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Abstract: In long-distance gas transmission pipelines, there are many booster compressor stations
consisting of parallel compressors that provide pressure for the delivery of natural gas. So, it is
economically important to optimize the operation of the booster compressor station. The booster
compressor station optimization problem is a typical mixed integer nonlinear programming (MINLP)
problem, and solving it accurately and stably is a challenge. In this paper, we propose an improved
salp swarm algorithm based on good point set, adaptive population division and adaptive inertia
weight (GASSA) to solve this problem. In GASSA, three improvement strategies are utilized to
enhance the global search capability of the algorithm and help the algorithm jump out of the local
optimum. We also propose a constraint handling approach. By using semi-continuous variables, we
directly describe the on or off state of the compressor instead of using auxiliary binary variables to
reduce the number of variables and the difficulty of solving. The effectiveness of GASSA is firstly
verified using eight standard benchmark functions, and the results show that GASSA has better per-
formance than other selected algorithms. Then, GASSA is applied to optimize the booster compressor
station load distribution model and compared with some well-known meta-heuristic algorithms. The
results show that GASSA outperforms other algorithms in terms of accuracy and reliability.

Keywords: compressor station optimization; semi-continuous variable; salp swarm optimization
algorithm; load sharing

1. Introduction

In the transportation of oil and gas, the common means of transportation are road, rail,
water, air and pipeline [1]. Pipelines are indispensable in oil and gas transportation because
they are a safer [2], greener [3] and more economical [4] means of transportation than
other means of transportation. With the continuous development of society and economy,
the demand for petrochemical products has been increasing in all industries, especially
the demand for natural gas has increased dramatically [5]. As a result, a large number of
natural gas pipelines are being built and grouped all over the world [6], and pipelines have
been expanding all over the world.

With larger pipe diameters in long gas transmission pipelines, the pressure of natural
gas drops significantly as it flows due to friction and heat transfer [7]. In addition, there is
a minimum demand for natural gas pressure from natural gas customers [8]. In order to
increase the natural gas pressure, natural gas pipeline companies often build a large quan-
tity of booster compressor stations in long gas transmission pipelines [9], where multiple
compressors are usually connected in parallel. The energy consumption of the compressor
station accounts for a significant proportion of the company’s operating costs. Due to its
huge economic impact, the optimal operation of the booster compressor station becomes
very important [10]. The compressors are usually driven by variable frequency electric
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drives or variable frequency gas turbines, and the power provided by the compressors
varies with the gas flow rate and inlet conditions [11]. The manager of the booster com-
pressor station needs to decide on the working compressor units, the speed of the working
compressor units and the sharing of natural gas flows between the compressor units [12]. In
actual scheduling, the manager determines the number of units to be started based on expe-
rience, and the flow rate among the units is evenly divided. Load sharing optimization is to
minimize power consumption at the booster compressor station by redistributing the flow
rate among the units and reselecting the working compressor groups and the compressor
speed. A traditional operation problem is thus formed, i.e., minimizing the total power of
all compressors under the working domain constraint and the flow balance constraint [13].
The working domain constraint means that there should be a certain relationship between
the physical characteristics such as the polytropic head, polytropic efficiency, compression
ratio and volume flow rate. The flow balance constraint is that the total flow through the
compressors is balanced by the total flow at the booster compressor station.

The optimization of the booster compressor station has been considered in recent years
of research. Regarding the research on the optimal operation of the booster compressor
station, some scholars have approached this problem by classical mathematical methods.
Specifically, Deng [12] compared the results of mixed integer linear and dynamic program-
ming (DP) solutions for different volume flow dispersion intervals. Milosavljevic et al. [14]
used real-time optimization techniques (RTO) to optimize the compressor load distribution,
but they did not take into account the on/off state of the compressor. Cortinovis et al. [15]
used historical data to update the performance model of the compressor and selected work-
ing compressors by performance tracking instead of binary variables. Zapukhliak et al. [16]
considered a special case in the gas transmission pipeline, when the main transmission
system is underloaded, using a mathematical model to estimate the pressure variations
along its length in the gas pipeline.

However, meta-heuristic algorithms present effectiveness and ease of implementation
in solving various types of complex engineering optimization problems. This has led
researchers to propose many meta-heuristic algorithms for optimal operation of the booster
compressor station. For example, Liu et al. [17] developed a combined air cooler and com-
pressor operation model and optimized the model using the genetic algorithm (GA), particle
swarm algorithm (PSO) and simulated annealing (SA) algorithm. Division et al. [18] con-
sidered a new load distribution model and optimized the model using a hybrid algorithm
of crow search algorithm (CSA) and symbiotic organisms search (SOS). Regarding current
newer technology, Li et al. [19] eliminated binary variables by reformulating MINLP to
reduce the difficulty of optimization and optimized the reformulated model using a hybrid
algorithm of differential evolution (DE) and whale optimization algorithm (WOA). Com-
bining the above references, the research on the optimal operation of booster compressor
station focuses on the construction and simplification of the booster compressor station
model on the one hand and the improvement and application of the meta-heuristic algo-
rithm on the other hand, which is a very important guideline for the optimization of the
booster compressor station model in this paper.

The Salp Swarm Algorithm (SSA), which simulates the living and eating behaviors
of salp swarm, was developed by Mirjalili et al. in 2017 [20]. Its mathematical model
may be divided into two groups: one group is the leader and the other group is the
follower. The first member in the chain is the leader, and the rest of the members are
the followers. In the algorithm, the leader leads the population to find the optimal food,
and the followers follow the nearest bottle sheaths. In addition, its simple structure and
few control parameters have led to it becoming a popular research area in the field of
algorithms, attracting many scholars to study and apply it in different fields, such as
controller parameter optimization [21], power tracking of photovoltaic systems [22] and
soil retention evaluation [23]. These reflect the outstanding performance of SSA in some
fields and prove the high flexibility and reliability of the method. Although the SSA has
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shown outstanding performance in many fields, it still has many challenging problems,
such as slow convergence and easily falling into localization during the iterative process.

Based on a comprehensive review of the literature, it is found that standard SSA and
its variants have not been used to optimize the booster compressor station. The aim of this
work is to propose a promising novel method that can accurately and reliably optimize
the booster compressor station model to reduce the cost of energy consumption in the
booster compressor station. Therefore, an improved SSA is proposed for optimizing the
load distribution model of the booster compressor station. The main contributions of this
paper are as follows.

1. Semi-continuous variables are used to describe the operating state of the compressor,
and effective constraint handling methods are used to solve the domain holes that appear
after using semi-continuous variables.

2. To propose an improved version of SSA (GASSA) for the optimization problem of
the booster compressor station model.

3. Adding good point set initialization, adaptive population division and adaptive
inertia weight to address the shortcomings of the standard SSA. Using eight benchmark test
functions and a booster compressor station load sharing model to verify the effectiveness
of GASSA.

The rest of the paper is organized as follows: Section 2 provides the MINLP mathe-
matical model for the load-sharing problem at the booster compressor station. Section 3
describes the model preprocessing methods, standard SSA and GASSA implementations.
Section 4 provides the benchmark test functions and the load-sharing model optimization
results. Finally, Section 5 gives the conclusions of this paper.

2. Model
2.1. Object Function

Based on the current configuration of compressor units in most gas transmission
pipeline compressor stations, we considers a compressor station configured with multiple
parallel electrically driven centrifugal compressor units. Figure 1 shows a schematic
diagram of parallel compressor uints, the compressor uint has three components: drive,
compressor and cooler. The natural gas passing through the compressor is very hot and
needs to be cooled by the cooler before it can be transported. The power consumption of
the cooler is much smaller than the power consumption consumed by the compressor, so
the power consumption of the cooler is not considered. The objective function considered
here is to minimize the power consumption of the electric drive compressor.

P = min
n

∑
i=1

PiN (1)

where P is the total energy consumption of the compressor station (MW), PiN is the energy
consumption of the ith compressor (MW) and n is the number of compressors in the station.
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Figure 1. Natural gas compressor station with parallel topology.

2.2. Constraints
2.2.1. Compressor Unit Limitations

We discusses the mathematical calculations of compressor power and working domain
that are accepted and used by most people [24], as shown below.

The movement of the gas through the compressor is a polytropic process. Once
operating parameters are given, such as compression ratio, temperature, etc., the following
equation [11] can be used to calculate the polytropic head H (J/kg).

H =
Zs · R · Ts

(σ− 1)/σ

[
εσ−1/σ − 1

]
(2)

where Zs is the compression factor on the suction side of the compressor, R is the gas
constant (J/kg ·K), Ts is the temperature on the suction side of the compressor (K), σ is
the isentropic exponent, and ε is the compression ratio. Similarly, the polytropic head can
be expressed as a function of the compressor speed N and the gas flow rate Q [25].

H = b1N2 + b2NQ + b3Q2 (3)

where b1, b2 and b3 are constants, N is the speed of the compressor (rmp), and Q is the
volumetric flow rate of natural gas at the compressor inlet (m3/s). Based on the above two
polytropic head equations, the head H can be calculated from the given suction conditions,
compression ratio, and thus the speed N as a function of flow rate Q. Combining the two
equations of the polytropic head, it is possible to obtain the speed N as a function of the
volume flow Q according to the given operating parameters.

The operating domain range of the compressor is usually shown in Figure 2, which
contains four boundaries [19]. In Figure 2, the upper and lower curves of the working
domain correspond to the operating conditions at the maximum speed Nmax and the
minimum speed Nmin (rmp), respectively. Therefore, the operating speed of the compressor
must satisfy the following equation [26].

Nmin ≤ N ≤ Nmax (4)
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Figure 2. Compressor’s working domain.

In addition to speed limitations, the compressor capacity is limited by two instabilities
(i.e., surge and stonewell). The surge line is expressed as [27].

Qsurge = a1 + a2N + a3N2 (5)

where a1, a2 and a3 are constants and Qsurge is the minimum volume flow rate determined
by the surge (m3/s).

The stonewell line can be calculated by the following equation [11].

Qstonewell = a4 + a5N + a6N2 (6)

where a4, a5 and a6 are constants and Qstonewell is the maximum volume flow rate (m3/s).
Finally, the following equation [28] can be used to estimate the power consumption

PN of the compressor (MW).

PN =
mH

η
(7)

where m is the mass flow rate of natural gas (kg/s) and η is the polytropic efficiency.
Here, the mass flow rate m can be converted into the volume flow rate Q using the

following equation.

Q =
m · Zs · R · Ts

ps
(8)

where ps is the suction pressure of the compressor (MPa).
Equally, the polytropic efficiency can be expressed as a function of speed N and flow

rate Q, as shown in the following equation.

η = b4N2 + b5NQ + b6Q2 (9)

where b4, b5 and b6 are constants. Combining the efficiency equation and the mass flow
conversion equation, power PN as a function of volume flow Q can be obtained for the
given operating parameter, i.e., PN(Q) .

2.2.2. Load Balance Constrainst

We have considered a compressor station with several parallel-connected compressors.
For parallel compressors, the compression ratio must be the same, meaning that their
suction conditions and discharge pressure should also be the same.

εi = uiε0 (10)

where εi is the compression ratio of the compressor station, and ε0 is the compressor ratio
of the compressor. The on or off state of compressor i is indicated by introducing a binary
variable ui. When ui = 1, compressor i is in working state; when ui = 0, the compressor i
is off.
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At the same time, the volume flow rate via this compressor station ought to eventually
be the same as the total volume flow rates through all of the individual compressors. Q0
is the volume flow rate through the compressor station and Qi is the volume flow rate
through compressor i.

n

∑
i=1

uiQi = Q0 (11)

To address the surge instability, it is common to have a recirculating bypass for each
compressor, as shown in Figure 1. However, these flows are neglected in this load equation
to avoid considering the surge instability. This simplification makes the equation simpler
and does not alter the solution of the algorithm.

2.3. Question Summary

The model we considered is based on given operating parameters, such as suction
pressure, temperature and compression ratio. Therefore, the polytropic head H0 can be
calculated based on the given parameters, as shown by the dashed line in Figure 2. Then,
the range of the flow rate is calculated from the intersection of this line and the boundary
line. In summary, the complete compressor station optimization model can be expressed as.

min
n
∑

i=1
PiN(Qi)

s.t. εi = uiε0
n
∑

i=1
uiQi = Q0

uiQi min ≤ Qi ≤ uiQi max
ui ∈ {0, 1}

for i = 1, 2, · · · n

(12)

where Qi min and Qi max are the minimum and maximum flow rates, respectively.

3. Solution Approach
3.1. Model Preprocessing

In the above mathematical model, the objective function is nonlinear and contains
a binary variable, so the issue is classified as a mixed integer nonlinear programming
(MINLP) problem. For the given suction condition and compression ratio, the problem
is governed by the flow balance constraint at the compressor station and the compressor
operating domain. Most meta-heuristic algorithms are an unconstrained optimization
algorithm and are based on continuous variable solving, so our model cannot be solved
directly by meta-heuristic algorithms. In this case, we must perform constraint handling
to transform it into an unconstrained optimization problem. We mainly consider the flow
balance constraint and the binary variables that indicate the on or off state of the compressor.

3.1.1. Binary and Semi-Continuous Variables

The binary variable is an auxiliary variable to represent the on or off state of the
compressor; here, we use a more concise strategy to express the state of the compres-
sor [29,30], i.e., semi-continuous variables. Before discussing why the binary variable is
discarded, we briefly describe the connection between the binary and semi-continuous
variables in unit optimization. In Equation (12), if a unit is on, i.e., ui = 1, the flow
through this compressor is within [Qi min,Qi max]; otherwise, ui = 0 and the flow through
is 0. With this approach, the binary variable represents whether the unit is on or off. We
can also consider the flow Qi to determine the on or off state of the unit alone. When
Qi belongs to [Qi min, Qi max], the unit is in the on state. When Qi = 0, the unit is in the
off state. As mentioned above, Qi is the semi-continuous variable that takes values in
the range 0∪ [Qi min, Qi max].
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Figure 3 further illustrates the difference between binary and semi-continuous vari-
ables. For example, if Qmin = 1 and Qmax = 5, we have u = 0.8 and Q = 4 at this time. Since u
is not an integer, we need to further integerize u. We can see that the introduction of binary
variables increases the difficulty of solving the model, while the use of semi-continuous
variables greatly simplifies the problem model. So, we do not use binary variables and
reuse semi-continuous variables to construct the whole problem model.

0 Qmin=1 Qmax=5

0 1

Q =4

u =0.8

online

not available yet

Figure 3. Difference between binary and semi-continuous variables.

From the above, it is clear that there is a domain hole constraint for semi-continuous
variables (i.e., it cannot equal the value greater than 0 but less than Qi min). In the meta-
heuristic algorithm designed primarily for unconstrained optimization problems, the
constraint can be treated either explicitly or implicitly. For each domain hole in the model,
we use an implicit constraint treatment to satisfy the domain hole constraint. In the
implicit processing strategy, the algorithm itself is modified by performing some additional
operations on the group members to ensure that the members satisfy the constraints. To
be specific, if the unit is on, the flow rate should be between [Qi min, Qi max]. If Qi is bigger
than 0 and less than Qi min, the unit should not be turned on, i.e., the flow rate is 0, as
shown below.

(Qi > 0)&(Qi < Qi min)⇒ Qi = 0; i = 1, 2, · · · , n (13)

3.1.2. Flow Balance Constraint

To satisfy the flow balance constraint, the dynamic penalty function method is used to
deal with the equation constraint [31]. To be specific, by establishing a new fitness function
in place of the previous objective function, the new fitness function consists of two parts,
i.e., the objective function and the penalty function. The new fitness function is as follows.

min Fit =
n

∑
i=1

PiN + cl(
n

∑
i=1

Qi −Q0) (14)

where c is a constant, and l is the number of iterations. By using the smaller penalty
factor at the beginning of the iteration, the penalty for infeasible solutions is smaller, so the
algorithm will have the possibility to search beyond the feasible domain to some extent.
However, using the bigger penalty function at the later stage makes the algorithm’s search
focus on the feasible domain to find the better feasible solution.

3.2. Salp Swarm Algorithm

The salp swarm optimization algorithm is analogous to other meta-heuristic optimiza-
tion algorithms. First, the populations are randomly initialized. The location vector X
of the salp population is composed of N salp individuals of dimension D, as shown in
Equation (15). The search space’s objective or food source is designated as F. Each leader’s
position is changed in the direction of F, and the update equation is shown in Equation (16).
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X =


x1

1 x1
2 · · · x1

D
x2

1 x2
2 · · · x2

D
...

...
. . .

...
xN

1 xN
2 · · · xN

D

 (15)

x1
j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
, c2 > 0.5

Fj − c1
((

ubj − lbj
)
c2 + lbj

)
, c3 < 0.5

(16)

where x1
j is the position of the first salp in dimension j, Fj denotes the food position in

dimension j, and ubj and lbj are the upper and lower bounds of the dimension, respectively.
c2 and c3 are the random numbers within [0, 1], which are used to determine whether the
leader’s next position should be in the positive or negative direction and the length of the
move. c1 is the important parameter in the leader position update formula; it is defined
as follows.

c1 = 2e−(
4l

Lmax )
2

(17)

where l is the current number of iterations, and Lmax is the maximum number of itera-
tions defined.

The movement of the follower is guided by the leader, and the follower position
update formula is shown in Equation (18).

xi
j =

1
2

(
xi

j + xi−1
j

)
(18)

where i ≥ 2, xi
j and xi−1

j are the positions of the ith and (i− 1)th followers in the salp chain

in the jth dimension, respectively. The pseudo code of SSA is shown in Algorithm 1.

Algorithm 1 SSA.

Generate initial salp population randomly
The fitness value of each salp individual is calculated, and the optimal individual is
selected as the food source F
while l < Lmax do

Update c1 by Equation (17)
for i = 1 to N do

if i < = N/2 then
Update the position of leader by Equation (16)

else
Update the position of the follower by Equation (18)

end if
end for
Calculate individual fitness values, set the optimal individual as the food source F
l = l + 1

end while
return F

3.3. Improved Salp Swarm Algorithm
3.3.1. Good Point Set

Any kind of meta-heuristic algorithm is designed to find the balance between con-
vergence and diversity in the global optimization process. This balance is crucial for the
successful execution of the optimization algorithm [32]. In general, good diversity indicates
that populations are highly advantageous for exploring the whole search space. Therefore,
we combine the idea of uniform design and introduce the good point set to improve the
SSA algorithm. The initialized population is generated by using the strategy of good point
set, which can be obtained as follows:

γ =
({

2 cos 2π
p

}
,
{

2 cos 4π
p

}
, . . . ,

{
2 cos 2πD

p

})
(19)
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where D is the dimension of the variable, and p is the smallest prime number satisfy-
ing p ≥ 2D + 3. When N is the population size, the ith salp is generated by the follow-
ing equation.

xi
j = lbj +

(
ubj − lbj

){
γji
}

, j = 1, . . . , D, i = 1, . . . , N (20)

where
{

γji
}

represents the fractional part of γji.

3.3.2. Adaptive Population Division

In SSA, the number of leaders and followers in the slap population affects the capacity
of the algorithm to develop globally and regional exploration, respectively. The number
of leaders and followers in the standard SSA always accounts for half of the population,
respectively. The number of leaders conducting global exploration in the initial iteration is
small, while the quantity of followers is too much, focusing too much on local exploration
and easily falling into local optimum. Meanwhile, the number of leaders and followers
in the last iteration is just the opposite. The proportion of followers is low and the local
search is not sufficient, easily resulting in poor accuracy of the search for optimum. For
this deficiency, we propose a leader–follower adaptive division strategy, using an adaptive
weighting strategy to adaptively adjust the number of leaders and followers. With more
iterations, fewer leaders emerge, while more followers do. The new formula for calculating
the number of leaders and followers is as follows.

N1 = r(l)N
N2 = N − N1

r(l) = k− b
(

tan
(
− πl

4Lmax
+ π

4

)) (21)

where N1 is the quantity of leaders, N1 is the quantity of followers, and r(l) is the adaptive
weight. k and b are the ratio coefficients controlling the number of leader–followers, and
we dynamically adjust the ratio of the quantity of leaders and followers in the cluster of
salp during the iterative process. Through several experimental tests, we take the value of
k as 0.1 and b as 0.7.

3.3.3. Adaptive Inertia Weight

The follower’s position update strategy is to let the follower move in the targeted way
to find a better position of the fitness function in order to expedite the look for the optimal
solution. In the standard SSA, the follower’s movement is determined by the combination
of its own position and the preceding individual’s position, so the follower will have a
strong dependence on the previous individual’s position. If the follower’s position is locally
optimal, it is easy to cause the algorithm’s search to stall. To solve this problem, adaptive
inertia weights are introduced to determine the impact of the preceding individual on
the current individual. When the inertia weight value is larger, the previous individual
has more influence on the current individual, which helps enhance the local exploitation
capacity of the algorithm. When the inertia weight is smaller, the previous individual has
less influence on the current individual, so the algorithm focuses on global search to avoid
falling into local optimum. The new follower position formula update is

ω(l) = 0.25(1− cos(πl/Lmax)) + 0.5 cos(πl/Lmax) (22)

xi
j =

1
2

(
xi

j + ω(l)xi−1
j

)
(23)

In summary, the flow chart of GASSA is shown in Figure 4. The pseudo code of
GASSA is shown in Algorithm 2.
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Parameter initialization
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value is found and set as the food source

Start
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leaders and followers, and update the leader's position

Calculate the adaptive inertia weight w 
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Yes

No

Figure 4. The flow chart of the proposed GASSA.

Algorithm 2 GASSA.

Generate initial salp population according to Equation (21)
The fitness value of each salp individual is calculated, and the optimal individual is
selected as the food source F
while l < Lmax do

Update c1 by Equation (17)
for i = 1 to N do

Calculate r, according to Equation (21)
if i < = rN then

Update the position of leader according to Equation (16)
else

Calculate w according to Equation (22), update the position of the follower
according to Equation (23)

end if
end for
Calculate individual fitness values, and set the optimal individual as the food source

F
l = l + 1

end while
return F
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4. Simulations and Comparisons

We evaluate the performance of GASSA through experiments. The first experiment
tests the performance of GASSA on the benchmark function. The second experiment shows
the performance on the load-sharing model.

4.1. Evaluation of ISSA on Benchmark Functions

Benchmark function testing is a common method to measure the performance of
intelligent algorithms. Eight benchmark test functions are selected to demonstrate the
superior performance of the improved algorithms. F1−F4 are single-peak functions, and
only one optimal solution exists for these types of test functions. This type of search space is
suitable for testing the speed of convergence and the ability to search. F5−F8 are multi-peak
benchmark functions. There exist local optima for multi-peak benchmark functions, which
makes them suitable for comparing the local optimal avoidance and exploration behavior
of the algorithm. Their specific information is shown in Table 1.

Table 1. Benchmark test functions.

Funtion Dim Domain Optimum
Value

F1(x) = ∑n
i=1 x2

i 30 [−100,100] 0

F2(x) =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | 30 [−10,10] 0

F3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)
30 [−100,100] 0

F4(x) = maxi{|xi |, 1 ≤ i ≤ n} 30 [−100,100] 0

F5(x) =
n
∑

i=1

[
x2

i − 10cos(2πxi) + 10
] 30 [−5.12,5.12] 0

F6(x) = −20 exp

(
−0.2

√
1
n

n

∑
i=1

x2
i

)
− exp

(
1
n

n

∑
i=1

cos(2πxi)

)
+ 20 + e 30 [−32,32] 0

F7(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 30 [−600,600] 0

F8(x) = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10sin2(πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4)

yi = 1 + xi+1
4

u(xi , a, k, m) =

 k(xi − a)m xi > a
0− a < xi < a

k(−xi − a)m xi < −a

30 [−50,50] 0

To verify the effectiveness of GASSA, the performance of GASSA is compared with the
standard salp swarm algorithm (SSA) and a series of well-known meta-heuristic algorithms,
namely the standard gray wolf optimization algorithm (GWO) [33], the standard grasshop-
per optimization algorithm (GOA) [34] and the standard arithmetic optimization algorithm
(AOA) [35]. In addition, the parameters of the comparison algorithm in the paper remain
consistent with the original paper. For the fairness of the comparison, the parameters of all
algorithms are set to be the same: population size is N = 60 and the number of iterations is
Lmax = 500. The experimental environment of this paper is based on IntelrCoreTMi5-7200
CPU with 2.5 GHz main frequency and Windows 10 operating system with 4 GB of memory.
To reduce the chance error of the experiment, each algorithm is run 30 times independently
in each function. The results are taken as the best value, the worst value, the average value
and the standard deviation, as shown in Table 2. Table 3 shows the average computation
time for the five algorithms on the eight benchmark functions. The best results for each
function are highlighted in bold.

As can be seen from Table 2, GASSA achieves better results in the test results of single-
peak benchmark test functions F1−F4. All indexes of GASSA have significant advantages
compared with other algorithms. The mean value can reflect the convergence of the
algorithm, which shows that GASSA has better convergence and higher convergence
accuracy than other compared algorithms. It shows that the proposed improvement
strategy can effectively improve the convergence accuracy of SSA. The standard deviation
can reflect the dispersion degree of the data set. The smaller the standard deviation indicates
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that the dispersion degree of the data set is lower and the stability of the experimental
results is better.

Table 2. Results of benchmark test functions.

Funtion Criteria GOA AOA GWO SSA GASSA

F1
Best

Worst
Mean

Std

6.3653
0.3697
1.8666
1.306

2.61E-06
3.48E-08
1.33E-06
5.76E-07

1.81E-34
6.71E-37
3.01E-35
5.00E-35

2.28E-08
8.81E-09
1.62E-08
3.88E-09

6.95E-140
2.37E-140
4.81E-140
1.28E-140

F2
Best

Worst
Mean

Std

7.8752
0.5053
2.9865
1.6878

0.0037
9.29E-13
4.54E-04
8.75E-04

8.05E-21
8.01E-22
4.02E-21
1.94E-21

2.7071
0.0024
0.6907
0.7423

1.14E-70
7.40E-71
9.17E-71
1.10E-71

F3
Best

Worst
Mean

Std

2.22E+03
477.663

1.08E+03
579.2324

0.0015
1.42E-05
3.47E-04
3.15E-04

7.26E-09
3.56E-12
9.72E-10
1.63E-09

874.2436
75.0897

339.2362
210.5062

1.73E-138
7.45E-140
7.73E-139
5.77E-139

F4
Best

Worst
Mean

Std

12.7393
3.8623
7.8885
2.6074

0.0355
5.31E-04
0.0092
0.0086

3.52E-08
5.03E-10
7.49E-09
8.37E-09

10.2434
0.9004
5.4139
2.7326

1.24E-70
7.44E-71
9.38E-71
1.20E-71

F5
Best

Worst
Mean

Std

108.56
36.8248
65.2024
22.2072

1.26E-06
0

3.95E-07
4.48E-07

7.867
0

1.6685
2.7474

71.6369
17.9093
40.6606
13.4296

0
0
0
0

F6
Best

Worst
Mean

Std

4.3593
1.9727
2.968

0.7744

4.05E-04
3.63E-06
2.39E-04
1.04E-04

5.06E-14
2.93E-14
3.78E-14
4.72E-15

3.28E+00
3.48E-05
1.8597
0.6383

8.88E-16
8.88E-16
8.88E-16

0

F7
Best

Worst
Mean

Std

0.7141
0.2833
0.5249
0.1303

0.0197
3.45E-06
6.64E-04
0.0036

0.0338
0

0.0071
0.0102

0.032
1.92E-06
0.0103
0.0099

0
0
0
0

F8
Best

Worst
Mean

Std

11.5914
2.7514
5.8342
2.9491

0.6629
0.5459
0.6058
0.0289

0.0458
0.0058
0.0196
0.0109

10.1161
1.2637
4.6115
1.8673

0.0252
1.2706e-05

0.0042
0.0071

Table 3. Average computation time (in seconds) of 5 algorithms on 8 benchmark functions.

Function GOA AOA GWO SSA GASSA

F1 269.278 0.7114 1.0598 0.6286 0.7394
F2 250.785 0.7466 1.0821 0.6239 0.7458
F3 261.153 2.1571 2.4746 2.0541 2.2215
F4 243.992 0.8495 1.1084 0.6534 0.7567
F5 212.327 0.7871 1.1723 0.6936 1.5918
F6 235.341 0.8496 1.2113 0.7198 1.6647
F7 240.101 0.9282 1.3054 0.8385 1.8246
F8 259.278 1.4948 1.8724 1.3668 3.1296

In the test results of multi-peak benchmark functions F5−F8, GASSA outperforms the
standard SSA and other algorithms in the mean and standard deviation of the optimal
solution, which indicates that the improved algorithm has good ability to avoid falling into
local optimum. However, the accuracy of the solution on some multi-peak functions is
lower than that of single-peak functions, which indicates that the algorithm is inadequate
for solving multi-peak functions. This is a direction for further research. The computational
cost in Table 3 shows that SSA has the lowest time cost, and GASSA has the moderate time
cost; however, GOA has the considerable time cost for all benchmark functions.

The performance of an algorithm can be shown visually by the convergence curve,
which shows the number of times the algorithm falls into the local optimum and the
speed of convergence. Since the multi-peaked functions are more complex and easy to
make the algorithm fall into local extremes, the convergence curve of these functions is
more indicative of the algorithm’s ability to find the best. Therefore, Figure 5 shows the
convergence curves of GWO, AOA, GOA, SSA, and GASSA on eight functions.
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Figure 5. Convergence curve of benchmark functions. (a) F1; (b) F2; (c) F3; (d) F4; (e) F5; (f) F6; (g) F7;
(h) F8.
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The convergence curves of the eight functions clearly show the trend of the fitness
values of the five algorithms in the evolutionary process. As shown in Figure 5a,b,f, AOA,
GOA, and SSA converge slowly, while GWO converges fast in the early iterations. However,
GWO quickly falls into local optima that cannot be jumped out, and the convergence
accuracy of GWO, AOA, GOA and SSA at the end of the iteration is lower than that of
GASSA. In Figures 5c,d,g, GASSA has faster convergence speed and accuracy than the
other four algorithms. In Figure 5e,h, AOA, GWO, SSA and GOA all have the problem of
fast convergence in the early stage but easily fall into local optimum, and the convergence
accuracy is lower than that of GASSA. From the above analysis, it can be seen that GASSA
has significantly better optimization-seeking accuracy and convergence performance than
the other four algorithms.

4.2. Evaluation of ISSA on Load-Sharing Optimization

In this section, we consider the GASSA application for a booster compressor station
consisting of six parallel compressors. Table 4 shows the main parameters of the booster
compressor station operation in this case. The six compressors can be classified into four
types: one type A (Compressor No. 1), three type B (Compressor No. 2 to 4), one type C
(Compressor No. 5) and one type D (Compressor No. 6). Table 5 provides the parameters
of the model compressor under this operating condition, which can be used to calculate the
parameters of the compressor working domain.

Table 4. The main parameters of the simulated operation of the booster compressor station.

Parameters Value

Suction pressure (MPa) 3.3
Suction temperature (K) 293.15
Gas constant (J/kg ·K) 518.75

Total volume flow rate (m3/s) 15
Compressor ratio 1.5

Table 5. Parameters of the four types of compressors.

Parameter A-Type B-Type C-Type D-Type

a1 0.835 0.918 0.572 0.547
a2 1.01E-05 1.30E-05 6.9E-06 2.62E-05
a3 6.29E-08 3.87E-08 9.93E-08 5.18E-08
a4 0.226 0.226 0.834 -0.0177
a5 0.000644 0.000644 0.000417 0.00099
a6 5.09E08 5.09E-08 1.00E-07 2.56E-08
b1 0.00215 0.00198 0.0034 0.001923
b2 0.515 0.515 0.488 2.72
b3 −1564 −1564 −1481 −2174
b4 0.607 0.636 0.528 0.405
b5 877 751 921 1252
b6 −700,000 −614,000 −650,000 −844,000

Nmin 3965 3965 3120 3380
Nmax 6405 6405 5040 5460

To further demonstrate the superiority of GASSA, it is compared with the standard
SSA, GWO, GOA and AOA. The parameters of each algorithm are set as follows: the
population size is N = 50 and the maximum number of iterations is Lmax = 500. In addition,
all algorithms are run 30 times independently, and the results are taken as the best value,
the worst value, the average value and the standard deviation, as shown in Table 6. Table 7
shows the optimal solutions corresponding to the optimal values. Table 8 shows the average
computation time of the five algorithms in the case. The best results for each algorithm are
highlighted in bold. Figure 6 shows the convergence graph of GASSA in solving the model.
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Table 6. Statistics of the results of 30 calculations.

Power
Consumption

(MW)
GOA AOA GWO SSA GASSA

Best 24.5371 24.5132 24.5192 24.5069 24.4878
Worst 25.1881 25.1184 25.1748 25.0106 24.782
Mean 24.8105 24.8043 24.7988 24.6998 24.6022

Std 0.1822 0.1561 0.1446 0.1322 0.0668

Table 7. Optimal load-sharing scheme.

Algorithm NO.1 NO.2 NO.3 NO.4 NO.5 NO.6

GOA 3.6630 3.4148 3.7158 4.2065 0 0
AOA 3.9099 3.8071 3.7392 3.5437 0 0
GWO 3.7975 3.3440 4.0933 0 0 3.7652
SSA 3.5098 0 4.0020 3.9907 0 3.4975

GASSA 3.8135 3.7715 3.8502 0 0 3.5647

Table 8. Average computation time (in seconds) of 5 algorithms on the simulation case.

Computation
Time GOA AOA GWO SSA GASSA

Average value 43.6421 0.6173 0.5883 0.6038 0.6209

According to the optimized results of the five algorithms in Tables 6 and 7, we can
find that the GASSA optimization results in significant power savings compared to other
algorithms, which indicates that GASSA has the potential to reduce the operating cost
of the booster compressor station. Specifically, among the four standard algorithms, SSA
obtains the minimum power consumption for the minimum value, maximum value, and
average value, and the standard deviation is the best. However, GASSA provides better
metrics compared with SSA. For example, the optimal and average power consumption of
GASSA is 0.0191 MW and 0.0976 MW higher than SSA, respectively. This indicates that the
optimization results of GASSA are not only high in accuracy, but also the stability of the
solution is significantly better than other algorithms. Although AOA and GWO take less
time on average than GASSA, AOA has lower convergence accuracy. In Figure 6, the GWO
converges very slowly and stalls in the iterative process, which is very easy to fall into local
optimum. Overall, GASSA shows the high competitive ability in finding the global optimal
solution within a reasonable time consumption.

Regarding the convergence curves in Figure 6, the convergence curves of the five
algorithms keep falling in the initial iterations as the number of iterations increases. The
convergence of SSA is slower compared to GASSA due to the random initialization of
populations, which leads to the non-uniform distribution of population distributions in
space. At this time, the convergence of GASSA is slower compared to AOA because the
higher percentage of leaders in GASSA focuses more on global search rather than local
exploration. However, as the number of followers increases and the random inertia weights
come into play, GASSA has the stronger ability to get rid of the local optimum. Later in
the iteration, other algorithms have fallen into local optima and the curve stalls, while the
convergence curve of GASSA still continues to fall and converge to the better result.
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Figure 6. Comparison of 5 algorithms for optimizing curve.

5. Conclusions

In this paper, we propose an accurate and reliable algorithm to solve the nonlinearity
and nonconvex MINLP model for optimization of load distribution of the booster com-
pressor station to reduce the operating cost of the booster compressor station. Specifically,
instead of using binary variables to indicate the on or off state of the compressor, semi-
continuous variables are utilized to describe the flow variation and on or off state of the
compressor. Thus, the number of variables is reduced and the search space is simplified. In
addition, a new salp swarm algorithm (GASSA) is proposed to solve this model. In GASSA,
the good point set strategy is used to initiate the population in order to increase the variety
of the population; to improve the global search and local exploitation capability of the
algorithm, the adaptive population division constantly modifies the population’s leader-
to-follower ratio; adaptive inertia weights are added to the mechanism of the followers to
help the followers jump out of the local optimum.

Comprehensive experiments are conducted on eight benchmark test functions and
one simulation case to verify the performance of GASSA. The test results of the benchmark
functions show that GASSA is stronger than other algorithms in terms of optimization
accuracy and reliability. The case results show that GASSA improves the optimal power
consumption and average power consumption by 0.0191 MW and 0.0976 MW, respectively,
compared to the best-performing algorithm among the others. Therefore, GASSA is a
promising candidate for optimizing the load distribution in the booster compressor station.
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