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Abstract: In a doubly-fed induction generator (DFIG)-based wind energy conversion system (WECS),
when the grid voltage sags severely, the rotor side converter (RSC) suffers from overvoltage and
overcurrent owing to the large electromotive force (EMF). To ensure that the converter operates within
a safe range when grid faults occur, this paper proposes a double impedance-substitution control
(DISC) strategy to improve the system’s low-voltage ride through (LVRT) capability. When the grid
voltage sag is detected, the grid side converter (GSC) and RSC are connected in parallel to the rotor
circuit by changing the topology of the system. In the new topology, GSC and RSC are equivalent to
inductive impedance by controlling, which can not only suppress the overvoltage and overcurrent
at the rotor side, but also effectively reduce the torque ripple. Additionally, the DISC strategy can
provide reactive power support to the grid during LVRT. Finally, the simulation results show that the
DISC strategy can maintain the current flowing through the RSC within ±1 p.u., and compared with
the existing control strategy, the effectiveness of the proposed method was further demonstrated.

Keywords: doubly-fed induction generator (DFIG); low-voltage ride through (LVRT); double
impedance-substitution control (DISC); rotor side converter (RSC); grid side converter (GSC); wind
energy conversion system (WECS)

1. Introduction

In the past decades, with the increasingly prominent energy and environmental
problems, the wind power industry and technology have made significant developments,
and the widespread installation in the grid has had an increasing impact on the power
system [1]. Many countries have formulated standards for wind power grid connections
and have clearly defined that the WECS should be provided with the capability of low-
voltage ride through (LVRT). For example, Figure 1 shows China’s requirements for wind-
farm LVRT. When the grid-connected voltage drop is above 0.2 p.u., the wind turbine can
still operate continuously as well as provide a reactive current according to the standard
in Figure 1b.

Among all types of wind turbines, the doubly-fed induction generator (DFIG) occupies
a large market share of the WECS owing to its low cost, small converter capacity, and flexible
control [2]. However, the DFIG is very vulnerable to non-ideal grid characteristics as a
result of their direct connection to the grid at the stator side. If a severe fault occurs, the
DFIG induces a large rotor electromotive force (EMF). If no effective protective measures
are taken, the current and voltage of rotor side converter (RSC) and DC-bus will exceed its
threshold, resulting in unit loss of control or device damage [3,4].

Many methods have been investigated for the LVRT issue. These methods are mainly
divided into two categories: (1) those based on additional hardware devices; and (2) those
based on design-specific control strategies. The most effective additional device to deal
with grid voltage sag is the dynamic voltage restorer (DVR) device [5], which can inject
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compensation voltage into the grid through a series transformer to eliminate the impact of
voltage sag, resolving the fault crisis fundamentally. However, the DVR usually requires a
converter of large size capacity as well as energy storage to quickly inject sufficient power
to boost the grid voltage, which is economically unacceptable. Thanks to the advantages
of simple operation and low cost, the crowbar is a widely used LVRT auxiliary device [6].
However, when the crowbar receives the trigger pulse, the RSC must block the pulse.
This loses system controllability, nor can it inject reactive current for the grid. In this
scenario, the DFIG is equivalent to a squirrel-cage asynchronous motor, which must uptake
reactive power from the grid [7]. References [8–10] realize LVRT by configuring a fault
current limiter (FCL), when the stator current exceeds the set value, the adaptive FCL
impedance increases instantaneously, limiting the grid fault current by inducing a large
voltage drop. However, during fault current limiting, the high impedance leads to increased
energy losses and a poor current limiting effect on the RSC. In addition, stator-side series
dynamic resistance [11] and RSC in parallel with an additional rectifier and energy storage
device is effective [12], but it requires additional cost and increases the control complexity.
Reference [13] changed the three-winding transformer in the traditional DFIG-based WECS
into two single-winding transformers, changing the traditional topology, so that GSC can
adjust the stator voltage of DFIG. But the author’s default traditional structure is based
on systems equipped with crowbar and battery energy storage devices. It is hard to use a
conventional solution for the DFIG to cope with grid-voltage sags.
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In addition to the utilization of various auxiliary devices, there are methods to design
specific control strategies to meet the grid code requirements. Reference [14] considered
the transient process of the grid voltage sag and proposed an improved calculation method
for the feedforward terms. Reference [15] used a fuzzy controller, reference [16] used
a hysteresis controller, and reference [17] used a sliding mode controller to replace the
traditional PI controller. These methods enhanced the anti-interference performance of the
current loop. However, it can only improve the control ability of the system but cannot
accelerate the attenuation of the flux linkage transient component. Therefore, during a
long transient process, the RSC must output a sufficient voltage to cancel the EMF. Once
a severe fault occurs, the EMF is likely to exceed the maximum voltage permitted by the
RSC, resulting in RSC saturation and a loss of control of the system. Simultaneously, the
dynamic stator flux causes a large ripple in the electromagnetic torque and endangers the
transmission system. Reference [18] set the detected stator current directly to RSC current
reference value, which achieved the effect of suppressing the RSC current. Nevertheless, the
RSC must output a large voltage. In [19], the concept of virtual damping flux was proposed
and used in the analysis and research for a LVRT scheme. A control strategy in which the
rotor current tracks the reverse stator current proportionally was proposed. However, the
value range of the proportional coefficient is not sufficiently precise. In some cases, the
RSC may not meet the voltage constraint, leading to saturation and affecting the regulation
of current, which weakened the effect of the control strategy. To end the transient process
caused by a voltage sag as soon as possible, demagnetization control technology was
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proposed in [20,21]. During a voltage dip, the negative and zero sequences of the stator flux
are obtained by using flux linkage observation and phase sequence separation technology,
and the rotor reference current required to offset them is calculated. Since the output
voltage of the RSC is primarily used to offset the positive-sequence component of EMF, the
voltage requirement on the rotor side is low. However, RSC is bound to withstand high
current stress due to the large injection demagnetization current. In the event of a severe
fault in the grid, it may even exceed 2 p.u., which not only fails to inject reactive power
support, but may also cause damage to the converter, resulting in huge losses. In [22], the
demagnetization current reference was superposed with the normal rotor current reference,
and the RSC and grid side converter (GSC) completed demagnetization and reactive power
support at the same time. However, this method also has a problem in that the current
is too large, which requires a larger converter of the current capacity. The above optimal
control strategy scheme attempts to realize LVRT only by RSC, but owing to the limited
capacity of RSC, these control strategies may not enable the unit to achieve LVRT under
very serious grid faults.

In this paper, based on the condition of satisfying the converter voltage and cur-
rent constraints, considering various control objectives such as reducing torque ripple,
accelerating flux linkage attenuation, and providing reactive power support, a double
impedance-substitution control (DISC) strategy is proposed. During the proposed strat-
egy implementation, the GSC with a low utilization rate is connected in parallel with the
RSC to the rotor side, and the GSC and RSC are equivalent to the inductive impedance
by controlling. with a minimum of additional components (cost), the output currents
of the two converters can be maintained within ±1 p.u. regardless of the normal or fault
conditions, such that the converter is always in a safe operating area.

This paper is organized as follows. A mathematical model of the DFIG is established,
and the transient characteristics of the DFIG under a voltage sag are analyzed in Section 2. In
Section 3, the principle of the DISC control scheme is described in detail and the selection of
relevant parameters is discussed. In Section 4, a group of simulation results are compared to
demonstrate the correctness and effectiveness of the proposed method. Finally, conclusions
are summarized in Section 5.

2. Transient Characteristics of DFIG under Grid Voltage Sags
2.1. DFIG Model

In this paper, the space vector method is used to express the motor parameters. For
simplicity, the stator and rotor winding currents flowing into the motor are specified as
positive, and all variables on the rotor are referred to the stator according to the turn ratio.
In the synchronous reference frame (dq) oriented to the stator flux linkage, the voltage and
flux linkage equations are given by [23].{

udqs = Rsidqs +
d
dt ψdqs + jωsψdqs

udqr = Rridqr +
d
dt ψdqr + j(ωs −ωr)ψdqr

(1)

{
ψdqs = Lsidqs + Lmidqr

ψdqr = Lmidqs + Lridqr
(2)

where u, i, and ψ are the voltage, current, and flux-linkage vectors, respectively. R and
L are the resistance and inductance, respectively. ω is the electrical angular frequency.
Ls = Lsσ + Lm and Lr = Lrσ + Lm. Lsσ and Lrσ are the stator and rotor leakage inductance,
respectively. Lm denotes the mutual inductance. The subscripts “s” and “r” denote the
stator and rotor variables, respectively.

From (1) and (2), the expression for the rotor voltage is given below:

udqr =
Lm

Ls
(

d
dt

+ jsωs)ψdqs + (Rr + σLr
d
dt

+ jsωsσLr)idqr (3)
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In (3), σ = 1− L2
m/(LsLr) denotes the leakage coefficient. σLr is the rotor-side transient

inductance and s is the slip.
According to (3), the rotor voltage consists of two components. The first term is the

induced EMF edqr related to the rate of change of the stator flux linkage, and the second term
is related to the voltage drop across the rotor impedance, denoted as uRL. The equivalent
circuit on the rotor side is illustrated in Figure 2.
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2.2. EMF Transient Characteristics

Under normal conditions, ψdqs is constant. The first term in (3) can be rewritten as:

edqr = j
Lm

Ls
sωsψdqs =

Lm

Ls
sUm (4)

Here, Um is the stator voltage vector amplitude.
As (4) indicates, under normal conditions, the amplitude of EMF is in direct proportion

to the slip s. Due to the range of slip being extensively designed between –0.3 and +0.3, the
magnitude of EMF is less than 30% of Um. In case the grid sags symmetrically, the stator
flux linkage cannot contain a sudden change; therefore, in addition to the steady-state
component, the stator flux linkage also contains a transient component that decays with
time, which can be expressed as:

ψdqs =
(1− h)Um

jωs
+

hUm

jωs
e−

t
τs1 e−jωst (5)

where h is the depth of the grid voltage drop. τs1 = Ls/Rs is the time constant of the stator
flux linkage. Under symmetrical faults, neglecting the smaller time constant 1/τs1, from
(4) and (5), the EMF can be rewritten as:

edqs =
Lm

Ls

[
s(1− h)Um − (1− s)hUme−

t
τs1 e−jωst

]
(6)

The first and second items represent the steady-state and transient components of
the EMF, respectively. According to (6), the second item of the EMF is positive correlation
with the (1− s). If the grid voltage sags completely and the slip is −0.3, the initial value of
EMF 1.3UmLm/Ls is the maximum value, which is 4.33 times higher than the EMF during
normal operation.

According to the above analysis, when the grid has a severe fault, the EMF increases
sharply, thus increasing the RSC request voltage. However, the peak voltage of RSC
depends on the modulation method and DC-bus voltage, and they are engineered based
on normal situations. If the RSC maintains the original control scheme during grid fault,
the requested voltage of the RSC is likely to be higher than the RSC voltage threshold,
which leads to overmodulation out of control. Therefore, in the design of any LVRT
control strategy, the voltage constraints of the RSC should be satisfied first, followed by the
current constraints of the RSC and the suppression of the DC-bus overvoltage. Thus, the
DFIG-based WECS can operate safely during LVRT.
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3. The Principle of DISC
3.1. Rotor Current Request Analysis

When the voltage sags in the grid, the stator flux contains relative stator winding static
term and it will be cut by rotor rotation to generate a larger EMF. The attenuation of the
transient component should be accelerated to maintain the RSC away from the saturation
region. According to Lenz’s law, if there is a current loop on the rotor side, when the stator
flux linkage ψdqs decays, the direction of the magnetic field generated by the rotor current
idqr is the same as that of the stator flux linkage. In other words, the magnetic field slows
down the attenuation processes. Therefore, in this case, the current reverse to the stator flux
linkage should be injected into the rotor side, which will not only accelerate the attenuation
of the stator flux linkage but, according to (2), it will reduce the rotor flux linkage ψdqr at
the same time, and thus reduce the rotor voltage. According to (3), the rotor port vector
diagram under the above conditions can be drawn as shown in Figure 3.
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As shown in Figure 3, when the rotor current idqr and stator flux ψdqs are in opposite
directions, the voltage of the rotor is ahead of the stator flux ϕr (ϕr > 90◦), and the rotor
port exhibits inductance characteristics. According to the circuit substitution theorem, RSC
can be equivalent to a resistance component and an inductive component in series. In
other words, during fault operations, the RSC is equivalent to the inductive impedance by
controlling, which can accelerate the RSC away from the saturation region to satisfy the
voltage constraint.

The references [19–22] introduced in Section 1 can make the RSC meet the voltage
constraints by improving the control strategy; however, similar to most improved control
strategies, these strategies are 2 p.u. for the RSC current constraint, which is the maximum
current that the RSC can temporarily withstand [22]. This means that these strategies
can hardly provide reactive power support. In addition, there is a hidden danger. In
the long run, with an increase in the number of grid faults, if the converter withstands a
large current frequently, it may damage the switch tube and increase maintenance costs.
Therefore, considering practical applications, it is necessary to find a way to make an
RSC withstand low current stress without adding extra cost. The main control target of
the GSC under normal conditions is to maintain the DC-bus voltage stable [24]; however,
when the grid voltage sags, the RSC will absorb a large amount of active power. The
power transmission capacity of the GSC decreases owing to a decrease in the grid voltage.
Therefore, these powers cannot be fully sent to the grid, and a large amount of power
accumulates on the DC-bus, causing the voltage to increase continuously. To protect the
safety of the DC-bus, it is necessary to configure the chopper [25]. Therefore, during grid
voltage sag, the GSC control target is difficult to complete, resulting in a significantly
reduced GSC utilization rate. However, it is possible to improve the utilization rate of GSC
during grid faults by changing the topology of DFIG-based WECS. As shown in Figure 4,
power electronic switches S1 and S2 controlled by fault signals are attached to the original
topology. Under normal conditions, S1 is closed and S2 is opened, and both of the two
converters adopt the traditional vector control strategy. When the grid voltage sags, S1 is
opened and S2 is closed, both GSC and RSC are equivalent to inductive impedance through
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control to share the faulty rotor current. In theory, the current flowing through the GSC
and RSC is at most 1 p.u., it not only improves the utilization rate of the GSC and reduces
the risk of RSC damage, but also frees up more current margin to meet the requirement for
the reactive current.
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According to the above analysis, when the grid voltage drops, the two converters are
connected in parallel, and the same control strategy is adopted to make them equivalent to
inductive impedance to suppress the faulty rotor current jointly. At this point, it is assumed
that the currents flowing through the two converters are equal. Then the equivalent
circuit viewed from the rotor side can be shown in Figure 5, where Zeq is the parallel
equivalent impedance of the RSC and GSC. This is the basic principle of the proposed
DISC strategy. Next, some specific control objectives, such as voltage constraints, current
constraints, accelerated flux linkage attenuation, and torque ripple reduction, are analyzed
and discussed to select substitution impedance values.
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3.2. Double Substitution-Impedance Design

From Figure 3 and the circuit voltage balance theorem, Req should be equal to −Rr,
and the rotor loop equation can be given by:

− Leq(
d
dt

+ jsωs)idqr =
Lm

Ls
(

d
dt

+ jsωs)ψdqs + σLr(
d
dt

+ jsωs)idqr (7)

Suppose that the rotor current reference value can be tracked without error. According
to (2) and (7), if the rotor port presents inductance characteristics, the rotor current reference
can be designed as:

i∗dqr = idqr = −
LmLs

L2
m + Ls(Leq + σLr)

idqs (8)

To prevent an overcurrent on the rotor side, the following equation should be established:



Energies 2022, 15, 5739 7 of 19

|idqr| =
LmLs

L2
m + Ls(Leq + σLr)

|idqs| ≤ Irm (9)

where Irm is the maximum rotor current allowed to flow, which is set as 2 p.u., “| |” is the
operation that takes the amplitude. According to (9), Leq can satisfy the Equation (10):

Leq ≥ Lm

(
Ism

Irm
− Lm

Ls

)
− σLr (10)

where Ism denotes the maximum stator current during voltage dip. According to (2), the
stator current is given below:

idqs =
ψdqs − Lmidqr

Ls
(11)

Due to the opposite direction of rotor current and stator flux vector, the maximum
stator current can be further written as:

Ism =
ψsm + Lm Irm

Ls
(12)

Here, ψsm is the maximum value of the stator flux linkage during the grid voltage sag
and it appears at the initial moment. According to Figure 5, because Req and Rr cancel each
other out, the voltage drop of Leq can be written as:

uLeq =
Leq

Leq + σLr
edqr (13)

To prevent RSC and GSC from becoming saturated, there should be:

|uLeq| =
Leq

Leq + σLr
|edqr| ≤

√
U2

rm − (Req Irm)
2 (14)

where Urm is the RSC and GSC’s allowed output maximum voltage. If space vector pulse
width modulation (SVPWM) is used, Urm is the voltage value of the DC-bus [26].

According to (14), Leq can satisfy (15):

Leq ≤
σLr

√
U2

rm − (Req Irm)
2

Erm −
√

U2
rm − (Req Irm)

2
(15)

where Erm is the maximum EMF value during grid voltage sag.
According to (6), this is the initial value of the sag. By combining (10) and (15), the

range of Leq can be obtained as follows:

Lm(
Ism

Irm
− Lm

Ls
)− σLr ≤ Leq ≤

σLr

√
U2

rm − (Req Irm)
2

Erm −
√

U2
rm − (Req Irm)

2
(16)

Substituting the simulation parameters in Table 1 into Equation (16), the Leq should
satisfy that:

0.246 p.u. ≤ Leq ≤ 0.308 p.u. (17)
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Table 1. Parameters of 2-MW DFIG.

Symbol Parameter Value Per-Unit

Ps Rated stator power 2 MW
Us Rated stator voltage 690 V
Is Rated stator current 1760 A

fs
Rated stator
frequency 50 Hz

Vbus Rated DC-bus voltage 1200 V
p Poles pairs 2
u Turn ratio (Ns/Nr) 1/3
Rs Stator resistance 0.026 Ω 0.0115 p.u.
Rr Rotor resistance 0.029 Ω 0.0128 p.u.
Lm Mutual inductance 2.5 mH 3.4699 p.u.

Lsσ
Stator leakage

inductance 0.087 mH 0.1208 p.u.

Lrσ
Rotor leakage

inductance 0.087 mH 0.1208 p.u.

If the grid voltage sags completely, combining (1), (7) and (8), there is the first-order
linear differential equation of the stator flux linkage under the DISC strategy as follows:

d
dt

ψdqs +

[
Rs

L2
m + Ls(Leq + σLr)

L2
s (Leq + σLr)

+ jωs

]
ψdqs = 0 (18)

The solution of stator flux linkage in (18) is:

ψdqs = ψsme−
t

τs2 e−jωst (19)

According to (19), the stator flux linkage is a vector attenuated by time constant τs2
and rotates with ωs, where the time constant τs2 of it can be calculated by (18) as:

τs2 =
L2

s (Leq + σLr)

Rs
[
L2

m + Ls(Leq + σLr)
] (20)

According to (9), (14) and (20), the value of Leq is related to the rotor port current,
voltage, and attenuation speed of the flux. Taking the most severe fault condition of the
system as an example, the grid voltage sags completely and the slip s = −0.3, Erm and
ψsm are 1.26 p.u. and 1 p.u., respectively. Figure 6 can be obtained by substituting the
parameters in Table 1 and (17) into (9), (14) and (20). According to Figure 6, the rotor port
voltage is proportional to Leq, whereas the rotor port current is inversely proportional to Leq,
and the time constant τs2 is proportional to Leq. The faster the flux linkage attenuation, the
easier it meets the requirements of reactive power support in LVRT; thus, the smaller τs2 is
better. In summary, Leq = 0.246 p.u. is selected. Although the peak current of the rotor port
reaches 2 p.u. in the initial stage, the current is evenly distributed by the two converters
in series, hence, the current flowing through the RSC or GSC is at most 1 p.u., at the same
time, it not only moves away from the saturation area of the converter but also accelerates
the decay of the stator flux linkage, which is the best choice.

3.3. Instantaneous Current-Sharing Control Strategy

In order to make the inverters parallel perfectly realize current sharing, the amplitude,
phase, and frequency of the output voltages of the two inverters should be exactly the
same in theory, so that the output currents of the two inverters can be completely equal.
However, in the actual operation, because the parameters of each inverter cannot be
completely consistent, there are differences in line impedance, or because of the inherent
characteristics of the control system, the output voltage of each inverter is not the same, so
there will be a voltage difference between the inverters, thus forming a circulating current
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between the inverters. If the circulating current is large, it will have a destructive impact
on the inverter. In this paper, the instantaneous current sharing method is adopted, and a
current sharing loop is added on the basis of the traditional control strategy to compensate
the unbalanced current by adjusting the output voltage of the two inverters in real-time.
The control principle of the current sharing loop is shown in Figure 7.
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Since the AC is directly regulated and the gain of PI controller for AC is low, the
proportional-resonant (PR) controller is selected, and its transfer function expression is:

GPR(s) = Kp +
2Krωcs

s2 + 2ωcs + ω2
0

(21)

where: Kp is the proportional term coefficient; Kr is the resonance term coefficient; ωc and
ω0 are the cut-off frequency and resonance frequency, respectively; cut-off frequency is
related to the bandwidth of the controller.

The following Bode diagram analyzes the impact of key parameters in the PR controller
on the system, the PR controller and the PI controller Kp role, both to improve the open-loop
gain, not too much description, set Kp constant equal to 1. ω0 is the resonant frequency,
which is set to 50 Hz. As Figure 8a shows, Kp and ωc are constant, the peak gain of the
PR controller has a positive correlation with the Kr. However, the bandwidth of the PR
controller does not change, which means that adjusting Kr can only adjust the peak gain of
the PR controller. From Figure 8b, it can be seen that Kp and Kr are constant, and when ωc
becomes larger, the gain and bandwidth of the PR controller become larger, it shows that
the PR controller can still give a larger gain even if there is an error in the frequency when
ωc increases.
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To validate the credibility of the current sharing strategy, a MATLAB/Simulink plat-
form with a parallel current sharing model is built, which contains two inverters with
voltage and current double closed loops. Its rated active power, rated reactive power, rated
voltage, rated current, rated frequency and DC-bus voltage are 50 kW, 30 kvar, 380 V, 89 A,
50 Hz and 800 V, respectively. The line impedance of the inverters 1 and 2 are 0.2 Ω and
0.7 Ω, respectively. The switch of the two inverters frequency is 20 kHz. The main circuit
part of the system is shown in Figure 9.
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The A-phase circulation is defined as:

iab = ia1 − ia2 (22)

As shown in Figure 10a, when the control strategy of the system does not add the
current sharing loop, due to the difference in line impedance, the maximum circulating
current reaches 20 A, which is 16% of the peak load current of phase A. The circulating
current, if not suppressed, will cause damage to the inverter.
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Figure 10b shows the simulation results of the circulating current of the A phase
when joining the current sharing loop. It is observed that the circulating current has been
significantly suppressed. It is only about 2 A, which only occupies 1.6% of the peak load
current of the A phase. The size of the circulation is within the allow able range.

In summary, after adding the current sharing loop, the circulating current of the
inverter parallel system can be greatly reduced, which shows the correctness of the current
sharing strategy, and further shows that the strategy of using RSC and GSC in parallel to
share the rotor overcurrent is feasible.

3.4. The Specific Implementation of the DISC Strategy

According to the foregoing analysis, a schematic of the DFIG control system including
the DISC strategy can be drawn, as shown in Figure 11. The actual application is divided
into the following two conditions:

(1) Normal condition

When the grid is in a stable state, S1 is closed and S2 is opened. The control signal
of the GSC is provided by switch node 1, and the GSC adopts the grid voltage-oriented
control. The current reference in the RSC control strategy is provided by switch node 1,
which adopts a stator flux linkage-oriented scheme to implement decoupling control of the
power flow between DFIG and the grid.

(2) Fault condition

When a voltage sag is detected, S1 is opened and S2 is closed. The current reference in
the RSC control strategy and the GSC control signal are provided by switch node 2. Both
the GSC and RSC adopt the DISC strategy to divide the rotor fault current equally.

At this point, the DC-bus voltage value increases. When Vbus exceeds 1.1 p.u., the
chopper is connected to release energy. It should be noted that if an asymmetrical fault
occurs in the grid, the current reference will also contain AC components of 50 Hz and
100 Hz, in addition to the DC component [27]. However, the PI controller gain can hardly
be achieved with a zero steady-state error at these frequencies, significantly reducing
the effectiveness of the control strategy. To avoid this situation, this paper adopts the
feedforward current references control method proposed in [28]. By introducing the
feedforward current item, the dynamic response of the current loop can be enhanced, as
shown in Figure 11.
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3.5. Torque Ripple Analysis

If the torque ripple is too large, it will cause damage to the gearbox; therefore, eliminat-
ing torque ripple is an essential target of LVRT. When a constant amplitude transformation
is used, the electromagnetic torque can be expressed as:

Te = 1.5pLm(iqsidr − idsiqr) (23)

where p denotes motor pole logarithm. Assuming that the rotor current can accurately
track the reference, (8) can be transformed into (23) to obtain:

Te = −1.5p
L2

mLs

L2
m + Ls(Leq + σLr)

(iqsids − idsiqs) = 0 (24)

According to (24), the control strategy proposed in this paper can theoretically elimi-
nate torque ripple, thereby increasing the life of the transmission system.

4. Simulation Results

By building a 2-MW DFIG-based WECS simulation platform to demonstrate the
effectiveness of the DISC strategy proposed in this paper and compared with the optimized
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demagnetization control strategy (method-1) proposed in reference [21] and the virtual
damping flux-based control strategy (method-2) proposed in reference [19]. The torque
imbalance during the grid fault increases the rotor speed, but the rotational inertia of the
MW-level DFIG is large, and the duration of the fault is very short, so the rate of change of
the speed is very small. It is assumed that the rotor speed is constant [29].

4.1. Symmetrical Faults

First, the control strategy under normal conditions is used to control the operation of
the DFIG in super synchronous. The slip s is −0.2, the stator active power Ps is −0.7 p.u.,
and the reactive power Qs is 0 p.u., at t = 0.2 s, the grid voltage sags symmetrically to
0.2 p.u., and at t = 0.4 s, the grid voltage is restored completely. When the grid voltage
sag is detected, it quickly switches to the LVRT control strategy to ensure the continuous
operation of the DFIG without disconnection. Because the voltage sag and restore will make
the flux linkage contain a transient component, these control strategies will be restored to
the state before the fault during t = 0.6 s. The simulation results are shown in Figure 12.
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Comparative analysis from the perspective of voltage constraints, whether the actual
output voltage value of RSC and GSC exceeds its maximum allowable value Urm is the
basis for judging whether the converter is saturated, because Urm depends on the DC-bus
voltage value, according to Table 1, Vbus is 1200 V, then Urm is about 0.71 p.u.. According
to Figure 12, the DISC, method-1 and method-2 can all meet the voltage constraint, but
the three are different. During a grid fault, the RSC request voltage in method-1 is the
minimum. This is because the demagnetization current is large, and a large voltage drop is
generated in the rotor impedance, which offsets most of the EMF. The RSC request voltage
in method-2 is the maximum, which is within the tolerable range during the fault period.
However, when the grid is restored and the control strategy is switched to the normal
control strategy, the RSC request voltage increases, which is very close to the critical point of
the voltage constraint. The DISC’s RSC request voltage is between method-1 and method-2
and is always within a safe range. In addition, from the output voltage of the GSC in
method-1 and method-2, it can be seen that the output voltage of the GSC is also reduced
owing to the grid voltage sag, which results in the limitation of the active power output
capacity. The utilization of the GSC is significantly reduced, which further explains the
rationality of dividing the fault current equally between the GSC and RSC in parallel.

From the perspective of current constraints, according to Figure 12, the three control
strategies can suppress the rotor-side current within ±2 p.u. under symmetrical fault.
However, it can be seen from Figure 12a that the DISC uses the RSC and GSC to share the
overcurrent of the rotor side in parallel, so the current flowing through the RSC and GSC is
within ±1 p.u., to avoid damage to the converter owing to high current stress, enhance the
system reliability, and reduce the maintenance cost. In addition, in DISC, when the grid
is restored and the control strategy is switched to the normal control strategy, the output
current of the GSC can reach a steady state after 0.1 s. Method-1 is to inject the current
opposite to the stator flux linkage transient component into the rotor current reference
to accelerate the flux linkage attenuation. According to Figure 12b, the demagnetization
current is large, which puts the RSC in a state of high current stress for a long time, and
it is easy to have the risk of overcurrent. According to Figure 12c, during a grid fault, the
RSC output current of method-2 is smaller than that of method-1. However, method-2 and
method-1 had the same hidden dangers. The output current of the GSC cannot quickly
reach a steady state after the grid is restored, and an excessive pulsating current may also
damage the converter.

According to the analysis in Section 3, from the perspective of torque ripple, if the
actual value of the rotor current can accurately track the reference value, DISC can eliminate
the torque ripple, as shown in Figure 12a. The torque ripple is relatively smooth during the
fault, which demonstrates the correctness of the previous analysis. The demagnetization
current in method-1 does not contain a positive-sequence component, but the stator current
contains a positive-sequence component. Therefore, according to (23), it can be known that
there is a torque ripple of 50 Hz in the demagnetization control. Method-2 can theoretically
eliminate torque ripple; however, in method-2, PI-R is used instead of PI as the current
controller. For the control of AC components, PI-R can achieve better control effects than
PI, but there is still a certain error, so a torque ripple is generated.
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In conclusion, the control strategy proposed in this study considers current constraints,
voltage constraints, safe operation of the converter, torque ripple suppression, and other
aspects. A comparison with the existing control strategy shows that the control strategy
proposed in this paper can better improve the LVRT capability of the DFIG.

4.2. Single-Phase Faults

The most common fault in a grid is single-phase sag. In contrast to a three-phase sym-
metrical sag, the stator flux linkage contains an additional negative-sequence component
when grid voltage occurs in a single-phase sag. The negative-sequence component presents
a 100 Hz AC characteristic in the dq coordinate system and generates a large EMF. If it is
not properly controlled, it is likely to saturate the converter. Figure 13 shows the simulation
result of an 80% single-phase sag of grid voltage, which can still restrain the current flowing
through the converter within ±1 p.u., and the RSC and GSC are in a controllable state,
which can accurately control the rotor current. The simulation results of method-1 and
method-2 are similar to the simulation results under symmetrical faults. It is worth noting
that under single-phase faults, owing to the existence of transient and negative-sequence
components, there are 50 Hz and 100 Hz torque ripples under method-1. The output volt-
age of the RSC in method-2 is very close to the critical value of the voltage constraint,
which may cause the converter to lose control. In conclusion, the simulation results are
consistent with the simulation results of symmetrical faults, which further demonstrates
the effectiveness of the proposed control strategy.
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4.3. Assessment of Reactive Power Support Capacity

The magnitude of the required reactive current is shown in Figure 1b. This shows that
the magnitude of the reactive current is related to the grid sag depth h. When the RSC
adopts the stator flux linkage-oriented control, the expression of the stator-side reactive
power Qs is [19].

Qs = 1.5

[
(hUm)2

ωsLs
− hUm

Lm

Ls
idr

]
(25)

It is taking the symmetrical sag of the grid voltage by 80% as an example, according
to Figure 1b and (25), the reactive power that should be injected into the grid is about
−0.45 p.u. In order to verify whether the control strategy proposed in this paper can meet
the reactive power requirements of the wind power grid connection standard, this section
adds new conditions based on the simulated conditions in Section 4.1, that is, after the
grid voltage sags 20 ms, the DFIG injects into the grid 0.45 p.u. of reactive power until the
grid restores to normal. A comparison of the simulation result with method-1 is shown
in Figure 14.

According to Figure 14, both the DISC and method-1 can respond to reactive power
commands faster, causing the DFIG to send out 0.45 p.u. of reactive power, indicating
that neither control strategy has lost control of the system. However, the current flowing
through the RSC in method-1 exceeds 2 p.u. The main reason is that the demagnetization
current itself is already very large, and after the reactive current is superimposed, a severe
overcurrent can easily occur in the RSC, which will damage the converter. In other words,
in practical applications, the system will carry out overcurrent protection and must be
stopped. Therefore, it is difficult to meet the reactive power support only by method-1,
and an additional reactive power compensation device is required, which increases the
additional costs. In contrast, the DISC proposed in this paper, in the case of meeting the
reactive power required, the current flowing through RSC and GSC can still be suppressed
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within ±1 p.u., the converter is always running within a safe range, does not require
additional auxiliary devices, and greatly increases the reliability of the system.
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5. Conclusions

When a severe fault occurs in the grid, the RSC of the DFIG-based WECS withstands
high current stress, and it is difficult to meet the reactive support. To solve this problem,
this paper proposes a DISC strategy without flux linkage observation to improve the LVRT
capability of the system. The main conclusions are summarized as follows.

(1) When a severe fault occurs in the grid, without proper control, the EMF causes the
RSC to saturate and lose control of the system. Therefore, evaluating whether an LVRT
control strategy is valid depends on whether the RSC under this strategy is saturated.

(2) Based on Lenz’s law analysis of rotor port characteristics, it is concluded that during
LVRT, by controlling the rotor current and stator flux linkage to reverse, the RSC is
the most difficult to saturate. At this point, the RSC is equivalent to the inductive
impedance, and the torque ripple can also be eliminated.

(3) During a grid fault, considering that the current stress withstood by the RSC is large,
and the utilization rate of the GSC is very low, this paper proposes a DISC strategy.
Under the condition that the grid voltage sags by 80%, unlike the existing control
strategy, the DISC strategy can maintain the current flowing through the RSC and
GSC within ±1 p.u.

(4) If the DFIG meets the reactive power requirements during LVRT, the RSC must have a
sufficient current margin at the beginning of the fault. Otherwise, an excessive current
damages the RSC and causes severe losses.
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