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Abstract: The effect of positive (adverse) and negative (favorable) longitudinal pressure gradients on
the structure and heat transfer of gas-droplet (air and water) flow in axisymmetric duct with sudden
expansion are examined. The superimposed pressure gradient has a large influence on the flow
structure and heat transfer in a two-phase mist flow in both a confuser and a diffuser. A narrowing of
the confuser angle leads to significant suppression of flow turbulence (more than four times that of
the gas-drop flow after sudden pipe expansion without a pressure gradient at ϕ = 0◦). Recirculation
zone length decreases significantly compared to the gas-droplet flow without a longitudinal pressure
gradient (by up to 30%), and the locus of the heat-transfer maximum shifts slightly downstream, and
roughly aligns with the reattachment point of the two-phase flow. Growth of the diffuser opening
angle leads to additional production of kinetic energy of gas flow turbulence (almost twice as much as
gas-droplet flow after a sudden pipe expansion at ϕ = 0◦). The length of the flow recirculating region
in the diffuser increases significantly compared to the separated gas-droplet flow without a pressure
gradient (ϕ = 0◦), and the location of maximum heat transfer shifts downstream in the diffuser.

Keywords: heat transfer; droplets evaporation; turbulence; droplet-laden flow; confuser; diffuser;
pipe; sudden expansion; RANS

1. Introduction

Two-phase flows in pipes or channels with a backward-facing step (BFS) are often
used in energy and chemical equipment. They have a rather simple flow geometry and are
one of the classical types of shear flows, but their flow structure is quite complex. A flow
detaches from the sharp edge at the flow SE station, thus forming a region of shear mixing
layer. A large recirculation flow region (a few step heights) develops (see comprehensive
reviews [1,2]).

The complexity of modeling flow and heat transfer is exacerbated after BFS in the
presence of a longitudinal pressure gradient (LPG) in an expanding (diffuser) or narrowing
(confuser) subsonic turbulent two-phase flow (see Figure 1). An overview of the state of
research on flows in a diffuser or confuser without sudden expansion of a pipe [3] or a
channel [4,5] has been presented. The study of the effect of LPG behind a pipe or channel
with SE on mean and fluctuational flow and heat transfer is an important for mechanical
engineering. There are several studies on the development of separated flows with the
influence of longitudinal pressure gradient for a single-phase flow, yet only a few of these
experimental works concerned the flow in diffusers and confusers with a BFS [6–9].

An effect of flow separation in the field of LPG was experimentally evaluated in said
studies. The position of an “upper” duct wall was changed, which caused narrowing or
expansion of a cross-section, whereas the “lower” wall with the SE remained unchanged.
The most detailed structures of the turbulent flow were assessed in [6] using the LDA
method along the length of the diffuser channel. The authors measured the profiles of
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averaged longitudinal and transverse velocities and their fluctuations, Reynolds stresses,
length of the recirculation region, triple correlations, and turbulent viscosity. The authors
then compared their experimental and numerical data.
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Figure 1. Schematic view of the flow in diffuser (APG, +φ), confuser (FPG, ‒φ), and in the separated 
flow in pipe sudden expansion (ZPG, φ = 0). 1 is the droplet-laden flow. 
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the dispersed phase dynamics, the Eulerian approach [26–28] is used. The Eulerian ap-
proach is widely used for the simulations of two-phase confined flows [21,22,29,30]. The 
system of axisymmetric stationary Reynolds-averaged Navier–Stokes (RANS) equations 
accounts for the effect of vaporizing drops on mean and fluctuational transport processes 

Figure 1. Schematic view of the flow in diffuser (APG, +ϕ), confuser (FPG, −ϕ), and in the separated
flow in pipe sudden expansion (ZPG, ϕ = 0). 1 is the droplet-laden flow.

The experimental results on the effect of favorable pressure gradient (FPG) and adverse
pressure gradient (APG) in a channel behind a BFS on heat transfer and wall pressure
distributions at Reynolds numbers ReH = Um1H/ν = (0.4–1.2) × 104 were presented in [10].
The diffuser opening angle varied in the range of ϕ = 0–4◦, and confuser narrowing angle
was varied within ϕ = 0–−7.5◦. The magnitude of the Nusselt number increases as the
LPG increases for a narrowing channel, and it decreases for the diffuser. The locus of the
heat-transfer maximum moves downstream with diffuser expansion, and shifts upstream
towards the step as the confuser narrows. In [11], a quantitative study assessed the effect of
an APG on mean flow, turbulence, and heat transfer in an axisymmetric diffuser in a pipe
with SE. The literature also presents experimental [12] and numerical [13–18] studies of
fluid flow and heat transfer in single-phase turbulent flows without SE of a pipe or channel
in the presence of APG and FPG for a single-phase flow.

Solid particles addition to a turbulent flow in a BFS have large effect on reduction of
turbulent kinetic energy (TKE) in backward-facing step flow [19]. Droplets evaporation in
turbulent flow behind a BFS [20] or after a pipe with SE [21] causes significant intensification
of heat transfer (by several times in comparison with a single-phase flow). Authors of this
work have published numerical investigations of heat-transfer augmentation in gas-droplet
flows behind a pipe with SE [21]. There are few papers concerning numerical simulation
of gas-liquid flow [22,23] and droplet-laden [24] flows in a converge or divergent channel
without sudden expansion; we know of only one work on the numerical study of heat
transfer in two-phase flows after pipe sudden expansion with LPG [25], where the effect of
evaporation of water droplets on heat transfer in an axisymmetric diffuser was studied.
Heat transfer in turbulent droplet-laden flow with SE with APG and FPG has not been
previously performed. The influence of LPG on flow and heat transfer in the confuser and
diffuser after pipe SE is evaluated in the present study.

2. Mathematical Methods and Numerical Solution

The motion and heat transfer of a two-phase turbulent gas-droplet flow in a pipe with
SE is numerically considered. A sketch of the flow is given in Figure 1. To simulate the
dispersed phase dynamics, the Eulerian approach [26–28] is used. The Eulerian approach
is widely used for the simulations of two-phase confined flows [21,22,29,30]. The system of
axisymmetric stationary Reynolds-averaged Navier–Stokes (RANS) equations accounts
for the effect of vaporizing drops on mean and fluctuational transport processes [21,25].
The set of governing equations both for gas and dispersed phases have been provided in
detail [21,25]. The volume fraction of the droplets is low (Φ1 = ML1ρ/ρL < 1.2 × 10−4 for
the highest mass fraction studied ML1 = 10%). Drops are rather small (d1 < 100 µm), so
effects of their collisions can be neglected. Gas phase turbulence is predicted using the
elliptical Reynolds stress model [31] by taking the dispersed phase influence on TKE [32].
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Break-up and coalescence of droplets in flow is not taken into account due to their rarity
(Φ1 < 1.2 × 10−4) [33]. The Weber number We = ρ(US −UL)

2d/σ << 1 and the bag break-
up are ignored [33,34]. Here, US = U +

〈
u′S

〉
is the gas velocity seen by the droplet, and〈

u′S
〉

is the drift velocity between fluid flow and drops [35]. This assumption is applicable
when the pipe cross-section expands for a diffuser. The use of this approach seems less
obvious for a confuser, even when taking into account the preliminary pipe with SE. Effect
of break-up and coalescence in the flow can be neglected due to a low droplet volume
fraction at the inlet according to preliminary author’s estimations.

The technique for numerical implementation of the Eulerian approach for two phases
is described in detail in [21,25]. The numerical solution was obtained using the finite
volume method on staggered grids. The QUICK scheme of third-order ode accuracy was
utilized for solution of convective terms. Central differences of second-order accuracy
were evaluated for diffusion fluxes. Pressure–velocity fields were corrected according to
SIMPLEC procedure.

All simulations were carried out on a “basic” mesh containing 550 × 200 control
volumes (CV) for the diffuser with the largest opening angle, and for the confuser with the
largest convergence angle of 550 × 100. The information about meshes for the confuser and
diffuser is summarized in Table 1. The difference in calculations of the Nusselt number for
the two-phase gas-droplet flow did not exceed 0.1%. A further increase in their number
does not significantly affect the results of numerical calculations. The grid verification for
the case of droplet-laden flow in pipe with SE was presented in [21]. The grid independence
tests for two-phase flows in APG and FPG are given in Figure 2 for the smallest constriction
angle in the confuser and for the largest opening angle in diffuser. The Nusselt number at a
constant wall temperature is determined by dependence:

Nu = −(∂T/∂y)W H/(TW − Tm),

where Tm is mass-averaged temperature of gas in the considered cross-section.

Table 1. Meshes for two-phase flow in the confuser (FPG) and diffuser (APG).

Flow Type “Basic” “Coarse” “Fine”

Confuser 550 × 100 300 × 50 850 × 150
Diffuser 550 × 200 300 × 100 850 × 300

The convergence criteria for all residual levels in this study were up to 10−5. The
differences in Nusselt number and gas-phase kinetic energy of turbulence for gas-droplet
APG and FPG flows were up to 10−6.

The model was validated against experimental results on the flow and heat transfer
for the single-phase axisymmetric diffuser downstream of a pipe with SE. The difference
between our predictions and measured results of previous experiments did not exceed 15%.
These results were given in our previous paper [25], but this comparison is not presented
here. We did not find measured or numerical results concerning the study of an APG
or FPG of gas-droplet flow in a pipe or duct with sudden expansion. We performed the
comparisons with experimental two-phase droplet-laden mist and solid particle-laden
turbulent flow behind the BFS and a pipe with SE. These results were published in a
previous paper [21] but are not included here. We believe that the validation analysis of
two-phase solid particle-laden and droplet-laden flows behind backward-facing step or
pipe sudden expansion without LPG have been fully completed.
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3. Results and Discussion

The primary concern of this study was shown the effect of diffuser opening and con-
fuser narrowing angles on the characteristics and heat transfer in the two-phase mist with
vaporized water droplets after the pipe with SE. Drop diameter and mass fraction decreased
due to evaporation both in the axial and radial directions after the flow detachment section.

The diffuser expanding angle was ϕ = 0–5◦ and the confuser convergence angle
ϕ = 0–−3◦. The pipe diameter before SE was 2R1 = 20 mm, after SE it was 2R2 = 60 mm,
and the step height was H = 20 mm. The computational domain after pipe expan-
sion was 25H = 0.5 m. Mass-average air velocity before separation was Um1 = 15 m/s,
and the Reynolds number was ReH= HUm1/ν ≈ 2 × 104. The wall temperature was
TW = const = 373 K, and the temperatures of air and droplets at the inlet were T1 =TL1 = 293 K.
Water droplets were added to a single-phase air turbulent flow at the inlet, and their initial
velocity was set constant over pipe cross-section: UL1 = 0.8Um1. Inlet droplet size was
constant d1= 1–100 µm, and mass fraction ML1 = 0.01–0.1. The Stokes number in mean
motion was Stk = τ/τf = 0.03–3, where τf = 5H/Um1 is the turbulent time macroscale [19,20].
Here,τ = ρLd2/(18ρνW) is the particle relaxation time, W = 1 + Re2/3

L /6 and
ReL = |US −UL|d/ν is the dispersed-phase Reynolds number. The Stokes number
StkK = τ/fK = 0.2–20, where τK is the Kolmogorov timescale. While the value of inter-
facial velocity in our previous works [21,25] was based only on the average velocity of the
carrier phase, it is based on the actual value in the present study.

3.1. The Wall Friction and Pressure Coefficients

The distributions of wall friction coefficient C f /2 = τW/
(
ρU2

m1
)

and pressure coeffi-
cient CP = 2(PW − P1)/

(
ρU2

m1
)

along the length of diffuser and confuser in gas-droplet



Energies 2022, 15, 5861 5 of 12

flow with variation of expansion and contraction angles are shown in Figure 3. Here, τW is
the wall friction; PW, P1 are the mean static pressures on the wall in considered and inlet
cross-sections. The data for the flow after a pipe with SE, without an effect of LPG (ϕ = 0◦),
are also shown in this figure for comparison.
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coordinates in ZPG (ϕ = 0◦), diffuser (ϕ > 0◦, APG), and confuser (ϕ < 0◦, FPG). ML1 = 0.05, d1 = 30 µm.

The distributions of non-dimensional pressure coefficients along axial coordinates with
the development of a separated flow in the diffuser and confuser are shown in Figure 3a. In
the diffuser, directly behind the flow separation point, a negative pressure region is formed,
with a length of x/H ≈ 7. The pressure coefficient also increases with an increase in the
diffuser opening angle, which can be attributed mainly to flow deceleration. The zone
with pressure attenuation is formed in the confuser directly behind the flow detachment
cross-section, and its length axial direction is x/H = 5–7. With growth of the confuser
convergence angle, the presence of a significant region of pressure attenuation is observed,
and the absolute value of pressure attenuation increases noticeably as the convergence angle
increases (more than 5.5 times at ϕ = −2◦). Obviously, the main reason for a significant
pressure decrease in confuser is flow acceleration. The wall friction coefficient Cf decreases
significantly (several times over) with growth of APG, and a sharp increase in the flow
recirculation zone is observed (see Figure 3b). With the increase in the magnitude of
FPG, the wall friction coefficient increases noticeably (almost doubling) after the zone of
flow relaxation.

3.2. The Flow Structure in Confuser (FPG) and Diffuser (APG)

Profiles of the mean axial velocity, temperature, and turbulent kinetic energy of the
gas phase in a cross-section at x/H = 15 are shown in Figure 4. The predictions are carried
out for different values for the diffuser (APG, ϕ > 0◦), the confuser (FPG, ϕ < 0◦), and in the
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separated flow behind sudden expansion of the pipe (ϕ = 0◦). A large effect of two-phase
flow detachment with a zero pressure gradient (ZPG) and with FPG and APG on the mean
axial velocity distributions is revealed in two-phase flow. Obviously, the increase in the
diffuser opening angle leads to a reduction of gas velocity in the core zone (see Figure 4a).
It should be noted that in a cylindrical duct, as well as at small diffuser opening angles
(ϕ ≤ 2◦), the separated flow is reattached in cross-section (x/H = 15) and the flow is relaxed.
Air velocity and the velocity gradient in the radial direction in the core region increase in
the confuser.
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Figure 4. Mean streamwise velocity component (a), temperature (b), TKE (c) of the gas phase in
ZPG (ϕ = 0◦), confuser (FPG, ϕ < 0◦), and diffuser (APG, ϕ > 0◦). The results for the confuser are the
dashed lines, for the diffuser are the solid curves, and the separated flow with ϕ = 0◦ are the bolded
lines. ML1 = 0.05, d1 = 30 µm.

Gas temperature distributions Θ = (T − TW)/(T0 − TW) over the pipe radius depend,
to a lesser extent, on the longitudinal pressure gradient rather than on distributions of the
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axial gas velocity (see Figure 4b). Here, T0 and TW are gas phase temperatures on a pipe
axis and on a wall. The slightly changing diverging angle of the diffuser (ϕ ≤ 2◦) and the
converging angle of the confuser (ϕ≥−20) have little effect on the gas phase temperature in
droplet-laden flow. The temperature increases for the diffuser and decreases for the confuser.
This leads to heat-transfer enhancement in the confuser and heat-transfer suppression in
the diffuser. These conclusions qualitatively concur with the results of simulations [11] for
a single-phase flow in a diffuser behind a pipe with SE. Gas temperature becomes lesser for
gas-droplet flow compared to the case at ϕ = 0◦.

Turbulent kinetic energy (TKE) of the gaseous phase is significantly enhanced (by
up to two times over) by an increase in the diffuser opening angle (see Figure 4c). The
TKE of the gas phase is calculated for an axisymmetric flow using a known formula:
2k =

〈
u′2

〉
+

〈
v′2

〉
+

〈
w′2

〉
≈

〈
u′2

〉
+ 2

〈
v′2

〉
. This is not an effect of the dispersed phase;

it is known that the presence of a finely dispersed phase suppresses the carrier-phase
turbulence in the separated flow, both behind the BFS [19,20] and with sudden expansion
of the pipe [21,22]. Particles or droplets are involved in the mean gas movement and a part
of the turbulent energy of a carrier flow is spent on this process [19,32]. The maximum
kinetic energy of turbulence is observed in the mixing layer, and the same phenomena
were found for the gas-droplet flow in the pipe with sudden expansion at ZPG (ϕ = 0◦) [21].
This effect was shown previously, in our recent study of an axisymmetric diffuser with
a sudden pipe expansion [25]. An increase in the LPG in an axisymmetric diffuser with
pipe SE causes additional flow turbulization. The maximum value of the turbulent kinetic
energy of the carrier phase for a confuser decreases almost twice as much compared to the
turbulence level of a separated two-phase flow at ZPG. Such a significant TKE suppression
of the carrier phase cannot be explained only by the effect of the dispersed phase.

The transverse distributions of mean axial water droplet velocity UL/UL1 (a), drops in
temperature ΘL = (TL − TL,max)/(TL,0 − TL,max) (b), and the mass fraction ML/ML1 (c) of
dispersed phase in the confuser and diffuser in a pipe with SE are presented in Figure 5.
Here TL, TL, and TL,max are the droplet temperature, the droplet temperature on pipe axis,
and maximum droplet temperature in corresponding cross-section, respectively.

With growth of the confuser convergence angle, a significant increase in the longitudi-
nal averaged velocity of droplets occurs (by more than double at ϕ = −2◦ as compared to
the separated flow at ZPG) (see Figure 5a). The droplet temperature profile has a qualita-
tively similar form for all three types of ducts (ZPG, APG, and FPG) studied previously
(see Figure 5b). On the whole, droplet temperature distributions are similar to those for
the gas phase. The maximum value of droplet mass fraction is obtained in the axial region
of the pipe, and the minimum value is obtained in its near-wall region (see Figure 5c).
The simulations for droplets’ mass fractions ML1 > 10% were not successful due to the
possible effect of droplets deposition in reality. Most likely, the distribution of the mass
fraction of droplets is qualitatively similar to those for ML1 = 10%, but there are quantitative
differences. It is also necessary to take into account the effect of droplet deposition on the
wall from a two-phase flow, and the possible formation of liquid spots and films on the wall
surface. The influence of droplet deposition on transport processes and heat transfer are
not taken into account for our numerical results obtained for ML1 = 5%. Obviously, for high
values of the droplets’ mass fraction at the inlet, it is necessary to account for the influence
of the deposition process and the entrainment of liquid droplets into the droplet-laden flow
from the liquid film or spots.

3.3. The Effect of LPG on the Mean Parametrs of the Two-Phase Mist Flow

A significant increase in the length of recirculating area xR is observed in two-phase
flow in diffuser (see Figure 6). The locus of the heat-transfer peak xmax moves in the
downstream direction. A slight increase in the flow recirculation region is shown for
small expanding angles (ϕ ≤ 1◦), and the position of the heat-transfer maximum is close
to the locus of the reattachment point of two-phase flow. The coordinate of xmax moves
downstream by almost double (ϕ = 5◦) in comparison with the case of ϕ = 0◦. The presence
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of FPG leads to a reduction in flow recirculation area and the coordinates of xmax move
upstream by about 30–35% compared to the case of ϕ = 0◦. The significant displacement of
flow reattachment points in the diffuser and confuser is caused by deformation of the gas
phase velocity profile due to the effect of LPG.
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The TKE of the carrier phase increases almost two times over in the diffuser at ϕ = 5◦

as compared with the case without longitudinal pressure gradient ϕ = 0◦. Changing the
confuser convergence angle causes suppression of the level of turbulence more than three
times over. The heat transfer decreases significantly with expanding of diffuser opening
angle (almost by a factor of 1.5 as compared to the separated flow in the pipe at ϕ = 0◦).
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For the confuser, an increase in the relative value of the maximum heat transfer is observed
at ϕ = −3◦ (by approximately 20%). The heat transfer for the confuser (FPG) case has the
greatest value, and the diffuser (APG) has the smallest.
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The effect convergence (confuser) and divergence (diffuser) on Nusselt number dis-
tributions along the axial coordinate for the separated flow (ZPG), confuser (FPG), and
diffuser (APG) are shown in Figure 7. Initially, for two-phase mist flows with APG and
FPG, the attenuation of heat transfer rate is observed. This is typical both for both types of
flows and for the case of gas-droplet flow in pie with SE at ϕ = 0◦. Then there is a sharp
increase in heat transfer with the achievement of a maximum heat transfer. In the zone of
flow relaxation, the observed decrease in Nusselt number is similar to a single-phase flow.
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The influence of water droplets’ mass concentration on the maximal magnitude of heat
transfer Numax for a diffuser and confuser after pipe SE is presented in Figure 8. For all
types of flow behind the pipe with SE at ϕ = 0◦, in the diffuser (ϕ = 2◦), and in the confuser
(ϕ = −2◦), an increase in the maximum heat-transfer value (up to 75% in a single-phase
airflow) was obtained with increasing mass fraction of droplets to ML1 = 10%. The heat
transfer in confuser enhances compare to the diffuser and for two-phase separated flow
with ZPG at ϕ = 0◦.
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4. Conclusions

The numerical results of the effects of favorable and adverse longitudinal pressure
gradients on the flow and heat transfer augmentation, in a droplet-laden flow in a pipe
with SE, are presented. Elliptical second-moment closure was used to predict the gas phase
turbulence with taking into account the effect of droplets presence. While this study does
not have a direct application, it shows potential ways to control the turbulence level and
to enhance heat transfer performance in APG and FPG flow behind a backward-facing
step. Thus, these data may be of interest for various practical applications. The scope of the
model’s use is limited the inlet droplet diameter d1 = 100 µm and their initial mass fraction
ML1 ≤ 10%. This can be explained by noting that the model does not take into account the
formation and evolution of a liquid film on the pipe wall, as drops break up and coalesce.

The presence of flow expansion (diffuser) and constriction (confuser) of pipe with SE
shows significant effect on the mean and fluctuational flow characteristics, and heat transfer
in an axisymmetric. The increase of the confuser constriction angle causes considerable
reduction of the pressure coefficient. The length of the flow recirculating area noticeably
shortens compared to the gas-droplet flow behind the pipe with SE at angle ϕ = 0◦, and
the point of maximum of heat transfer slightly shifts downstream. The heat transfer
augmentation and the suppression of turbulence in a two-phase flow in a confuser are
mainly due to the FPG. The large growth of flow recirculating area (up to 3.5 times at
ϕ = 5◦) compared to the gas-droplet flow downstream of pipe SE at ϕ = 0◦ is obtained. The
expansion of the diffuser leads to reduction of the wall friction coefficient. Two-phase flow
does not reattach to the wall at angle ϕ = 5◦. Points of flow reattachment and maximum
heat transfer are significantly shifted downstream by an increase in the opening angle of
the diffuser. The significant heat-transfer suppression (by up to 1.5 times) and turbulence
production (by up to two times) are observed for the two-phase mist flow in a diffuser.
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Nomenclature

d droplet diameter
H step height
ML mass fraction
Nu = −(∂T/∂y)W H/(TW − Tm) Nusselt number
ReH = Um1H/ν Reynolds number
Stk = τ/τf mean Stokes number
T temperature
U average velocity vector
Ui, Uj mean gas velocities components
US = U +

〈
u′S

〉
gas velocity vector seen by the droplet〈

u′S
〉

drift velocity between fluid flow and drops
We = ρ(US −UL)

2/σ Weber number
x streamwise coordinate
xmax location of heat-transfer maximum
xR reattachment length
Subscripts
0 single-phase fluid (air) flow
1 initial condition
L liquid
m mean
max maximal value
W wall
Greek
Φ volume fraction
λ thermal conductivity
ρ density
ν kinematic viscosity
τ particle relaxation time
τW wall shear stress
ϕ diffuser opening angle (ϕ > 0) or confuser (ϕ < 0) narrowing angle
Acronym
APG adverse pressure gradient
BFS backward-facing step
FPG favorable pressure gradient
LPG longitudinal pressure gradient
CV control volume
SE sudden expansion
ZPG zero pressure gradient
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