unfounded use of the volumetric
flow rate in connection with the pseudo stream-tube. The latter is predominant.

In the present paper, therefore, both the Froude-Rankine theorem and Betz’s law
are examined for serious deficiencies in connection with the flow model used. In order
to encourage engineers and designers to develop new theories soon and to advance the
technology in the field of wind turbines, the concept of the proper use of the flow model of
an actuator disc is also presented.

2. Momentum Equation and the Thrust

In aerodynamics, the fundamental momentum equation is often used to determine
the drag force or thrust of an aerofoil in the flow [13,14]. According to Figure 1, the control
volume height (2H) must be sufficiently large to contain the main part of the velocity deficit
far behind the aerofoil, where the constant pressure, p0, is restored. Then the thrust of the
considered aerofoil is determined by the momentum equation alone:

T = ρ

Q∫
0

(v0 − v)d
.

Q = ρ
.

Q(v0 − vM). (1)
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Figure 1. Control volume commonly used in aerodynamics for determining the drag force exerted on
the aerofoil.

Sufficient size of the control volume is required due to another fundamental fluid
mechanical feature. The above momentum equation is established under the condition that
the flow leaving the lateral surface of the control volume has an axial velocity component
nearly equal to v0. The flow on the control volume is thus almost parallel to the surface
of the control volume. Since the y-component of the velocity is negligible, the mass flow
laterally leaving the control volume is also small. As can be seen from Figure 1, this small
value is only given by the small height h, which is bounded by the corresponding stream-
tube (shown by the flat solid line). It can be shown that the mean pressure along such a flat
stream-tube is equal to p0. Thus, the pressure within the small height h can be assumed to
be constant.

This feature of a sufficiently large control volume allows the control volume to be
replaced by the corresponding stream-tube. This is simply because the volumetric flow rate
(

.
Q) used in Equation (1) is actually the same volumetric flow rate through the stream-tube.

In addition, because of the near constant pressure on the stream-tube, the axial components
of all pressure forces on the entire stream-tube surfaces (inlet 2H0, side, and outlet 2H) must
be completely compensated for. This is verified by Equation (1), in which the pressure force
is not present.
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The mean velocity vM in the above equation is related to the momentum flux in the
considered plane and is calculated as,

vM =
1
.

Q

Q∫
0

vd
.

Q =
1
.

Q

A∫
0

v2dA. (2)

For a large control volume, the thrust from Equation (1) is independent of the size of
the control volume. This can be verified by calculating dT/d

.
Q from Equation (1), given as,

dT

d
.

Q
= ρ(v0 − v), (3)

with v as the local flow velocity on the control volume, i.e., at y = H.
The calculated thrust in Equation (1) increases monotonically with the height of the

control volume. Since the total thrust is a constant, the increase given in the above equation
must tend to zero for a sufficiently large height (H) of the control volume. This is confirmed
as the local velocity, v, gradually reaches the undisturbed velocity, v0. Here, the condition
v ≈ v0 fully agrees with the condition for the application of Equation (1) that the axial
velocity component vx at the side wall of the control volume (y = H) is almost equal to
v0, as mentioned before. Other statements made in the context of Equation (1) are also
validated, including the applicability of the corresponding flat stream-tube. The flow inside
the control volume is thus almost unaffected by the flow outside and vice versa.

Appendix A also shows that for large stream-tubes, the walls of all flat stream-tubes
are parallel, given by dH0/dH ≈ 1.

Theoretically, extending the control volume to infinity, say H→∞ and hence A→∞,
gives vM = v0, as directly obtained from Equation (2) with v = v0 (mean value theorem for
integrals). Accordingly, one obtains the same for volumetric (vQ) and energy (vE) flows as
follows in completeness:

vQ = v0, vM = v0 and vE = v0. (4)

For the definition of vE and its application, see Equations (5) and (7) below.
The associated power loss or rate of energy dissipation in the flow is simply calculated

as P = Tv0.
In practical applications, Equation (1) can be used to measure thrust by using a control

volume of appropriate finite size without having to satisfy Equation (4). The background of
such a measurement concept can be clarified. By approximating the velocity distribution,
v0–v, to be comparable with the Gaussian function (Appendix B for the case of an actuator
disc), the main part of the thrust can be captured using Equation (2) by setting the upper
bound of the integration to be a finite value. The remaining part, corresponding to the
complementary error function, is negligible.

The main part of the deficit velocity profile is thus defined within the height H, at
which v ≈ v0 is fulfilled. The deficit velocity is then mainly confined to the flat stream-tube
and can be replaced by the equivalent mean velocity (vM) for the momentum flow, as also
shown in Figure 1. The mean velocities for mass and energy flows and thus the energy
equation again remain unused.

Taking this concept into account, in contrast to Equation (4), there is generally,

vQ < vM < vE < v0 with vE =
(

v2
)0.5

. (5)

The power loss in the flow is again calculated as P = Tv0, as in the case of H→∞.
The flow model used in Figure 1 for the determination of the thrust of the aerofoil can

also be applied to the flow model of an actuator disc. In particular, the effective control
volume satisfying v ≈ v0 along the control volume can be replaced by the equivalent flat
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stream-tube. This is of great practical significance. Unfortunately, almost all calculations to
date that consider the flow at an actuator disc have used an incorrect control volume or
stream-tube, as shown in Sections 4 and 5 below.

3. Actuator Disc Flow Model

As stated in the introduction, the basic flow model for wind turbines is the flow
through an actuator disc. Initially, according to Figure 2, this was a flow model that only
considers the pseudo stream-tube passing through the circumferential edge of the actuator
disc. In almost all research works and textbooks (no references are given here), such a flow
model was used as the basis of fluid mechanics for wind turbines. As will be shown in the
following sections, the pseudo stream-tube is not valid as a useful control volume. The
actuator disc itself can be regarded as a permeable disc at which the flow resistance and
thus the volumetric flow rate can be changed. The effective stream-tube shown in Figure 2
satisfies the condition of flatness (Section 2) and can thus be used as a control volume to
determine the thrust of the actuator disc.
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The flow through the actuator disc is denoted by
.

QD, while the flow around the disc
is given by

.
QA. The total volumetric flow rate in the control volume is

.
Q =

.
QD +

.
QA.

As in Section 2, the deficit velocity distribution in plane 3 is replaced by the equivalent
mean velocity for the momentum flow, i.e., v3M. Due to the finite size of the stream-tube
considered, the condition given in Equation (5) applies.

The thrust of the actuator disc is then determined by the law of momentum applied to
the mass flow rate ρ

.
Q. According to Equation (1) this leads to,

T = ρ
.

Q(v0 − v3M). (6)

The total power loss of the flow from plane 0 to plane 3 is obtained from the energy
equation:

Ptot =
.

Q
ρ

2

(
v2

0 − v2
3E

)
with v2

3E = v2
3 =

1
.

Q

.
Q∫

0

v2
3d

.
Q. (7)

Here, the mean square velocity (integral term) represents the mean velocity for the
energy flow in plane 3. Only if a sufficiently large control volume is used, the approx-
imation v3E ≈ v0 from Equation (4) is again applicable. Otherwise, there is generally
v3Q 6= v3M 6= v3E according to Equation (5) for the finite size of the control volume, which
is often referred to as the practice of measurements. The case can be simulated. According
to Appendix B by assuming a Gaussian velocity profile in plane 3, the main part of the
thrust (98%) could be obtained by a control volume of radius R = 2D with D as the disc
diameter. Within this control volume, the difference between the three mean velocities is
also sufficiently small.
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Based on fluid mechanics, the total power loss is again calculated as Ptot = Tv0. As in
Equation (3), a corresponding expression can also be found for the total power loss.

The total power loss between planes 0 and 3 is made up of two parts: one at the
actuator disc in connection with

.
QD > 0 and another in the downstream flow because

of the mixing of the two flows,
.

QD and
.

QA. Such a mixing of the flows and hence the
associated energy dissipation is comparable with the Borda-Carnot shock loss, see Section 6
below. The pseudo stream-tube in Figure 2, therefore, does not exist. Accordingly, the
equivalent mean velocity v3M within the area A3 cannot be replaced by a mean velocity
which is only restricted within the pseudo stream-tube.

Unfortunately, all significant fundamental calculations up to now have been based on
the use of the control volume which is given by the pseudo stream-tube. At first glance,
this is wrong because the mass transfer across the boundary into the pseudo stream-tube
has been ignored. This clearly contradicts the fact that the volumetric flow rate at the outlet
of the pseudo stream-tube is greater than at its inlet. Incidentally, as a control volume, the
pseudo stream-tube behaves more similar to a diffuser than a flat stream-tube. As a result,
the axial components of all pressure forces on the wall of the pseudo stream-tube, including
the part from plane 0 to 1, do not vanish. They must be considered in addition to the thrust
of the disc, as also shown in [12] in terms of FA and FC. For further inconsistencies in the
use of the pseudo stream-tube, see Section 4 below.

Moreover, because the velocity, v, on the pseudo stream-tube is evidently smaller than
v0, the condition from Equation (3), dT/d

.
Q ≈ 0, is not fulfilled.

Based on the points of view presented above, as shown below in Section 4, calculations
leading to the Froude-Rankine theorem cannot be justified, even with the effective stream-
tube control volume in Figure 2. The main reason for this is the wrong connection between
the total power loss and the thrust (other than Ptot = Tv0) and the disregard of the difference
between the three mean velocities according to Equation (5). One will further see that
Betz’s law, which is based on this theorem, is not justified either (Section 5).

4. Unjustified Froude-Rankine Theorem

The actuator disc flow model was initiated by Froude after Rankine introduced the
momentum theory. It is constructed to determine the thrust that depends on the flow
through the actuator disc. As in all works dealing with the fundamentals of wind power
using the actuator disc flow model, the pseudo stream-tube in Figure 2 has always been
taken as the control volume. Since the flow downstream of the disc is strongly subject to
mixing with the surrounding flow and additional mass enters the control volume, none
of mass, momentum, and energy balances can be established. The mass flow rate at the
outlet of the pseudo stream-tube, for instance, is greater than that through the actuator disc.
Accordingly, the condition for using Equation (1) for the momentum balance is no longer
fulfilled. It is also not permissible to apply Bernoulli’s equation to the flow between plane 2
and plane 3. Otherwise, one would come to various contradictory conclusions.

First, by neglecting the flow mixing and mass transfer, the pseudo control volume
would form a diffuser. If the energy law according to Bernoulli’s equation were applicable,
then so would be the momentum law. This means that in addition to the thrust force on the
disc, the pressure force on the diffuser wall (in the direction of flow) must also be taken
into account. The same must be considered for the flow from plane 0 to plane 1. The total
force obtained from the momentum equation would be their sum. Unfortunately, this
diffuser effect has so far not been taken into account in all calculations of the flow in the
pseudo stream-tube.

Second, in the special case of a negligible flow through the actuator disc (
.

QD ≈ 0) or
at an impermeable circular disc (

.
QD = 0), there are vD ≈ 0 and v3 ≈ 0. Then it becomes

impossible for the pressure to increase from p2 < p0 at the disc to p0 in plane 3. From
Equation (1), one would also obtain T = 0, which is again mistaken.
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Obviously, the use of the pseudo stream-tube results in great confusion in the calcula-
tions. The sad fact is that even the blade element momentum method (BEM) mentioned in
the introduction is based on such a pseudo flow model.

The Froude-Rankine theorem was additionally initiated based on some other un-
founded relations. To demonstrate all these points, as in Section 2, we first consider the flat
stream-tube as the effective control volume in the disc flow model according to Figure 2.
We will see that the Froude-Rankine theorem cannot be verified even in this case.

Following the derivation of the Froude-Rankine theorem, the thrust is calculated in
the same law as Equation (6), but without specifying the type of mean velocity v3 used:

T = ρ
.

Q(v0 − v3). (8)

The total power loss caused by the disc within the stream-tube is calculated using the
same mean velocity, as given by,

Ptot =
.

Q
ρ

2

(
v2

0 − v2
3

)
. (9)

Except for the case of using a large control volume which leads to the conditions in
Equation (4), different mean velocities should generally be used in Equations (8) and (9).
We just ignore this minor disagreement with reality. Then, the two equations above are
comparable with Equations (6) and (7) and can therefore be considered correct. The volume
flow rate

.
Q corresponds to the total flow rate in the effective stream-tube. The fact to

be mentioned is that, as found throughout the literature, the above two equations are
unfortunately always presented together with the flow through the pseudo stream-tube.
For negligible flow rate through the actuator disc (

.
Q ≈ 0) there would be immediately

T ≈ 0 which is obviously wrong.
The total power loss in the given form is actually composed of the partial loss at the

actuator disc due to the flow through it (
.

QD) and the rate of energy dissipation in the
downstream due to mixing of the two flows. The first part is simply given as Pdisc = TvD,
with vD as the flow velocity through the disc.

In deriving the Froude-Rankine theorem, the two equations given above are connected
by the relationship Ptot = Tv2 with v2 as a velocity that is supposed to exist at the disc,
i.e., in plane 2. Such a relation is physically unfounded because it does not agree with
Ptot = Tv0 according to Sections 2 and 3. This is the crux of the subsequent unfounded
derivation. On the one hand, the product Tv2 was simply considered as the power loss at
the disc (plane 2). On the other hand, it is at the same time considered as the total power
loss without taking into account the energy dissipation present in the flow downstream of
the actuator disc.

Combining Equations (8) and (9) by Ptot = Tv2 yields,

v2 =
v0 + v3

2
. (10)

This is the so-called Froude-Rankine theorem. It is very confusing, as discussed below.
(1) The derivation of the theorem is based on the use of the same mean velocity (v3) in

Equations (8) and (9), which implies the fulfilment of Equation (4) and is thus only valid
for a large control volume. Due to v3 = v0, it then immediately follows v2 = v0. This is the
true feature of the Froude-Rankine theorem. Consequently, there is Ptot = Tv0 that is fully
consistent with the analyses performed in Sections 2 and 3. This inference clearly indicates
that the Froude-Rankine theorem is only applicable to the case of large stream-tubes at
which v3 ≈ v0 is fulfilled. It is unfounded for v3 6= v0 which is given, for instance, in the
consideration of the pseudo stream-tube.

(2) The Froude-Rankine theorem could not be derived if the respective mean velocities
(v3M and v3E) in Equations (8) and (9) were used.
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(3) The physical meaning of velocity v2 is unclear. In contrast with hitherto assumed,
the velocity itself does not represent a meaningful velocity in plane 2, neither around nor
through the disc. The total power loss and the partial loss at the actuator disc are given
by Ptot = Tv0 and Pdisc = TvD, respectively, see Section 6. Both have nothing to do with
velocity v2.

(4) In almost all research and applications in the field of wind energy, such as in the
derivation of Betz’s law based on the use of the pseudo stream-tube control volume (see
Section 5 below), the product v2 AD has directly been taken as the volumetric flow rate
through the actuator disc and even further used in Equations (8) and (9). This is confirmed
as a further error. For an almost impermeable circular disc (

.
QD ≈ 0), e.g., as a special case

there must be v2 = 0 and v3 = 0 at the same time. However, from Equation (10) this would
never occur. For v2 = 0 one would simply obtain v3 = −v0. This straightforwardly implies
that the flow within the pseudo stream-tube does not satisfy the mass conservation. The
related power loss would be erroneously P = 0 because of T = 0 from Equation (8). Thus,
using Equation (10) together with the pseudo stream-tube, all consequent results of further
analyses, including Betz’s law, must be incorrect.

At this point, it would be helpful to better understand the problem by considering the
flow through an orifice in a straight pipe, which is commonly used for flow measurement.
If the flow velocity in the straight pipe is v0 and the drag force of the orifice is T, then the
total power loss is given by Ptot = Tv0. Here, the relevant velocity is the velocity in the
straight pipe, not the one through the orifice. Neglecting the skin friction at the orifice,
the power loss is completely caused by the redistribution of flow (mixing) in the pipe
downstream of the orifice.

In some textbooks, the Froude-Rankine theorem is derived differently. One uses the
pseudo stream-tube and applies the Bernoulli equation to the flows up- and downstream
of the disc (Figure 2), respectively. Both the up- and downstream flows are assumed to be
lossless diffuser flows. Then, the pressure difference p1 − p2 and further the thrust TD at
the disc of area AD is determined as,

TD = (p1 − p2)AD =
1
2

ρ
(

v2
0 − v2

3

)
AD. (11)

This equation is equated with Equation (6) using the unfounded relationship
.

Q = v2 AD.
Then, Equation (10) is again obtained.

The problem with the calculation is the use of the unfounded expression
.

Q = v2 AD.
In Equation (6),

.
Q actually represents the total volume flow rate through the effective

stream-tube. Its expression in the term of
.

Q = v2 AD makes no sense because velocity v2 is
physically meaningless: it is neither the velocity through the actuator disc nor the velocity
in the flow around the disc. It is also not representative of an average velocity in the plane
of the actuator disc.

For all these reasons, the Froude-Rankine theorem is obviously unjustified. It was even
objected to by others at that time. According to the statement in [11], engineer Lanchester,
a pioneer in the actuator disc theory in the same era as Professor Froude also in the same
British school, did not accept Froude’s result that the velocity through the disc is the average
of the velocities far upstream and far downstream.

The incorrectness of Equation (10) was also indicated in [12] with the conclusion that
Betz’s law is not valid.

It should be mentioned that the Froude-Rankine theorem has also been applied to
propellers and aircraft engines [15–17]. There, from the point of view of the present paper,
other serious inconsistencies in the theorem can be found.

A possible way to correctly calculate the actuator disc flow is to quantitatively calculate
the energy dissipation that occurs in the downstream flow from plane 2 to plane 3. This is
outlined in Section 6.
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5. Flaws in Betz’s Law

Betz’s law was initially derived using the Froude-Rankine theorem and the pseudo
stream-tube flow model, as shown in Figure 3. As stated in Section 4, such a flow model is
not valid, and the resultant Froude-Rankine theorem is not justified. For this reason, the
use of the incorrect flow model and the unjustified Froude-Rankine theorem is recognized
here as the first flaw in the analyses leading to Betz’s law. It can be expected that various
contradictory results will be given consequently. In a first step, Betz’s law and the related
derivations should be presented based on Figure 3.
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Figure 3. Incorrect disc flow model used for deriving Betz’s law.

The power loss caused by the actuator disc is calculated by Equation (9) without
distinguishing the mean velocities for mass, momentum, and energy flows. For the volume
flow, Betz used the unfounded relation

.
Q = v2 AD with v2 from Equation (10). This is

referred to as the second flaw in Betz’s law.
With the unfounded relation

.
Q = v2 AD, one obtains from Equation (9),

PBetz = AD
ρ

4

(
v2

0 − v2
3

)
(v0 + v3). (12)

For simplicity, velocity notation v3 is used instead of v3.
In wind turbine terminology, the power loss given in the above equation is considered

to be the power extracted from the wind. It is not relevant here how this power extraction
can be realized. The consideration is restricted to a one-dimensional flow without rotation.

The power of the wind, which is found far upstream of the actuator disc (plane 0 in
Figure 3) and within a cross-sectional area equal to the disc area, is given by P0 = 1

2 ρv2
0v0 AD.

The power coefficient of the wind turbine, in place of the actuator disc, is defined by relating
Equation (12) to P0:

cp =
PBetz

P0
=

1
2

(
1−

v2
3

v2
0

)(
1 +

v3

v0

)
. (13)

The power coefficient cp is shown as a function of the velocity ratio v3/v0, as plotted
in Figure 4a. From the above equation, the maximum power coefficient at the velocity ratio
v3/v0 = 1/3 is obtainable. The maximum power coefficient itself is then calculated as,

cp,max =
16
27

= 0.593. (14)

This maximum is known as the Betz limit or Betz–Joukowsky limit, as mentioned in
the introduction. Accordingly, Equation (13) and the condition v3/v0 = 1/3 are known as
Betz’s law.

At an impermeable circular disc (
.

QD = 0), we first suppose v3 = 0. Then, the power
coefficient from Equation (13) is cp = 0.5. This non-vanishing value is obviously incorrect.
However, it has remained unexplained for the past century. Such an absurd result is clearly
related to the absurd result of v2 = v0/2 given by Equation (10) for v3 = 0. The mass
conservation through the pseudo stream-tube (Figure 3) would thus not be given.
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To demonstrate further contradictions in connection with Betz’s law, Equation (10) is
rewritten in the following form with respect to the pseudo volumetric flow rate

.
Q = v2 AD

and
.

Q = v0 A0 = v3 A3
1

AD
=

1
2

(
1

A0
+

1
A3

)
. (15)

This equation, which has a pseudo character, signifies that the closed state of the
actuator disc (

.
Q = 0 and therefore A0 = 0) could not be included in the analyses. We

already confirmed the related absurd result cp = 0.5 from Equation (13). On the other hand,
with 1 + A0/A3 = 2A0/AD from the above equation and v0 A0 = v3 A3, it follows from
Equation (13),

cp =
A0

AD

(
1−

v2
3

v2
0

)
. (16)

A paradox in Equation (13) and Figure 4a is confirmed this time by obtaining cp = 0
in the closed disc case ( A0 → 0). This paradox has not yet been seen in the literature. This
is because Equation (15) has hardly been used to check calculations. Sometimes, Betz’s
law has even been derived via an axial induction factor a which is defined by the relation
v2 = (1− a)v0. In all these cases, the paradox is indeed hidden.

Further checks on mistaken Betz’s law can be made in view of the thrust coefficient of
the actuator disc.

The thrust of an actuator disc is calculated using the thrust coefficient (cD) as follows:

T = cD
1
2

ρv2
0 AD. (17)

Equating this equation with Equation (6) with respect to
.

Q = v0 A0 and v3 A3 = v0 A0
yields,

cD = 2
A0

AD

(
1− A0

A3

)
. (18)

Similar to Equation (6), this equation basically applies to the flow model in Figure 1,
where the flow area A0 never becomes zero. It thus evidently indicates that the flow model
in Figure 3 is wrong because one would acquire a wrong result cD = 0 for A0 = 0 in the
case of an impermeable circular disc.

Multiplying both sides of Equation (15) by A0 and then substituting A0/AD into
Equation (18) yields,

A0

A3
=

v3

v0
=
√

1− cD. (19)

Then, Equation (13) is also written as,

cp =
1
2

cD

(
1 +

√
1− cD

)
. (20)
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The power coefficient is now shown as a function of the thrust coefficient, as plotted
in Figure 4b. From this equation, the maximum power coefficient is found at cD = 8/9.
The same maximum cp is obtained as from Equation (14).

The fact to be mentioned is that the diagram of Figure 4b was already found by
Joukowsky, as reviewed in [18]. The same application can also be found in [3,19]. Compared
to Figure 4a, the plot in Figure 4b seems to be more meaningful, as the thrust coefficient cD
is a meaningful physical quantity and is directly related to the actuator disc used.

In the above calculations, another paradox is confirmed. From Equation (19), the
thrust coefficient is obtained as cD = 1 at the closed state of the actuator disc (

.
Q→ 0 ,

A0→0). From Equation (18), however, one obtains cD = 0. In addition, the case of v3 = 0
in Figure 4a does not undoubtedly represent the closed state of the actuator disc, because
Equation (10) simply gives v2 = v0/2. Thus, Figure 4a,b are inconsistent. The obvious
reason for this discrepancy is that the condition of closed state of the disc does not apply.
The true and decisive reason is the use of the incorrect flow model in Figure 3 and the
unfounded use of velocity v2 in

.
Q = v2 AD.

We further consider the special case of the closed state of the actuator disc (imper-
meable), at which cD = 1 is obtained. Then Equation (19) also seems to be approximately
consistent with the experiments. The thrust coefficient of a circular disc, as from measure-
ments, takes a value in range cD = 1.1− 1.17. One could say that the discrepancy between
the value cD = 1 and the measurements would be originated by the approximation to the
theory, for instance, by neglecting the viscous effect. Then one would have a big problem if
instead of the circular disc a rectangular plate of width b and infinite length is considered.
The fact to be noted is that all the above calculations also apply to such an actuator plate. Ac-
cording to measurements, an impermeable rectangular plate of infinite length has a thrust
coefficient cD = 2. This value is in complete contradiction with Equations (19) and (20),
not only in the closed state (

.
Q = 0), but also within the opening variation with cD > 1.

This circumstance demonstrates once again that the basic flow model used for Betz’s law
is wrong.

Since the flow model used in Figure 3 does not apply to the closed state of the actuator
disc or plate, Betz’s maximum from Equation (14), which is found very close to the case
of

.
Q = 0 (Figure 4b), would not be convincing either. Looking further at the pressure

difference over the actuator disc, another contradiction can be found. For all these reasons,
Betz’s law cannot even be considered an approximation.

6. Possible Solution

Taking into account the flow model in Figure 2 and using the stream-tube as the
control volume, the volumetric flow rate is designated as

.
Q. It is composed of the flow

through the actuator disc (
.

QD) and the flow around the disc (
.

QA). The flow between
plane 0 and plane 1 is free of loss. The thrust exerted on the disc is determined by the
pressure difference T = ∆pdisc AD with ∆pdisc = p1 − p2 between planes 1 and 2. For
simplicity, uniform pressure distributions can be assumed. The associated power loss is
then calculated as Pdisc = TvD = (p1 − p2)ADvD with vD as the flow velocity through the
disc (vD =

.
QD/AD). It is a real velocity and has nothing in common with Equation (10)

which has been confirmed to be unjustified. At the closed state of the disc, there is simply
vD = 0 and hence Pdisc = 0. The flow between plane 2 and plane 3 is considered, contrary
to all assumptions up to now, to be subject to energy dissipation, which arises from the
mixing of two flows (

.
QD and

.
QA) and thus from the formation of vortices.

In fact, the mixing loss mentioned can be determined by knowing the two volume
flows (

.
QD and

.
QA) within the effective stream-tube. This is exactly comparable with the

calculation of the Borda-Carnot shock loss that occurs in the pipe when the flow suddenly
expands. The difference is that here we are dealing with the mixing of two flows rather than
the flow expansion in the pipe. The mechanism of flow redistribution, however, is the same.
As for the calculation of Borda-Carnot shock loss, one must apply both the momentum and
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energy equations between plane 2 and plane 3. To this end, the flow around the disc can be
assumed to be uniform for the total pressure of the undisturbed flow.

The total power loss in the flow is calculated as Ptot = Tv0 according to Section 2.
The partial loss at the disc is correspondingly Pdisc = TvD. With the shock loss, P23, in the
downstream flow between plane 2 and plane 3, the energy balance is given by,

Tv0 = (p1 − p2)ADvD + P23. (21)

Considering the momentum and energy equations, the shock loss P23 can be calculated
with data in plane 2 (

.
QD,

.
QA, p2) and data in plane 3 (

.
Q, p0). Another relationship required

for a closed solution is Equation (7) based on the energy law. While the mean velocity v3M
in plane 3 is used for the momentum equation, the mean velocity v3E must be used for the
energy equation.

Only if the control volume is chosen sufficiently large (A3→∞), Equation (4) becomes
available.

A further condition concerning the degree of opening of the actuator disc must be
introduced. The partial power loss at the disc is calculated by Pdisc = TvD, where the thrust
and the velocity are related by the degree of opening of the actuator disc. This degree of
opening can be represented by the thrust coefficient cD, which varying between 0 and 1.1.
When using an actuator plate, the closed state is given by cD = 2. Then, the thrust of the
disc can be calculated directly from Equation (17). The remaining calculation should focus
on the determination of the volumetric flow rate through the disc as a function of the thrust
coefficient:

.
QD = vD AD = f(cD). Once this has been calculated, the power coefficient

of the actuator disc viz. wind turbine can be calculated, analogous to Equation (13) or
Equation (20), as a function of the thrust coefficient:

cp =
Pdisc
P0

=
TvD

1
2 ρv3

0 AD
= cD

vD

v0
= f(cD). (22)

In deriving the Froude-Rankine theorem in Section 4, the unfounded relationship
P = Tv2 was used, which obviously does not represent the power loss at the disc. Its
baseless use in Betz’s law has therefore led to diverse contradictions and paradoxes.

Contrary to Equation (20) and Figure 4b, a vanishing power coefficient (cp = 0) is
obtained at the closed state of the actuator disc because of vD = 0. When the actuator disc
is fully open, there is automatically cp = 0 because of cD = 0.

The energy balancing by considering the energy dissipation in a similar way as for
the Borda-Carnot shock loss provides an additional relation for a closed solution of the
flow through an actuator disc. Thus, the statement “there is no unique prediction of a
maximum value”, which is given in [12] based on the use of the pseudo stream-tube, is no
longer valid.

The main and most significant point of the calculation concept presented above is the
calculation of the shock loss in the flow between plane 2 and plane 3. Since this requires
further and detailed analyses, it cannot yet be shown in the present paper.

7. Summary

The actuator disc theory, the Froude-Rankine theorem, and Betz’s law have been the
fundamentals of wind power technology. The associated fluid dynamics are reviewed
using the momentum and energy laws. For the determination of the thrust of the actuator
disc, the precondition of using the momentum equation is represented in terms of the
applicability of the control volume. It has been concluded that the pseudo stream-tube is
not applicable. The valid effective stream-tube is characterised by its flat shape.

The Froude-Rankine theorem has been shown to be unjustified. First, the momentum
and energy equations cannot be applied to the flow in the pseudo stream-tube. Second, the
total power loss and the thrust of the actuator disc are connected in the wrong way, i.e.,
by the unfounded velocity v2, which has no physical meaning and does not refer to the
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actuator disc either. Third, the Froude-Rankine theorem according to Equation (10) with
v3 6= v0 does not work. It would be true and can be represented as v2 = v0 only if applied
to the large size stream-tube (flat shape).

Then two flaws in Betz’s law were pointed out. The first is related to the use of the
wrong disc flow model regarding the pseudo stream-tube and the wrong Froude-Rankine
theorem. The second flaw refers to the unfounded use of velocity v2 from the Froude-
Rankine theorem by considering v2 AD as the volumetric flow rate through the actuator disc.
Due to these two flaws, diverse contradictions and paradoxes have arisen in the calculations,
which are particularly obvious in the case of a closed actuator disc or a rectangular plate
(

.
Q = 0). Since the maximum power coefficient according to Betz’s law seems to occur near

the closed state of the actuator disc, Betz’s limit of cp = 0.59 is highly questionable. For all
these reasons, Betz’s law cannot be considered an approximation. It is simply wrong.

The possible solution for actuator disc flow was presented. It is based on the separate
treatment of partial power losses that occur both at the actuator disc and in the downstream
flow. The latter is caused by mixing and redistribution of the flows. It is comparable with the
Borda-Carnot shock loss in a pipe flow with sudden expansion. The significant calculation
algorithm has been outlined. It is intended to make the first step for scientists and engineers
to work on improving and extending the associated theory. For this purpose, the basic
relationship between the wind speed (v0), the velocity through the actuator disc (vD), the
draft coefficient of the actuator disc (cD), and the power coefficient (cp) was established. By
conducting extended studies, this relationship could at least be solved numerically.

Obviously, new fundamentals in the field of wind energy have to be worked out
systematically. The fact is given here: In more than ten of the most available textbooks
dealing with wind power and its applications, Betz’s law is presented all in the same
manner. No remarks about the errors in the law are to be found there.

Extended studies should also include the transfer of proven turbine theories
(e.g., Euler equation) from hydropower to wind power in order to improve the wind
turbine design and operation optimisation. As this is not yet far progressed, the author
want to propose his first attempt [9].
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Appendix A. Parallelism of Effective Stream-Tubes

In Section 2 according to Figure 1, the effective stream-tubes are shown as flat stream-
tubes which are only found at a great height H. Here, another attribute of effective stream-
tubes (parallelism) should be demonstrated. Considering the flow within the stream-tube
according to Figure 1, the mass flow balance is given as,

H0 =
vQ

v0
H. (A1)

The mean velocity for the volume flow rate in the plane with velocity deficit is calcu-
lated as,

vQ =
1
H

H∫
0

vdy. (A2)

From the above two equations, one obtains in each case,

dH0

dH
=

vQ

v0
+

H
v0

dvQ

dH
, (A3)
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In addition,

dvQ

dH
=

1
H

v− 1
H

H∫
0

vdy

 =
1
H
(v− vQ). (A4)

Inserting Equation (A4) into Equation (A3) yields,

dH0

dH
=

v
v0
≈ 1. (A5)

This result signifies that all stream-tubes with different heights H are parallel. Such
an attribute is only achievable with a large height H and not in the vicinity of the pseudo
stream-tube where v < v0 is found.

Appendix B. Gaussian Form of Deficit Velocity Profile

The deficit velocity profile in the plane far downstream of the actuator disc is char-
acterised by the fact that the velocity difference v0 − v tends to zero at large radius. This
feature of the downstream velocity profile permits the profile to be approximated by the
Gaussian form of velocity distribution, at least from a certain radius to infinity. For the case
of an actuator disc according to Figure 2 one writes,

v = v0 − ae−r2/D2
with a < 1. (A6)

Here, D is the diameter of the actuator disc.
The thrust of the disc is then calculated in accordance with Equation (1) as,

T = ρ

∞∫
0

v(v0 − v)2πrdr = ρv2
0

a
v0

πD2
(

1− 1
2

a
v0

)
. (A7)

On the other hand, the thrust is also calculated using the thrust coefficient according
to Equation (17). Combining Equations (17) and (A7), the value of a/v0 is determined as:

a
v0

= 1−
√

1− 1
4

cD. (A8)

The accuracy of the thrust should be estimated if the velocity profile v = f(r) is consid-
ered only in the range up to r = R. As in Equation (A7) one obtains:

TR = ρ

R∫
0

v(v0 − v)2πrdr = ρv2
0πD2

[
− a

v0

(
e−R2/D2 − 1

)
+

1
2

a2

v2
0

(
e−2R2/D2 − 1

)]
. (A9)

and further,
TR

T
=

8
cD

a
v0

[(
1− e−R2/D2

)
+

1
2

a
v0

(
e−2R2/D2 − 1

)]
. (A10)

The parameter ratio a/v0 is obtained from Equation (A8).
From Equation (A10) for R/D = 2, for instance, one obtains TR/T = 0.98. The main

part of the thrust is thus captured. It is almost independent of the thrust coefficient. At
R/D = 2, one also found v/v0 = 0.999 for cD = 0.5. In addition, all three mean velocities
are very close to the velocity v0. This means v2 = v0, if applied to Equation (10).
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