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Abstract: Based on the model of irreversible single resonance energy-selective electron heat engine
established in the previous literature, this paper applies finite-time thermodynamic theory and
NSGA-II algorithm to perform multi-objective optimization. Single-, bi-, tri- and quadru-objective
optimizations are performed when the energy boundary and the resonance width are taken as the
optimization variables, and the power output, thermal efficiency, efficient power and ecological
function are taken as the optimization objectives. The deviation indexes of different optimization
objective combinations are obtained by using LINMAP, TOPSIS and Shannon entropy approaches.
The results show that the values of energy boundary and resonance width can be reasonably selected
according to the design requirements of the system. When power output and efficiency are optimized,
the minimal deviation index is obtained by TOPSIS approach and the value is 0.0748, which is the
most ideal design scheme.

Keywords: energy selective electron; power output; efficient power; efficiency; ecological function;
finite time thermodynamics

1. Introduction

Since the establishment of finite time thermodynamics (FTT) theory, many scholars
have introduced it into various cycle studies and have made great progress [1–6], including
optimal performances [7–15] and optimal configurations [16–25]. The early FTT research
objects involved mainly traditional macro thermal devices, such as macro heat engines,
refrigerators and heat pumps. The idea of FTT considering various irreversible loss factors
to analyze and optimize thermodynamic cycle and process is also of great significance to mi-
cro energy conversion devices. With the developments of FTT, the research objects involve
quantum cycles [26,27], Brownian motor systems [28,29], electron engine systems [30], and
other micro energy conversion devices related to time and rate.

In 2002, Humphrey et al. [31] found that between two electron reservoirs with different
electrochemical potentials and temperatures, electrons can be exchanged reversibly by
choosing an appropriate energy filter, and this novel electronic device was named as energy
selective electron (ESE) heat engine [32]. When not accounting for heat leakage losses,
Humphrey [32] applied the FTT theory to explain the operation mechanism of the single
resonance ESE heat engine at the earliest and analyzed the efficiency at maximum power
(EMP) characteristics of the system. Ding et al. [33] introduced the ecological function [34]
into an endoreversible ESE heat engine. Luo et al. [35] further analyzed effect of resonance
width. When accounting for heat leakage losses, Ding et al. [36–38] studied the power
output (POW) and thermal efficiency (TEF) of irreversible single resonance ESE heat
engines, and Zhou et al. [39] studied the ecological function performance.

There are also other performance indicators for evaluating thermodynamic devices,
besides POW, TEF and ecological function. For example, Yan [40] first took the product
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of POW and TEF as a new objective function. Later, Yilmaz [41,42] named this new objec-
tive function as efficient power (EP). Patodi and Maheshwari [43] studied the maximum
EP performance of the macro Atkinson cycle. Singh and Johal [44] and Nilavarasi and
Ponmurugan [45] studied the maximum EP performances of low-dissipation heat engines.
There is no work concerning the maximum EP performances of an ESE heat engine in the
available literature.

The above work focused on single-objective optimization of cycle performance, and
there may be contradictions between various objective functions. In order to coordinate the
relationship between the objective functions, some scholars have carried out multi-objective
optimization (MOO) for macro cycle performances by using NSGA-II algorithm [46–58],
including the thermoelectric generator [46], macro [47] and micro [48] Stirling cycles,
Atkinson cycle [49], Diesel cycle [50], Brayton cycle [51], ORC [52], dual cycle [53], porous-
medium engines [54,55], MHD plant [56] and chemical reactors [57,58], with objectives of
POW, TEF, ecological function and power density.

There is no work concerning the MOO for an ESE heat engine in the available literature.
Based on the model of an irreversible single-resonance ESE heat engine established in
References [36,39], this paper will perform MOO for the model by applying NSGA-II
algorithm. The boundary energy and resonance width will be used as the optimization
variables, and the POW, TEF, EP and ecological function will be used as the optimization
objectives. The three decision-making methods of LINMAP, TOPSIS and Shannon Entropy
will be used to select the optimal scheme with the smallest deviation index (D) under
different optimization objective combinations.

2. Model Description

Figure 1 shows the irreversible single-resonance ESE heat engine model [36,39], which
consists of two electron sources connected by an energy filter.

Energies 2022, 15, x FOR PEER REVIEW 2 of 19 
 

 

output (POW) and thermal efficiency (TEF) of irreversible single resonance ESE heat en-
gines, and Zhou et al. [39] studied the ecological function performance. 

There are also other performance indicators for evaluating thermodynamic devices, 
besides POW, TEF and ecological function. For example, Yan [40] first took the product of 
POW and TEF as a new objective function. Later, Yilmaz [41,42] named this new objective 
function as efficient power (EP). Patodi and Maheshwari [43] studied the maximum EP 
performance of the macro Atkinson cycle. Singh and Johal [44] and Nilavarasi and 
Ponmurugan [45] studied the maximum EP performances of low-dissipation heat engines. 
There is no work concerning the maximum EP performances of an ESE heat engine in the 
available literature. 

The above work focused on single-objective optimization of cycle performance, and 
there may be contradictions between various objective functions. In order to coordinate 
the relationship between the objective functions, some scholars have carried out multi-
objective optimization (MOO) for macro cycle performances by using NSGA-II algorithm 
[46–58], including the thermoelectric generator [46], macro [47] and micro [48] Stirling cy-
cles, Atkinson cycle [49], Diesel cycle [50], Brayton cycle [51], ORC [52], dual cycle [53], 
porous-medium engines [54,55], MHD plant [56] and chemical reactors [57,58], with ob-
jectives of POW, TEF, ecological function and power density. 

There is no work concerning the MOO for an ESE heat engine in the available litera-
ture. Based on the model of an irreversible single-resonance ESE heat engine established 
in References [36,39], this paper will perform MOO for the model by applying NSGA-II 
algorithm. The boundary energy and resonance width will be used as the optimization 
variables, and the POW, TEF, EP and ecological function will be used as the optimization 
objectives. The three decision-making methods of LINMAP, TOPSIS and Shannon En-
tropy will be used to select the optimal scheme with the smallest deviation index (D) un-
der different optimization objective combinations. 

2. Model Description 
Figure 1 shows the irreversible single-resonance ESE heat engine model [36,39], 

which consists of two electron sources connected by an energy filter. 

                
          

 
 

 
 
      

  
 

    
       
 

 
 
 
 
       

  

0eV

CT

HT

C

H

E
E

LQ
'E

 
Figure 1. Model of the ESE heat engine [36,39]. Adapted with permission from Ref. [39]. 2016, 
Junle Zhou, Lingen Chen, Zemin Ding, Fengrui Sun. 

There is no heat exchange between two electron reservoirs, and electrons are ex-
changed only by filter, which allows for electrons in a specific energy range to be freely 
transported, and there is also heat leakage loss due to phonon propagation during the 
transmission process. There are different temperatures, HT  and CT , and two different 

Figure 1. Model of the ESE heat engine [36,39]. Adapted with permission from Ref. [39]. 2016,
Junle Zhou, Lingen Chen, Zemin Ding, Fengrui Sun.
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There is no heat exchange between two electron reservoirs, and electrons are ex-
changed only by filter, which allows for electrons in a specific energy range to be freely
transported, and there is also heat leakage loss due to phonon propagation during the
transmission process. There are different temperatures, TH and TC, and two different elec-
trochemical potentials, µH and µC, in two electron reservoirs. E′ is the energy boundary, ∆E
is the resonance width and eV0 is the bias voltage. During the operation of the ESE system,
electrons are transferred from the hot electronic reservoir through the energy filter to the
cold electronic reservoir due to factors such as electrochemical potential difference and tem-
perature difference. Since the electrons carry energy, the transfer process is accompanied
by energy changes, thereby realizing an energy conversion.

The detailed description of the model is shown in Appendix A. From Equations (A8)
and (A9) in Appendix A, the POW (P) and TEF (η) can be expressed as [39]

P =
.

QH −
.

QC

= 2
h kB(µC − µH)[TH ln 1+e(rH )

1+e(RH ) − TC ln 1+e(rC)

1+e(RC) ]
(1)

η = P.
QH

= (µC − µH)[TH ln 1+e(rH )

1+e(RH ) − TC ln 1+e(rC)

1+e(RC) ]/{kBTH
2[ 1

2 RH
2 − g(e(RH))

−RH ln(1 + e(RH))− 1
2 rH

2 + rH ln(1 + e(rH)) + g(e(rH))]− kBTC
2[ 1

2 RC
2−

RC ln(1 + e(RC))− g(e(RC))− 1
2 rC

2 + rC ln(1 + e(rC)) + g(e(rC))]− TC×

(µC − µH)[RC − rC + ln 1+e(rC)

1+e(RC) ] + (TH − TC)
kLh
2kB
}

(2)

where RH = E′+∆E−µH
kBTH

, rH = E′−µH
kBTH

, RC = E′+∆E−µC
kBTC

and rC = E′−µC
kBTC

.

Combining Equations (1) and (2), according to the definition of EP (EP) [40–42], one has

EP = Pη

= 2
h (µC − µH)

2[TH ln 1+e(rH )

1+e(RH ) − TC ln 1+e(rC)

1+e(RC) ]
2
/{TH

2[ 1
2 RH

2 − g(e(RH))

−RH ln(1 + e(RH))− 1
2 rH

2 + rH ln(1 + e(rH)) + g(e(rH))]− TC
2[ 1

2 RC
2−

RC ln(1 + e(RC))− g(e(RC))− 1
2 rC

2 + rC ln(1 + e(rC)) + g(e(rC))]− TC
kb
×

(µC − µH)[RC − rC + ln 1+e(rC)

1+e(RC) ] + (TH − TC)
kLh
2kB2 }

(3)

From Equations (A8) and (A9) in Appendix A, for an ESE heat engine system, the
entropy generation rate (σ) is

σ =
.

QC/TC −
.

QH/TH

= 2
h kB

2 TH(TH−TC)
TC

[ 1
2 RH

2 − RH ln(1 + e(RH))− g(e(RH))− 1
2 rH

2 + g(e(rH))

+rH ln(1 + e(rH))]− 2
h kB

2 TC(TH−TC)
TH

[ 1
2 RC

2 − RC ln(1 + e(RC))− g(e(RC))

− 1
2 rC

2 + rC ln(1 + e(rC)) + g(e(rC))]− 2
h kB(µC − µH)[(RC − rC)(1− TC

TH
) + TH

TC
×

ln 1+e(rH )

1+e(RH ) −
TC
TH

ln 1+e(rC)

1+e(RC) ] + (TH − TC)
2 kL

TH TC

(4)



Energies 2022, 15, 5864 4 of 19

From Equations (1) and (4), according to the definition formula of ecological function (E) [34],
one has

E = P− T0σ

= P(1 + T0
TC
)− T0(

1
TC
− 1

TH
)

.
QH

= 2
h kB(µC − µH)[(1 +

T0
TC
)TH ln 1+e(rH )

1+e(RH ) − (1 + T0
TH

)TC ln 1+e(rC)

1+e(RC) + T0(1− TC
TH

)×

(RC − rC)]− T0(
1

TC
− 1

TH
){ 2

h (kBTH)
2[ 1

2 RH
2 − RH ln(1 + e(RH))− g(e(RH))− 1

2 rH
2

+rH ln(1 + e(rH)) + g(e(rH))]− 2
h (kBTC)

2[ 1
2 RC

2 − RC ln(1 + e(RC))− g(e(RC))

− 1
2 rC

2 + rC ln(1 + e(rC)) + g(e(rC))] + kL(TH − TC)}

(5)

The dimensionless POW (P), EP (EP) and ecological function (E) are defined as:

P = P/Pmax (6)

EP = EP/(EP)max (7)

E = E/Emax (8)

3. Multi-Objective Optimizations

For the MOO problem, if the solution cannot be improved for any objective without
deteriorating at least one objective, it is a “Pareto optimal solution”, and the corresponding
set of objective function values are “Pareto frontiers”. The Pareto frontier contains multiple
feasible solutions, and the commonly used three decision-making approaches are LINMAP,
TOPSIS and Shannon Entropy. The deviation indices (D s) are used to compare the pros
and cons of three decision-making approaches to select the optimal design. The positive
and the negative ideal points represent the optimal and worst virtual points for all objective
functions, respectively.

The LINMAP decision approach obtains the solution with the smallest distance from
the positive ideal point. For the LINMAP approach:

Bij = Fij/
√

∑m
i=1 Fij

2 (9)

Gij = wLINMAP
j · Bij (10)

iLINMAP
opt ∈ min

{
ED+

i
}

(11)

where the value of Bij is Fij normalized, wLINMAP
j is the proportion of the j-th optimization

goal and the value of Gij is Bij weighted. Gpositive
j is the normalized and weighted value

of the j-th goal of the positive ideal point, ED+
i is the Euclidean distance between the i-th

feasible solution and the positive ideal point and iLINMAP
opt is the best feasible solution.

The TOPSIS decision approach not only requires the solution with the smallest distance
from the positive ideal point, but also with the farthest distance from the positive negative
point. For the TOPSIS approach:

Bij = Fij/
√

∑m
i=1 Fij

2 (12)

Gij = wTOPSIS
j · Bij (13)

ED−i =

√
∑m

j=1 (Gij − Gnegative
j )

2
(14)
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iTOPSIS
opt ∈ max{

ED−i
ED+

i + ED−i
} (15)

where wTOPSIS
j is the proportion of the j-th optimization goal, Gnegative

j is the normalized

and weighted value of the j-th goal of the negative ideal point, ED−i is the Euclidean
distance between the i-th feasible solution and the negative ideal point and iTOPSIS

opt is the
best feasible solution.

The Shannon Entropy approach obtains the point when the last objective function of
the optimization reaches the maximum. For the Shannon Entropy approach:

Pij = Fij/
n

∑
i=1

Fij (16)

SEj = −
1

ln n

n

∑
i=1

Pij ln Pij (17)

wShannon Entropy
j = (1− SEj)/

n

∑
j=1

(1− SEj) (18)

iShannon Entropy
opt ∈ min

{
Pij · wj

}
(19)

where the value of Pij is Fij normalized, SEj is the Shannon Entropy of the j-th optimization

objective, wShannon Entropy
j is the proportion of the j-th optimization goal and iShannon Entropy

opt
is the best feasible solution.

The D is defined as:

D =

√
∑m

j=1 (Giopt j − Gpositive
j )

2

√
∑m

j=1 (Giopt j − Gpositive
j )

2
+

√
∑m

j=1 (Giopt j − Gnegative
j )

2
(20)

The D can calculate the average distance between the values obtained by different
decision-making methods and the positive and negative ideal points. The smaller D is
obtained under a certain decision-making approach, which means the design scheme is
better. Figure 2 illustrates NSGA-II algorithm flow chart.
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This paper takes P, η, EP and E as optimization objectives; takes the boundary energy
(E′) and resonance width (∆E) as optimization variables; and applies NSGA-II algorithm to
optimize the ESE heat engine with single-, bi-, tri- and quadru-objective optimizations.

According to Reference [39], T0 = 1K, TC = 1.2K, TH = 2.2K,µH/kB = 10K, µC/kB = 12K
and kL = 1.5× 10−14W/K are set. Ranges of optimization variables E′/kB and ∆E/kB are
13.5 ∼ 18 and 0 ∼ 15, respectively.

Appendix B lists the results of quadru-, tri-, bi- and single-objective optimizations
under three decision-making approaches, respectively. When P, η, EP and E reach their
maximum values, it can be seen that D s are 0.1007, 0.9331, 0.0882 and 0.1254, respectively.
When the P − η − EP − E is optimized, the D s obtained by the TOPSIS and LINMAP
decision approaches are both 0.0755, indicating that the result of the optimization of
four objectives is more perfect than that of a single objective. The D of P and η obtained by
the TOPSIS solution is 0.0748, which is the smallest and the most ideal.

Figure 3 shows the Pareto frontier of quadru-objective (P− η − EP − E) optimization.
In Figure 3, the change in color represents the change in the value of E. The positive and
the negative ideal points are not on the pareto frontier, indicating that the variables E′

and ∆E cannot make P, η, EP and E simultaneously optimal or worse. As P increases, η
continues to decrease, and E and EP first reach their maximum values and then decrease.
When P reaches the maximum value, η reaches the minimum, and EP and E can take into
account both P and η. From Appendix B, for the MOO of P− η − EP − E, the D s obtained
by TOPSIS and LINMAP are the same, which is smaller than that obtained by Shannon
Entropy, and the result is more ideal.
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Figure 4 shows the distributions of (E′/kB)opt and (∆E/kB)opt within the value ranges
in the Pareto front obtained by taking quadru-objective (P − η − EP − E) optimization.
From Figure 4a, (E′/kB)opt is distributed between 13.95 and 14.10, but mostly concentrated
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between 14.00 and 14.05, with the increase of (E′/kB)opt, the change trends of P, η, EP and
E are not obvious; therefore, the value of E′/kB can be designed between 14 and 14.05.
From Figure 4b, (∆E/kB)opt is distributed between 0 and 15, since energy filter allows
for electrons in a specific energy range to be freely transported; as the resonance width
increases, the number of electrons no longer increases with the increase in resonance width
when all electrons in a specific energy range pass through. So as (∆E/kB)opt increases, P
increases, η decreases, EP and E increase first and then decrease and the value of ∆E can be
reasonably selected according to the actual needs.
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Figure 5 show the Pareto frontiers obtained by different (six) bi-objective optimization
combinations. As P increases, η, EP and E both decrease. As η increases, both EP and
E decrease. As EP increases, E decreases. From Appendix B, for the MOO of P− E and
EP − E, the D with the LINMAP approach is better. For the MOO of P− EP, η − EP and
η − E, the D with the Shannon Entropy approach is better. For the MOO of P− η, the D
with TOPSIS approach is better.
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decrease. As η increases, EP decreases, and E first increases and then decreases.
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From Appendix B, for the MOO of P− η− E and P− EP − E, the D with the LINMAP
approach is better. For the MOO of P− η − EP, the D with the TOPSIS approach is better.
For the MOO of η− EP − E, the D s with the Shannon Entropy and TOPSIS approaches are
the same, which is less than that with the LINMAP method.
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Figures 7 and 8 show the average distance versus generations and average spread
versus generations obtained by taking quadru-objectives (P− η− EP − E) and bi-objectives
(P− η) as the optimization objectives, respectively. From two figures, if genetic algorithm
converges, it will stop. The MOO of P − η − EP − E and P − η converges at 307 and
1107 generations, respectively.
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4. Conclusions

Based on the established model of irreversible single ESE heat engine, this paper takes
the energy boundary and the resonance width as the optimization variables and the P,
η, EP and E as the optimization objectives to perform MOO by applying the NSGA-II
algorithm and FTT theory. The EP performance indicator is introduced to the optimization.
The effects of the values of the two variables (E′ and ∆E) on four optimization objectives
are analyzed with the MOO of P− η − EP − E. The results show that:

1. When P, η, EP and E reach their maximum values, it can be seen that D values are
0.1007, 0.9331, 0.0882 and 0.1254, respectively. For the MOO of P− η − EP − E, the D
s obtained by the TOPSIS and LINMAP decision approaches are both 0.0755. The D
obtained by MOO is smaller and better compared with single-objective optimization,
which means that the MOO results are better.

2. For the MOO of P− η − EP − E, (E′/kB)opt is distributed between 13.95 and 14.10,
and (∆E/kB)opt is distributed between 0 and 15. As (E′/kB)opt increases, the change
trends of P, η, EP and E are not obvious; as (∆E/kB)opt increases, P increases, η

decreases and EP and E first increase then decrease. In the design of the ESE heat
engine, it is very important to choose appropriate values of E′ and ∆E.

3. For the MOO of P− η, the D is the minimum obtained by the TOPSIS approach and
the value is 0.0748; at this time, the E′/kB and ∆E/kB are 14.0091 and 8.2266, respec-
tively, which is the most ideal design scheme. For the MOO of other combinations,
the appropriate decision-making approach can be selected according to the actual
requirements and needs.

4. It is meaningful to introduce the MOO to the performance optimization ESE heat engines.
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Nomenclature
E′ Energy boundary (J)
eV0 Bias voltage
EP Efficient power (W)
E Ecological function
f Fermi distributions of electrons
g A defined function
h Plank constant (J · s)
kB Boltzmann constant (J/K)
kL Heat leakage coefficient (W/K)
P Power output (W)
Q Heat transfer (W)
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Greek symbols
η Thermal efficiency
µ electrochemical potential (J)
σ Entropy generation rate (W/K)
∆E Resonance width (J)
Subscripts
C Cold reservoir
CE Heat absorption rate
H Hot reservoir
HE Heat release rate
L Heat leakage
opt Optimal
0 Environment
Superscripts
− Dimensionless

Abbreviations

EMP Efficiency at maximum power
EP Efficient power
ESE Heat exchanger
FTT Finite time thermodynamics
MOO Multi-objective optimization
POW Power output
TEF Thermal efficiency

Appendix A. Model Description in Detail

In the narrow energy range, the heat release rate of hot reservoir is [31,32]

.
qH =

2
h
(E− µH)( fH − fC)δE (A1)

The heat absorption rate of cold reservoir is

.
qC =

2
h
(E− µC)( fH − fC)δE (A2)

where h is the Planck constant.
Fermi distributions of hot and cold reservoirs can be expressed as

fH = [1 + exp(
E− µH
kBTH

)]
−1

(A3)

fC = [1 + exp(
E− µC
kBTC

)]
−1

(A4)

where kB is the Boltzmann constant.
Within the entire energy range of the system, the heat release rate (

.
QHE) and the heat

absorption rate (
.

QCE) are

.
QHE =

2
h

∫ E′+∆E

E′
( fH − fC)(E− µH)dE (A5)

.
QCE =

2
h

∫ E′+∆E

E′
( fH − fC)(E− µC)dE (A6)

The heat leakage loss rate (
.

QL) between the two electronic reservoirs is

.
QL = kL(TH − TC) (A7)
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where kL is the heat leakage coefficient.
From Equations (A5) and (A6), taking heat leakage into account, the heat release rate

(
.

QHE) and the heat absorption rate (
.

QCE) are

.
QH =

.
QHE +

.
QL (A8)

.
QC =

.
QCE +

.
QL (A9)

In the process of numerical calculations, there are logarithmic functions with two variables
E′ and ∆E. The PolyLog function is an ordinary and Nielsen generalized logarithmic
function, which is often used for logarithmic integration, and it is necessary to intro-
duce the Nielsen function g(x) = PolyLog(2,−x) [35], and the two integral formulas are∫ b

a 1/(1 + x)dx = ln(1+ x)
∣∣∣ba and

∫ b
a ln(x)/(1 + x)dx =[ln(x) ln(1+ x)+ PolyLog(2,−x)]

∣∣∣ba .

Appendix B. Optimization Results

Table A1. Results of quadru-, tri-, bi- and single-objective optimizations.

Optimization Approaches Decision Schemes

Optimization
Variables Optimization Objectives Deviation Index

E′/kB ∆E/kB P η EP E D

Quadru-objective optimization
(P, η, EP and E)

LINMAP 14.0381 7.7359 0.9566 0.2853 0.9928 0.9737 0.0755
TOPSIS 14.0381 7.7359 0.9566 0.2853 0.9928 0.9737 0.0755

Shannon Entropy 14.0006 5.6813 0.8797 0.2986 0.9555 1.0000 0.1254

Tri-objective optimization
(P, η and EP)

LINMAP 14.0091 7.5215 0.9613 0.2864 0.9912 0.9785 0.0763
TOPSIS 13.9757 7.8488 0.9578 0.2854 0.9934 0.9733 0.0751

Shannon Entropy 13.9975 10.8112 0.9909 0.2774 1.0000 0.9335 0.0882

Tri-objective optimization
(P, η and E)

LINMAP 14.0348 7.1843 0.9430 0.2880 0.9878 0.9831 0.0794
TOPSIS 14.0135 7.6952 0.9554 0.2856 0.9554 0.9754 0.0860

Shannon Entropy 14.0000 5.6811 0.8796 0.2986 0.9554 1.0000 0.1254

Tri-objective optimization
(P, EP and E)

LINMAP 14.0065 8.3937 0.9712 0.4839 0.9836 0.9953 0.0751
TOPSIS 14.0009 8.5764 0.9711 0.2823 0.9973 0.9612 0.0756

Shannon Entropy 14.0000 5.6811 0.8796 0.2986 0.9554 1.0000 0.1254

Tri-objective optimization
(η, EP and E)

LINMAP 14.0019 5.4832 0.8677 0.3004 0.9481 0.9995 0.1364
TOPSIS 14.0000 5.6810 0.8796 0.2986 0.9554 1.0000 0.1254

Shannon Entropy 14.0000 5.6810 0.8796 0.2986 0.9554 1.0000 0.1254

Bi-objective optimization
(P and η)

LINMAP 14.0013 7.4549 0.9498 0.2867 0.9906 0.9795 0.0767
TOPSIS 14.0091 8.2266 0.9657 0.2835 0.9959 0.9666 0.0748

Shannon Entropy 14.0001 1.6955 0.3053 0.3511 0.3900 0.4638 0.9331

Bi-objective optimization
(P and EP)

LINMAP 13.9929 14.5327 0.9998 0.2747 0.9990 0.9143 0.1005
TOPSIS 13.9944 14.6054 0.9999 0.2746 0.9989 0.9141 0.1007

Shannon Entropy 13.9975 10.8113 0.9909 0.2774 1.0000 0.9335 0.0882

Bi-objective optimization
(P and E)

LINMAP 14.0048 8.3587 0.9678 0.2830 0.9965 0.9646 0.0750
TOPSIS 14.0055 8.4334 0.9690 0.2828 0.9968 0.9633 0.0752

Shannon Entropy 14.0000 5.6808 0.8796 0.2986 0.9554 1.0000 0.1254

Bi-objective optimization
(η and EP)

LINMAP 14.0061 5.3931 0.8621 0.3012 0.9445 0.9990 0.1416
TOPSIS 14.0078 5.7264 0.8827 0.2981 0.9572 0.9999 0.1227

Shannon Entropy 13.9985 10.8103 0.9909 0.2774 1.0000 0.9335 0.0882

Bi-objective optimization
(η and E)

LINMAP 13.9914 4.1703 0.7526 0.3156 0.8640 0.9591 0.2597
TOPSIS 13.9957 4.3475 0.7726 0.3131 0.8801 0.9700 0.2362

Shannon Entropy 13.9998 5.6822 0.8797 0.2986 0.9555 1.0000 0.1254

Bi-objective optimization
(EP and E)

LINMAP 14.0041 6.9814 0.9363 0.2893 0.9852 0.9874 0.0824
TOPSIS 14.0024 6.9264 0.9345 0.2896 0.9845 0.9883 0.0834

Shannon Entropy 14.0000 5.6811 0.8796 0.2986 0.9554 1.0000 0.1254
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Table A1. Cont.

Optimization Approaches Decision Schemes

Optimization
Variables Optimization Objectives Deviation Index

E′/kB ∆E/kB P η EP E D

Maximum of P —— 13.9944 14.6054 1.0000 0.2746 0.9989 0.9141 0.1007

Maximum of η —— 14.0001 1.6955 0.3053 0.3511 0.3900 0.4638 0.9331

Maximum of EP —— 13.9985 10.8103 0.9909 0.2774 1.0000 0.9335 0.0882

Maximum of E —— 14.0000 5.6811 0.8796 0.2986 0.9554 1.0000 0.1254

Positive ideal point —— 1.0002 0.3511 1.0000 1.0000 ——

Negative ideal point —— 0.3052 0.2745 0.3899 0.4637 ——
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