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Abstract: Refrigeration systems based on cooling towers and chillers are widely used equipment
in industrial buildings, such as shopping centers, gas and oil refineries and power plants, among
many others. Cooling towers are used to recover the heat rejected by the refrigeration system. In
this work, the refrigeration is composed of cooling towers dotted with ventilators and compression
chillers. The growing environmental concerns and the current scenario of scarce water and energy
resources have lead to the adoption of actions to obtain the maximum energy efficiency in such
refrigeration equipment. This backs up the application of computational intelligence to optimize the
operating conditions of the involved equipment and cooling processes. In this context, we utilize
multi-objective optimization algorithms to determine the optimal operational setpoints of the cooling
system regarding the cooling towers, its fans and the included chillers. We use evolutionary multi-
objective optimization to provide the best trade-offs between two conflicting objectives: maximization
of the effectiveness of the cooling towers and minimization of the overall power requirement of the
refrigeration system. The optimization process respects the constraints to guarantee the correct and
safe operation of the equipment when the evolved solution is implemented. In this work, we apply
three evolutionary multi-objective algorithms: Non-dominated Sorting Genetic Algorithm (NSGA-
II), Micro-Genetic Algorithm (Micro-GA) and Strength Pareto Evolutionary Algorithm (SPEA2).
The results obtained are analyzed under different scenarios and models of the cooling system’s
equipment, allowing for the selection of the best algorithm and best equipment’s model to achieve
energy efficiency of the studied refrigeration system.

Keywords: energy efficiency; cooling towers; chillers; evolutionary multi-objective optimization

1. Introduction

The technical and scientific community is moving fast towards adopting premises
and drastic measures that allow the achievement of a maximal level of energy efficiency of
industrial installations. This is due to the ever growing environmental concerns regarding
the inefficient electrical power usage and its ever growing demand, as well as to the misuse
of water resources. So, in order to achieve energy efficiency in industrial refrigeration
systems, we require the utilization of modern mechanisms and methodologies that allow
yielding a good or maybe the best possible solution for a process. Many industrial processes
generate unwanted heat. So, this heat often must be somehow dissipated. In this case,
water is generally used. The returning water in refrigeration systems is often at higher
temperatures. It can be discarded or cooled down for further usage. However, the disposal
of water is an environmentally unsustainable practice. Furthermore, the disposal of water,
which comes at a high temperature would have a very negative impact on the local
underwater flora and fauna. Hence, modern sustainable refrigeration system must be
designed, configured and operated to reuse water. It is noteworthy to point out that there
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are more advanced refrigeration systems that are based on the usage of cryogenic fluids [1].
These kind of systems also aim at achieving high degrees of energy efficiency as required
in critical systems, such as spaceships and nuclear stations [2]. An interesting survey of
refrigeration methods can be found in [3].

Cooling towers are the basic equipment of industrial refrigeration systems. They are
intended whenever there are large cooling demands. Moreover, cooling towers offer a clean
and economical solution to water reuse in the cooling process. A cooling tower operates
together with other equipment such as fans, chillers and pumps to ensure water circulation
in the system [4,5]. A coordinated configuration of all the equipment composing the cooling
system must be guaranteed. This is because a modification of some parameter in one of
these equipment items can impact either positively or negatively the performance of the
others parts of the system. When the cascading effects are unsatisfactory to the refrigeration
system, a reduction of energy efficiency is often observed.

In this work, we propose to exploit computational intelligence techniques to optimize
the energy requirement and effectiveness of an industrial refrigeration system composed of
cooling towers, tower ventilators and chillers. For this purpose, quantitative and qualitative
data are required to achieve good results. These data are usually collected from field data
and data-sheets provided by the equipment manufacturers.

The attainable energy efficiency of a cooling tower is intrinsically dependent on that
of the heat exchange process between the returning hot water and the air volume induced
in counter-flow to this in the tower via ventilators. It is also influenced by climatic and
operational aspects. This optimization is a complex process, and is mainly dependent on
the precision of the model used for the equipment of the overall system.

The multi-objective optimization is two-fold. It aims at maximizing the efficiency
of the heat exchange performed by the cooling tower while minimizing the global en-
ergy requirement of the refrigeration system. The optimization takes into account all the
equipment necessary for the correct and safe operation of the refrigeration system. In this
work, three evolutionary multi-objective optimization algorithms are applied: NSGA-II,
Micro-GA and SPEA2. These algorithms will deliver the optimal settings of the system’s
parameters to configure the composing cooling towers, tower fans and chillers. Mainly,
the variables for which the optimization process will answer for are the cooling tower
fan speed setpoint and the water temperature setpoint to be provided by the chillers. It
is needless to state that the proposed optimization respects the restrictions imposed for
a proper and safe operation of all the involved equipment composing the refrigeration
system. The restrictions are set as provided by the equipment suppliers. The cooling system
used in this work is based on compression chillers. Herein, such chillers are modeled in
two different ways: a simple model wherein only one variable is considered and a more
complete one wherein two variables are taken into account. The results yielded from both
models are compared in terms of accuracy with respect to the field data. The two models
provided for the chillers are used to set up the two objective functions for the optimization
process. We also explore two different scenarios regarding the stopping criteria of the
optimization algorithms. The performance results using different models and stopping
criteria are compared, allowing the selection of the best algorithm for each scenario and the
best model for the application.

This paper is structured into six sections. First, in Section 2, we briefly introduce the
structure of the studied refrigeration system. Then, in Section 3, we provide a review of
related research works. In the sequel, in Section 4, we define the objective functions and
operational restrictions. After that, in Section 5, we describe the methodology behind each
of the optimization algorithms applied in this work. Then, in Section 6, we analyze the
evolved results for different algorithms, stopping scenarios and system models. Subse-
quently, in Section 7, we compare the effectiveness and efficiency of the used algorithm
regarding the achievement of the main objective, which is the energy efficiency of the
refrigeration system. Finally, in Section 8, we draw some conclusions and point out some
promising directions for future work.
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2. System’s Structure

The refrigeration system to be optimized is composed of chillers and cooling towers.
This configuration is commonly used in commercial buildings and industrial facilities
to ensure the thermal comfort of the transiting people and adequate equipment cooling
and electrical rooms. The configuration of the cooling system considered in this work is
presented in Figure 1. It includes two cooling towers, each composed of three elementary
cells. Each cell includes a fan operating with an electric motor. Considering all the compo-
nents composing the cooling tower, only the fans allow speed variation, through the use of
frequency converters, while the others always remain operating at a fixed speed and equal
to the nominal one.

Tower
Cell
1

Tower
Cell
2

Tower
Cell
3

Tower
Cell
4

Tower
Cell
5

Tower
Cell
6

Cooling Tower 1 Cooling Tower 2

Chiller 1
Condensed Water Circuit

Chiller 2

Chiller 3

Chiller 4

Chilled Water Circuit

Commercial Building

Figure 1. Refrigeration system’s configuration.

In the case under study, the number of condensation water lift pumps in operation
must be equal to the number of chillers in operation. Hence, the total number of cells
in operation in the cooling towers can also be obtained based on the number of chillers
in operation.
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Among the equipment that composes the refrigeration system considered in this work,
only the tower fans allow speed variation, through the use of frequency converters. Lift
pumps and chillers operate at fixed speed, which is equal to the rated speed. Thus, as the
condensed water pumps are not influenced by the speed variation of the tower fans, nor
by the variation in the temperature of the water passing through the chillers, both in the
condenser and in the evaporator, the required energy cannot be taken into account in the
optimization process. Therefore, the optimization will be dedicated to the electrical energy
demand of the fans and the chillers.

3. Related Works

In [6], the energy efficiency of the refrigeration system is achieved through a control
strategy based on extreme search. The proposed control system is based on the global
energy requirements, composed of chillers and tower fans. It attempts to reach energy
efficiency exploiting variation of the fan speed setpoint. In [7], an extreme search strategy
very similar to that presented in [6] is presented. The variable manipulated by the control
system is the cooling tower output temperature, in contrast with the work reported in [6]. It
exploits the tower ventilators. The achieved improvements vary in function of the chiller’s
thermal load.

In [8], a control strategy called Optimum Approach Temperature (OAT) is proposed
for the energy optimization of the cooling tower. The approach concept represents the
difference between the condensing water temperature and the wet bulb temperature. The
OAT strategy is an optimization that can only be applied to cooling towers.

In [9], an optimal control strategy for a chiller-based refrigeration system is presented.
In this work, the equipment model precision is ensured via an online updating process
of the underlying parameters. It relies on the recursive least squares method. A genetic
algorithm is used as a global optimization tool. The used cost function, which must be
minimized, models the global energy as required by the chillers, fans and condensed
water pumps.

In [10], an energy optimization system based on simulation for the refrigeration system
is proposed. Therein, the chillers are driven by frequency converters, and the tower fans
and condensing water pumps operate at predefined velocity. The optimization system uses
evolutionary computing. The cost function, which must be minimized, models the energy
demand of the refrigeration system regarding the chiller’s load, cooling tower ventilators
and water pumps. The optimization process considers three kinds of restrictions. The first
one guarantees that at any time, the tower thermal capacity must be higher than the chillers’
cooling load. The second restriction upholds the minimal and maximal thresholds for the
water temperature. The third one allows to maintain water flow within the prescribed
minimal and maximal threshold.

In [11], a model that is based on prior experiments is proposed. It allows to simul-
taneously optimize the available performance parameters while ensuring a minimum
energy consumption from an induced draft cooling tower operating under a given set of
conditions. It is claimed that the proposed model for the cooling tower performance is
suitable for on-line optimization. The objective function is formulated dependent on several
performance parameters such as the approach, tower characteristic ratio, effectiveness and
evaporation rate, air and water flow rates.

In [12], an overview of the research and development of optimization approaches for
water-cooled refrigeration systems is presented. This work survey allows to understand
the new significant directions and innovative results in this field. Therein, a taxonomy of
the existing optimization approaches is proposed.

4. Problem Formalization

The effectiveness of the cooling tower is defined as its operational efficiency, and is
related to the efficiency of the heat exchange between the hot water coming from the process
and the air mass induced in the tower in counter-current, through fans. This efficiency is
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influenced by several factors, which are explained in the modeling of the cooling tower [13].
Among the factors that influence the effectiveness of the tower, we have the relationship
between the water and air flows inside the tower and climatic factors, defined by external
and wet bulb temperatures. In this work, the water flow that reaches the tower cells only
varies as a function of the number of pumps that are in operation, i.e., as a function of
the number of operating chillers. On the other hand, the air flow in each cell can vary
continuously through the variation of the fan speed. The external temperature influences
the thermal load to be served by the chillers, and the wet bulb temperature influences the
efficiency of the thermal exchange of the tower, as it represents the lowest possible outlet
temperature to be reached. Thus, this work aims to explore multi-objective optimization in
order to solve the problem composed of the following conflicting objectives:

• Maximizing the effectiveness of the cooling tower;
• Minimizing the overall energy consumption of the refrigeration system.

To this end, the process variables are collected in the field from the instrumentation
already installed in the cooling towers. Local weather conditions are provided by a weather
station installed and integrated into the cooling system. So, based on the process data
provided by the existing Supervisory Control and Data Acquisition (SCADA) system,
the following variables are provided as inputs to the optimization system proposed: the
number of chillers that are in operation; the temperature of the hot water reaching the
cooling tower; the wet bulb temperature on site; the flow of water that reaches the cooling
tower; and the water flow that leaves each chiller.

In this work, the model considers adjustments in the speed of the tower fans as well
as adjustments in the chilled water temperature leaving the chillers. This modeling deals
with two conflicting variables.

In the studied refrigeration system, the cooling tower operates in conjunction with
compression chillers. These occasion the highest energy consumption. The condensed
water and chilled water circulation pumps always operate at a fixed speed. So, the in-
clusion of these into the calculation of the overall energy required by the cooling system
does not provide any advantage, as the objective is to evaluate the energy efficiency as
achieved after application of the optimization algorithms. Thus, only the consumption of
the chillers and tower fans are considered in the implementation of the proposed energy
optimization system.

As a premise for the implementation, we consider that the optimal output values of
the optimization system must be obtained based on the best compromise between the ob-
jectives established above, respecting the operational limits and restrictions defined for the
equipment that compose the cooling system. The objective is to obtain, at each predefined
interval of one hour, the best setpoint of speed for the tower fans and/or the best setpoint
of the temperature of the chilled water leaving the chiller, depending on the modeled
scenario. The optimization simulations will be performed using the improved version of
three evolutionary algorithms: Strength Pareto Evolutionary Algorithm, Non-Dominated
Sorting Genetic Algorithm and Micro-Genetic Algorithm. Note that an explanation of the
dynamics of the used optimization algorithms will be provided in Section 5.

4.1. Objective Functions

In this work, we optimize two conflicting objective to solve the energy efficiency
problem. The first objective function, F1, estimates the tower’s effectiveness while the
second objective function, F2, approximates the required power of the refrigeration system.
Thus, finding the solution that maximizes function F1 allows the maximization of the heat
exchange efficiency of the cooling tower. As we intend to use multi-objective optimization,
the found solution will also minimize function F2, allowing the minimization of the power
consumption of the cooling system.

Objective function F1, which evaluates the efficiency of the heat exchange of the
cooling tower is defined in Equation (1):
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maxF1 = εa

= c0 + c1

(
ṁa
ṁw

)
+ c2(Twi − Tb) + c3

(
ṁa
ṁw

)2
+ c4(Twi − Tb)

2 + c5

(
ṁa
ṁw

)
(Twi − Tb)

(1)

wherein εa represents the effectiveness of the cooling tower, ṁa and ṁw represent the mass
flow of air and water and Twi and Tb represent the temperature of inlet water and that of
the bulb. For details about the model’s variables, see [13]. The objective function F2, which
evaluates the power required by the system composed of chillers and cooling tower fans is
defined in Equation (2):

minF2 = n1Pv + n2Pch

= n1
√

3Vn In

(
d0

(
ṁa

ṁan

)3
+ d1

(
ṁa

ṁan

)2
+ d2

ṁa
ṁan

+ d3

)
+n2Qchno EnoZC(Taeco , Taeev)ZE(Taeco , Taeev),

(2)

where n1 and n2 are discrete variables, representing the number of fans and chillers that
must operate in order to meet the requested thermal demand and the commitment to lower
energy consumption, respectively. Moreover, Pv and Pch represent the electrical power
demanded by fans and chillers, respectively. Recall that the number of fans in operation
corresponds to the number of tower cells required in order to guarantee its operational
limits. In this problem, we have n1 = n2 + 1. Moreover, terms ZC and ZE of Equation (2)
are defined as in Equation (3):

ZC = b0 + b1∆Tag + b2∆T2
ag + b3Taeco + b4T2

aeco + b5∆T2
agTaeco + b6∆TagT2

aeco ;

ZE = a0 + a1Taeev + a2T2
aeev + a3Taeco + a4T2

aeco + a5Taeev Taeco ,
(3)

wherein we have ∆Tag = Taeev − Tasev [14]. It is noteworthy to emphasize that all the
aforementioned variables are fully defined herein or in the model descriptions of the
cooling tower and fans [13] and/or of the chillers [14]. The coefficients a0 . . . a5, b0 . . . b6,
c0 . . . c5, d0 . . . d3 are obtained using the Levemberg–Marquardt method as a non-linear
regression technique [15]. Their values are given in Table 1. The precision and faithfulness
of the resulting models are validated using real field data as proven in [13,14].

Table 1. Model’s coefficients to evaluate the system’s effectiveness and the power required by the
refrigeration system.

ZE Value ZC Value εa Value Pv Value

a0 −1.0405 b0 −0.1177 c0 +0.0262 d0 +0.7931
a1 +0.1379 b1 +0.3381 c1 +0.4935 d1 +0.0330
a2 −0.0090 b2 −0.0513 c2 +0.14350 d2 +0.0557
a3 +0.0840 b3 −0.0276 c3 −0.0289 d3 +0.0039

a4 −0.0022 b4 +0.0022 c4 −0.0129
a5 +0.0033 b5 +0.0030 c5 −0.0533

b6 −0.0006479

Restrictions

For the optimization problem, four operational constraints related to the considered
refrigeration system are required to guarantee correct system operation. The first constraint
G1 concerns the lowest possible value to be reached by the cooling tower outlet temperature.
It cannot be lower than the local instantaneous wet bulb temperature due to the saturation
of the air leaving the tower after heat transfer and mass with the hot water that reaches
the tower. The wet bulb temperature varies throughout the day and can be calculated as a
function of ambient temperature and relative humidity. Therefore, the first restriction is
defined as in Equation (4):

G1 : Tas ≥ Tb, (4)
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wherein Tas represents the cooling tower leaving water temperature and TBU represents
the wet bulb temperature.

The second constraint G2 models the operational conditions of the chiller considered
in this work. The manufacturer of the chiller establishes in [16] a restriction regarding the
temperature difference between the water inlet and outlet of the condenser. The surge
curve of the chiller can be found [17], where it is possible to observe two operating zones
for the chiller: with or without surge. The operation in the surge zone of the chiller
compressor causes a series of inconveniences, such as vibrations and load oscillations,
generating mechanism wear and unexpected performance of the electrical protection in
cases of overload. Furthermore, in this operating condition there is a considerable reduction
in the coefficient of performance (COP) of the equipment. The COP of a chiller represents
the relationship between the cooling capacity (kWthermal) and the electrical power required
(kWelectric) for its operation. So, the chiller should preferably operate in the zone below
the surge line. It represents the maximum admissible limit for the temperature difference
between the inlet and outlet of water in the condenser as a function of the chiller load.
Based on this, the second restriction can be defined as in Equation (5):

G2 : ∆Tco ≤ 7, 3ct − 0.3, with ∆Tco = Tae − Tas, (5)

wherein ct is the chiller load factor, with ct ∈ [0, 15, 1], Tae is the temperature of the water
that leaves the chiller condenser and leaves towards the cooling tower, and Tas is the
temperature of the water leaving the cooling tower and going towards the condenser inlet.
Note that the manufacturer does not recommend operating the chiller with a load below
15% [16]. So, we have to consider a third constraint. It is defined as in Equation (6):

G3 : 15% ≤ ct% ≤ 100%. (6)

Moreover, the nominal design temperature of the cooling tower is 36.4 ◦C [17]. There-
fore, temperatures above this value should be avoided. So, we must impose a fourth
restriction, which concerns the maximum limit of the water inlet temperature in the cooling
tower. We define this constraint as in Equation (7):

G4 : Tae ≤ 36.4. (7)

5. Evolutionary Algorithms for Multi-Objective Optimization

There are several evolutionary algorithms for multi-objective optimization. The main
and more efficient ones are based on the Pareto dominance concept [18,19]. Techniques
based on the Pareto concept can be classified into non-elitist techniques and elitist tech-
niques [20]. Multiple Objective Genetic Algorithm (MOGA) [21], Non-Dominated Sort-
ing Genetic Algorithm (NSGA) [22] and Niched Pareto Genetic Algorithm (NPGA and
NPGA-II) [23] are examples of non-elitist techniques. Pareto Archived Evolution Strategy
(PAES) [24], Memetic Pareto Archived Evolution Strategy (M-PAES), Pareto Envelope-
Based Selection Algorithm (PESA and PESA-II), Strength Pareto Evolutionary Algorithm
(SPEA and SPEA2) [25], Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [26] and
Multiobjective Messy Genetic Algorithm (MOMGA and MOMGA-II) [27] are examples of
elitist techniques.

The implementation of elitism in genetic algorithms can significantly accelerate per-
formance [28]. It prevents premature loss of good solutions, according to results presented
in [29,30]. The first approach uses elitism is SPEA in [29]. There follows PESA [31],
PAES [24], MOMGA [27] and NSGA-II [26]. Since then, elitism is used systematically.

More recently, some elitist algorithms for multi-objective optimization problems are
presented with improvements to some of the already established methods, such as SPEA2,
NSGA-II and PESA-II. Aiming at these improved algorithms, we have SPEA2+ [32], Chaotic-
NSGA-II [33], IPESA-II [34] and NSGA-III [35]. However, there are still no records of a
significant number of applications of these algorithms. The purpose of these improved
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methods is to obtain greater diversity and greater speed of convergence, in order to solve
extremely complex problems.

Among the most recently proposed algorithms, NSGA-III stands out, which is an
improvement on NSGA-II for applications with many objectives (from four objectives).
This algorithm is based on the concept of reference point, emphasizing non-dominated
individuals close to a set of reference points provided and updated throughout the iterations.
In this way, the maintenance of diversity is achieved through the adaptive update of the
reference points distributed in the search space. In NSGA-III, the crowding distance
operator, used in NSGA-II, is replaced by the clustering operator, which operates based on
distributed reference points. In [35], the NSGA-III is compared to the MOEA/D algorithm,
showing satisfactory results.

For the application of energy optimization proposed in this work, only multi-objective
algorithms based on the Pareto concept that implement elitism will be used. This follows
from the bibliographic study carried out. We found out that these strategies present a better
performance in most applications. In addition, due to the fact that the proposed work
regards an engineering application that involves a feasibility study for the implementation,
the exploitation of multi-objective optimization algorithms already applied to engineering
problems must be prioritized. This same consideration is carried out in [36].

The Micro-GA algorithm is a good option for the application at hand, since the op-
erational restrictions of the equipment that compose the cooling system limit the search
space to a relatively small region. Therefore, in this work, the multi-objective evolutionary
algorithms chosen for the solution of the proposed optimization problem are: SPEA2 [37],
NSGA-II [26] and Micro-GA [21]. In the sequel, we give a brief description of the optimiza-
tion strategies adopted in each of the applied algorithms.

5.1. SPEA2

The main steps of SPEA2 are sketched in Algorithm 1. This algorithm was developed
as an improvement of SPEA, and incorporates techniques that should improve the effi-
ciency of the optimization process. It requires variables N, N and T, which represent the
population size, the external population size (file) and the maximum number of genera-
tions, respectively. It returns the set of non-dominated individuals A that establish the best
compromise with the defined objectives and constraints.

The methodology implemented in SPEA2 can be explained through the following
steps [37]:

Step 1 Initialization: Initially, two populations are generated: a random initial population
P0 and an initial external population, termed file, such that P0 = ∅. Variable t is
defined and set to 0, which must be incremented with each new generation of
new non-dominated individuals.

Step 2 Fitness evaluation: Each solution in the current populations Pt and Pt is evaluated
with respect to the objective functions. Then, it is evaluated with respect to
dominance relationships. So, each individual is evaluated in relation to the
individuals that it dominates and to those that dominate it. When this step is
performed for the first time, only individuals from population Pt will be evaluated.
Therefore, each individual i of population Pt and in file Pt will be assigned a value
called strength, represented by S(i). The strength of individual i coincides with
the number of solutions individual i actually dominates, and it is defined as in
Equation (8):

S(i) = |{ j|j ∈ Pt ∪ Pt ∧ i � j}|. (8)

Moreover, each individual is associated with a value called raw fitness that is
equivalent to the sum of the strengths of all the individuals that dominate the
individual under analysis, both in the population and in the file, as defined in
Equation (9):

R(i) = ∑
j∈Pt∪Pt ,j�i

S(j). (9)
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Note that the strength of a given individual i will be higher when more individu-
als are dominated by i, and its raw fitness will be lower when less individuals
dominate i. Although the raw fitness provides assignments to individuals based
on Pareto dominance, if there are many individuals with identical raw fitness
values, this mechanism may fail. Therefore, SPEA2 uses neighborhood density
information to effectively guide the search. An adaptation of the kth-nearest
neighbor method is used, wherein the density at any point is a function of the
distance to the kth-nearest neighbor. In this case, SPEA2 simply takes the inverse
of the distance to the kth-nearest neighbor as an estimate of the density. The
most accurate way to estimate neighborhood density is to calculate the Euclidean
distance in the feasible region from an individual i to each individual j in the file
and in the population, and store the obtained values in a list. Another possible
way is to consider the term k =

√
N + N as a common point and list the results

obtained for all individuals. After sorting the list in ascending order. The kth
neighbor will be the one that gives the smallest distance sought, denoted by σk

i .
Therefore, the density D(i), corresponding to the individual i, is defined as in
Equation (10):

D(i) = (σk
i + 2)−1. (10)

Note that constant 2 is added to the denominator in order to ensure that its value
is greater than zero, and that the density is always less than 1. Finally, the fitness
value of the individual is simply defined by F(i) = R(i) + D(i). It is noteworthy
to mention that the lower the value of an individual’s fitness, the more apt it
is, and hence the more chances it will have to propagate over generations and
disseminate its characteristics to other individuals.

Algorithm 1 Main steps of SPEA2.

Require: N, N, T
Ensure: A

1: generate P0 randomicallt, with |P0| = N
2: generate P0 = ∅
3: t := 0;
4: while true do
5: compute Fitness in Pt and Pt
6: copy non-dominated solutions in Pt and Pt to Pt+1
7: if |Pt+1| > |N| then
8: repeat
9: reduce |Pt+1| Using slicing algorithm

10: until |Pt+1| = |N|
11: else if |Pt+1| < |N| then
12: repeat
13: complete Pt+1 with Pt and Pt
14: until |Pt+1| = |N|
15: end if
16: if t ≥ T then
17: save in A the set of non-dominated solution of Pt+1
18: halt
19: else
20: apply selection binary operator with reposition in Pt+1
21: apply recombination operator
22: apply mutation operator
23: save in Pt+1 the genetic operators’ results
24: t := t + 1
25: end if
26: end while
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Step 3 Contextual selection: In this step, all non-dominated individuals from population
Pt and file Pt are copied to next generation file Pt+1. If the size of Pt+1 exceeds
N, it must reduce use of the slicing algorithm. If the size of Pt+1 is smaller than
N, Pt+1 must be completed using the best dominated individuals in Pt and Pt.
The slicing algorithm is an iterative process that eliminates, at each iteration, the
individual with the smallest Euclidean distance to the nearest neighbor. In the
case of a tie, the second smallest Euclidean distance is verified, and so on. The
iterative process ends when the population dimension of Pt+1 = N.

Step 4 Finalization: If t ≥ T, or any other used stopping criterion is satisfied, A is defined
as the set of non-dominated individuals that represent the best solution in Pt+1
and for the optimization process. If the stopping conditions are not yet met,
proceed with the selection at Step 5.

Step 5 Selection: In this step, individuals are selected through the selection operator by a
tournament, whose winners are the individuals with the lowest fitness value.

Step 6 Crossover and mutation: In this step, the selected individuals are recombined
using crossover and mutation operators, thus generating the new individuals of
population Pt+1. Then, the generation counter is incremented (t = t + 1) and the
fitness calculation at Step 2 is to be returned to.

5.2. NSGA-II

The main steps of NSGA-II are sketched in Algorithm 2. Initially, NSGA-II generates a
random population P0, with |P0| = N. This initial population is ordered based on solution
non-domination. Thus, in this first iteration, a fitness value is calculated for each solution,
which makes it possible to determine its respective level of dominance.

Algorithm 2 Main steps of NSGA-II.

Require: T, N
Ensure: Qt+1

1: P0 := Q0 := 0; Generate P0 randomically with |P0| = N; t := 0
2: Apply tournament selection
3: Apply crossover, recombining solutions; Apply mutation; Generate Q0
4: while t < T do
5: Rt := Pt ∪Qt; Sort Rt using non-dominance; Pt+1 := 0; i := 1
6: while |Pt+1| ≤ N do
7: Compute crowding distance for Ni
8: if |Ni| > |(N − Pt+1)| last spots in Pt+1 then
9: Sort Ni regarding crowding operator (≺obj)

10: Pt+1 := Pt+1 ∪ Ni[1 : (|N| − |Pt+1|)]
11: else
12: Pt+1 := Pt+1 ∪ Ni
13: end if
14: i := i + 1
15: end while
16: Apply crossover, recombining solutions; Apply mutation; Generate Qt+1
17: t := t + 1
18: end while

In order to choose the best solution, tournament selection is used. Then, recombination
and mutation operators are applied to generate solution offspring. The first population of
descendants is named Q0, with |Q0| = N. Then, both the initial populations P0 and Q0 are
pooled into a single population R0 = P0 ∪Q0, with |R0| = 2N. This is the procedure used
to generate the initial population R0 in the first iteration.

In the following t iterations, where t = 1, 2, 3, · · · , T, with T representing the maximum
number of iterations, a population Rt ordered by non-dominance is handled. Elitism is
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guaranteed by combining the previous and current populations in Rt. After sorting,
non-dominated solutions are ranked at the level (or boundary) N1, and these come to
play a leading role during the process. The remaining solutions are ranked at one of
the levels N2, N3 and so on, up to the last level Nd, so that all individuals belong to a
certain level of domination. If the size of N1 is smaller than N, the algorithm considers
that all its individuals form the new population Pt+1. The remaining space in this new
population, that is, |N| − |N1| spots, must be filled in by the individuals of the subsequent
non-dominated levels, using the crowding distance-based comparison operator to select
the last remaining spots in Pt+1.

In NSGA-II, the fitness of each individual i is called rank j, and depends on the bound-
ary or dominance level to which it belongs and the operator based on the crowding operator,
generally represented by≺m. The latter, in turn, depends on the value of crowding distance
disti of the evaluated individual i regarding a given objective. In this way, each individual i
is compared to an individual j in order to choose which one of them should belong to the
new population Pt+1.

Crowding operator ≺m for objective m helps in the algorithm selection process, in
order to allow the convergence to the Pareto optimal front. The crowded comparison defines
that the individuals selected for the new population Pt+1 will be those with a lower value
of rank. Therefore, an individual j will be chosen if it has a rank less than an individual
p 6= j, i.e., rank j < rankp). If the individuals j and p have the same rank, the one associated
with the highest value of crowding distance will be selected. That is, if rank j = rankp, we
choose j if distj > distp. Otherwise, the individual p is chosen.

Algorithm 3 shows the procedure to compute the crowding distance, where ` is the
number of individuals (solutions) contained in the set T, fobj(i) is the value of the obj-
th objective function for solution i. The terms fobjmax and fobjmin

represent, respectively,
the maximum and minimum values obtained for each objective, considering the set ` of
individuals. The use of the crowding distance allows the most scattered individuals to
occupy the last available spots for the formation of the new population Pt+1, guaranteeing
the diversity of solutions. According to [38], it is important to maintain a good spread in
the solutions of the boundaries already found, in order to better explore the search space.

Algorithm 3 Crowding distance procedure.

Require: ni, fobj
Ensure: disti

1: dist0 := ∞;
2: dist` := ∞
3: for i := 1→ `− 2 do
4: disti := 0
5: end for
6: for each obj do
7: Sort fobj regarding objective obj
8: dist0 := ∞;
9: dist` := ∞

10: for i := 1→ `− 2 do
11: disti := disti +

fobj(i+1)− fobj(i−1)
fobjmax− fobjmin

12: end for
13: end for

5.3. MicroGA

The main steps of Micro-GA are sketched in Algorithm 4, where N represents the
population size, P the population, Pi the initial Micro-GA population, M the population
memory, E the external memory, iter the current iteration, itermax the maximum number of
iterations and NRC the number of iterations between two replacement cycles.
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Algorithm 4 Main steps of Micro-GA.

Require: itermax,NRC
Ensure: E

1: generate initial population P randomically, with |P| = N
2: distribute P between the two portions of M
3: iter := 0;
4: while iter < itermax do
5: choose initial Pi for the Micro-GA from M
6: repeat
7: /* Micro-GA cycle */
8: perform binary tournament selection based on dominance relationship
9: apply recombination operator

10: apply mutation operator
11: apply elitism keeping only one non-dominated solution
12: until nominal convergence is reached
13: copy two non-dominated solutions from Pi to the external memory E
14: if E is full when trying to insert non-dominated solution into Pi then
15: apply the adaptive grid
16: end if
17: copy two non-dominated solutions from Pi to M, (replaceable portion)
18: if iter mod NRC then
19: apply the replacement cycle
20: end if
21: iter := iter + 1
22: end while

Micro-GA is a genetic algorithm that uses a very small population during a reset
process. In fact, this reset process is the Micro-GA performed in conjunction with the use of
an external file to store the non-dominated solutions obtained during the iterations. This
algorithm is able to obtain the Pareto front with a reduced number of iterations [21]. The
basic idea is suggested from theoretical results, where a population size equal to 3 is proven
sufficient for the convergence of the genetic algorithm, regardless of the chromosome
length [39]. Micro-GA uses two memories: the population memory, which is used to obtain
diversity, and the external memory, used to store the solutions of the Pareto-optimal set.
The population memoryis divided into two parts: one called the replaceable portion and
the other the non-replaceable portion. The percentages of each of the portions can be
determined in advance. Initially, a random population is generated, which is distributed
between the replaceable and non-replaceable portions of the population memory. The
non-replaceable portion will never be modified during the process, and has the function of
providing diversity to the algorithm. The initial population of Micro-GA at the beginning
of each of its cycles is taken from both portions of population memory.

During each cycle, Micro-GA implements the conventional genetic operators: tour-
nament selection, two-point recombination, uniform mutation and elitism. Regardless of
the number of non-dominated solutions in the population, only one is arbitrarily chosen at
each iteration to be used in the next generation. A Micro-GA cycle ends when the nominal
convergence is reached. This happens when the difference between the average fitness and
the maximum fitness converges to a value less than or equal to 5%. Nominal convergence
can also be defined in terms of a certain (usually low) number of generations, ranging from
2 to 5. At the end of a cycle, two non-dominated solutions from the current population
obtained (the first and the last) are chosen, which will be compared with the solutions
stored in the external memory, initially empty. If one or both of the chosen solutions
remain non-dominated after the comparison, they will be included in external memory.
Then, the dominated solutions from the external memory are discarded. These two chosen
solutions are also compared with two distinct solutions of the replaceable portion of the
population memory, so that the non-dominated ones will remain. Thus, during the process,
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the replaceable portion of the population memory will tend to have more non-dominated
solutions, some of which will be used in the initial Micro-GA population of the following
iterations, i.e., in the next cycles.

The Micro-GA approach allows for the use of three types of elitism. The first is based
on the fact that the non-dominated solutions produced in each cycle of the Micro-GA are
stored; therefore, no value information of the evolutionary process is lost. The second type
of elitism is based on the fact that the best solutions found after the nominal convergence
replace some elements of population memory. This allows gradual convergence to obtain
the best solutions, provided that the genetic operators of recombination and mutation yield
diversity and spread. The third type of elitism is applied after a pre-established number
of iterations, and is called the replacement cycle. The replacement cycle is a process in
which some solutions in various regions of the front obtained so far are removed, in order
to use them to fill in the replaceable portion of the population memory. Depending on the
size defined for this memory, as many solutions as necessary are chosen to guarantee a
good distribution.

In order to maintain diversity on the Pareto front, an approach similar to adaptive
grid, presented in [24], is applied. Once the file that stores the non-dominated solutions
reaches its limit, the search space covered is then divided, indicating a set of coordinates
for each solution. From then on, each new non-dominated solution will only be accepted if
it belongs to a geometric space that is less populated than the denser regions previously
mapped. Thus, preference is given to solutions that appear in less populated regions,
thus favoring the scattering of individuals on the Pareto front. So, the adaptive grid aims
to divide the search space explored by the solutions stored in the file into h hypercubes,
establishing a set of coordinates for each solution. The hypercubes are resized as new
solutions and extrapolate the limits of solutions already found in the explored search space.
Each hypercube can be interpreted as a small space that contains a certain number of
solutions. The number of dimensions of the hypercubes corresponds to the number of
search variables in the problem. So, the application of adaptive grid allows to obtain well-
distributed Pareto fronts [21]. The adaptive grid requires two parameters: estimated size
for the Pareto front and the number of solutions into which the search space will be divided
for each objective. The first parameter coincides with the size of the external memory. For
the second parameter, the usages of values between 15 and 25 are prescribed [21]. Thus,
when the external memory is full, the adaptive grid is used to decide which non-dominated
solutions will be eliminated.

6. Performance Results

This section is organized into five sections. First, in Section 6.1, we give all the
equipment data and settings of the refrigeration system as used in its model. Then, in
Section 6.2, we motivate the two stopping criteria exploited to terminate the optimization
processes. Subsequently, in Section 6.3, we present the selection method of the preferred
solution among those in the obtained Pareto front. After that, in Sections 6.4–6.6, we
introduce the parameter settings and performance results of each of the three applied
algorithms: SPEA2, NSGA-II and Micro-GA, respectively.

6.1. System Parameters

The configuration of the cooling system considered in this work, as presented in
Figure 1, has the following characteristics. The cooling towers have a capacity of 2500 TR
each (the TR unit represents tons of refrigeration and is commonly used in refrigeration
systems. One TR corresponds to the power that provides the heat required to melt a ton of
ice in 24 h. We have 1 TR = 3.5168 kW). The fan’s motor has a nominal power of 30 HP (the
HP unit represents horse power. We have 1 HP = 735.5 W). The two cooling towers must
guarantee the thermal requirements of four chillers of 1000 TR. The rated power of the
chiller compressor’s motor is 586 kW while that of condensed water lift pump and chilled
water circulation pump motors is 120 HP.
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The daily thermal load is guaranteed using two chillers only. The third chiller is
available as a sporadic ally in the case of an additional thermal load. The fourth chiller
would only operate in a rotational situation, in which there is periodical alternation of
operating chillers. Moreover, the alternation allows the avoidance of excessive equipment
wear or failure. Therefore, the situation of operation with two chillers is the most common
for the cooling system to be optimized, as considered in this work. The compression chillers
used are from the manufacturer Yorkr, model YKLKLLH9-CZFS, with rated voltage of
4.16 kV, thermal capacity of 1000 TR, rated electrical power of the compressor motor of
586 kW [40].

In the studied refrigeration system, the efficiency optimization of heat exchange,
occurring in each tower cell is provided after determining the best trade-off between the
water and air flows. Each lift pump of condensed water operates with a nominal flow
of 505 m3/h. The nominal flow in the Chiller’s condenser is 496.8 m3/h [40]. Hence,
the number of pumps must coincide with the number of operating chillers to guarantee
nominal flow. Note that The number of operating tower cells is dependent on that of
operating lift pumps of the condensed water. This is decided so that the input flows into
the tower cells are always in their operating thresholds. These limits are 30% smaller and
20% greater than the nominal input flow. This nominal value is 404 m3/h [17]. It follows
that the input flow into each tower cell must be in the range [282.8, 484.8]. The flow is given
in m3/h.

Table 2 indicates the possible scenarios with up to two operating chillers. The number
of water lift pumps and that of cells are the ones that must operate to guarantee the minimal
and maximal flow thresholds for the equipment. In Table 2, the indicated flows are in
m3/h. The configurations showing the placeholder were impossible, since according to the
respective theoretical values, the real flow would be beyond the cell’s required limits. As
indicated in Table 2, in the case under study, for n operating chillers, we set the refrigeration
system with n + 1 tower cells. This ensures that the cells will always operate within its
inlet flow prescribed interval.

Table 2. Inlet flows for the cooling tower cells in m3/h.

#Chillers #Pumps
#Cells (Theoretical) #Cells (Real)

1 2 3 4 5 1 2 3 4 5

1 1 505.00 252.50 168.30 - - 550.00 280.00 170.00 - -

2 2 1010.0 505.00 336.70 252.50 - - 485.00 330.00 - -

6.2. Stopping Criteria

In this work, we investigate the effectiveness of two stopping criteria for the optimiza-
tion processes. One criterion is based on a simple overall number of iterations used in the
optimization algorithm and the other is based on an overall lapsed optimization time.

Regarding the first stopping criterion, the number of iterations to the finalization of the
optimization process is determined experimentally, during the algorithm calibration stage.
We verify that 50 iterations is sufficient to obtain a Pareto front with good distribution and
a sufficient number of points to choose the best solution to be applied onto the refrigeration
system’s cooling towers, fans and chillers. So, the first stopping criterion is 50 iterations.

Regarding the second stopping criterion, the lapsed time till the termination of the
optimization process is defined based on the transport delay of the refrigeration system
being optimized. The transport delay is the time interval required to achieve system stability
after defining a new setpoint. For the real system under consideration, we could discover
that after setting a new speed setpoint for the tower fans, the system requires 15 min
on average to establish a new temperature value for water condensation. Considering
the transport delay of the thermal system is quite high, we deemed it important that the
optimization process should take the shortest possible period of time to yield the optimal
solution to be applied. Note that in the case this time value is close to the system transport
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delay, the selected solution to be applied may no longer be the best alternative. For instance,
assuming that the optimization system obtains the optimal solution in a time interval equal
to the transport delay, only after 30 min would we be able to configure a new setpoint
for the fan speed. Furthermore, due to a possible variation of the thermal load after this
time interval, the speed setpoint obtained could no longer yield the optimal solution at
that instant. Hence, we arbitrated that the solution to be applied must be available no later
than the equivalent of 10% of the transport delay, i.e., after 90 s. So, the second stopping
criterion is 90 s.

6.3. Preferred Solution Selection

Multi-objective algorithms return a set of solutions that guarantee a good trade-off
between the optimization conflicting objectives. Therefore, we need a criterion to identify
the adequate solutions to be applied in the real application at hand. There are several
possible selection criteria [41]. In this work, we select the solution in the Pareto front that
provides the lowest mean square of the normalized objectives.

In this application, the overall power consumption of the refrigeration system is in
the order of hundreds of thousands of Watts while the effectiveness of the cooling tower
varies between 0 and 1. Thus, the objective values must be normalized to avoid giving
preference to solutions on the Pareto front that minimize the power consumption over those
that maximize effectiveness. For this purpose, we normalize the system’s effectiveness
metric using Equation (11) and to normalize the power consumption values, we apply
Equation (12):

εn =
εe − εmin

εmax − εmin
, (11)

Pn =
Pg − Pmin

Pmax − Pmin
, (12)

wherein εn stands for the normalized effectiveness, εmin and εmax for the minimum and
maximum effectiveness, respectively, considering all the Pareto front solutions. Likewise, Pn
stands for the normalized overall power consumption, and Pmin and Pmax for the minimum
and maximum powers, respectively, considering all the Pareto front solutions.

Recall that the energy efficiency of the application, as modeled in this work, consists
of maximizing the system’s effectiveness while minimizing its power consumption. So, the
criterion defined for choosing the optimal solution is defined formally as in Equation (13):

S∗ = min
F

(√
0.5
ε2

n
+ 0.5P2

n

)
, (13)

wherein S∗ represents the solution selected from the Pareto front F. In this work, we
consider that the two defined objectives are equally important to achieve the system’s
energy efficiency. So, both objectives have the same weight.

In Figure 2, we show that the minimum point of the mean square curve of the normal-
ized objectives can be used as a separator between the regions that favor one objective over
the other. The solutions towards the left of the minimum point of this curve give preference
to maximizing the system’s effectiveness, which is achieved by increasing the system’s
power requirements. On the other side, the solutions towards the right of the minimum
point of this curve give preference for minimizing the system’s power requirements, which
is achieved by decreasing effectiveness, i.e., increasing its inverse 1/εa.

The data used to evaluate the performance of applied optimization algorithms were
collected in the field using the existing Supervisory Control and Data Acquisition (SCADA).
The dataset includes 21,385 operational points at a rate of 1 point every 5 s. So the overall
dataset was collected over 29 h and 42 min of operation of different days and times, so that
we could contemplate different conditions of thermal load and different weather conditions.
It is noteworthy to mention that the wet bulb temperatures were obtained from the database
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of the Instituto Nacional de Pesquisas Espaciais (INPE), available at [42], as recorded by the
meteorological station at Santos Dummont airport in Rio de Janeiro/Brazil.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/Efetividade da Torre

Po
tê

nc
ia

 g
lo

ba
l n

or
m

al
iz

ad
a

 

 
objetivos normalizados
média quadrática dos objetivos

Normalized objectives
Quadratic averages of objectives

Selected
optimal 
solution

priorize priorizee g

1/εe

Pg

Figure 2. Illustration used to motivate the usage of the selection criterion of the best solution.

For the sake of synthesis and without loss of generality, the analysis presented in the
sequel considers the results and Pareto fronts obtained by the applied algorithms, only for
3 points, namely 8, 16 and 26, of the 35 operational points of the whole dataset [43]. These
points depict very different load situations. Table 3 presents the data for the illustrative
operational points. During the period of time in which the field data are collected, a
maximum of two chillers are used. Note that this does not impact the evaluation conducted
herein, since the dataset includes 21,385 points, and was also used to validate the tower’s
and chiller’s mathematical models [13,14].

Table 3. Collected data for the operational points used to discuss the performance of the optimiza-
tion process.

Point #Chillers ṁwaterin (kg/s) Twaterin (◦C) TBU (◦C) ṁwaterev (kg/s) Taeev (◦C) Tasev (◦C)

8 2 87.02 29.68 22.94 130.53 10.41 6.01
16 2 70.71 29.40 24.49 106.07 11.16 6.27
26 1 51.65 27.94 23.31 154.96 9.72 6.05

6.4. SPEA2’s Performance Results

For the SPEA2 algorithm, the combined MATLAB/C++ implementation available
in [44] is used. The parameters’ settings used are as follows: population equal to 100,
probability of recombination equal to 5% and probability of mutation equal to 15%. In
addition, the tournament is used for selecting the best individuals. The choice of these
parameters was validated experimentally after repeated tests with several possible sets
of parameters. We could verify that populations greater than 100 and recombination
and mutation rates above the mentioned values only increased the execution time of the
algorithm, not providing significant changes in the results nor in the quality of the obtained
Pareto frontiers.

Table 4 presents the selected solutions, as evolved by SPEA2, together with the corre-
sponding values of the objective functions for the 3 operational points (the results for all the
35 operational points used in the optimization are available in Appendix A of [43]). In this
table, nbest stands for the solution, εa the effectiveness of the cooling tower, Pg the global
power required by fans and chillers and ec the savings in terms of energy consumption.
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Table 4. Optimal solutions obtained by SPEA2 for the 4 operational points.

Point
SPEA2—50 Iterations SPEA2—90 s

nbest (Hz) Tbest (◦C) εa Pglobal (kW) ec (%) nbest (Hz) Tbest (◦C) εa Pglobal (kW) ec (%)

8 44.28 6.27 0.5192 857.44 9.55 43.48 6.25 0.5178 858.30 9.45
16 60.00 6.91 0.7452 934.74 11.34 59.97 6.91 0.7451 935.46 11.27
26 58.22 6.80 0.7359 371.46 16.03 59.23 6.83 0.7402 372.43 15.79

Table 5 exhibits the parameters of the optimal solutions obtained that guarantee the
established restrictions for the 3 operational points (the results for all the 35 operational
points used in the optimization are available in Appendix B of [43]). As before, Taeco stands
for the predicted temperature for the water of the condenser circuit that leaves the cooling
tower and travels towards the chillers, and Tasco the predicted temperature for the water in
the condenser circuit, that leaves the chillers and goes towards the cooling tower.

Table 5. Verification of compliance of SPEA2 with the operational restrictions of the equipment for
the 3 operational points.

Point
SPEA2—50 Iterations SPEA2—90 s

nbest (Hz) Tbest (◦C) Taeco (◦C) ∆T (◦C) Tasco (◦C) nbest (Hz) Tbest (◦C) Taeco (◦C) ∆T (◦C) Tasco (◦C)

8 44.28 6.27 26.18 3.24 30.91 43.48 6.25 26.19 3.25 30.94
16 60.00 6.91 25.74 1.25 31.80 59.97 6.91 25.74 1.25 31.81
26 58.22 6.80 24.53 1.22 28.71 59.23 6.83 24.51 1.20 28.68

Comparing the results obtained with the two stopping criteria, i.e., after 50 iterations
and after 90 s, we verify that after a number of iterations greater than 50, operational
points 8 and 16 converge to solutions that provide a reduction in both savings and in
the effectiveness of the tower, compared to the result obtained for 50 iterations. This is
due to the fact that the algorithm’s execution with stopping criterion after 90 s is not a
continuation of that after 50 iterations, i.e., these are different executions, and due to the
stochastic character of the algorithm, it cannot be guaranteed that the solutions obtained in
different executions are identical, but rather they represent very close points. Points 8 and
16 show reductions in global energy savings of 0.1% and 0.07%, respectively, and reductions
in effectiveness of 0.14% and 0.01%, respectively, after new executions with a number of
iterations greater than 50. We observe that this does not rule out the optimal solutions
presented for these points, since they ensure a good trade-off between the established
objectives. The variations in the achieved results for the different stopping criteria are
negligible in practical terms.

Operational point 26, after execution with a number of iterations greater than 50,
shows a reduction of 0.24% in global energy savings, in order to obtain an increase of 0.43%
in the tower’s effectiveness.

Figure 3 shows the Pareto front obtained for the stopping condition of 50 iterations for
the 3 operational points indicated in Tables 4 and 5. Figure 4 shows the Pareto front obtained
for the stopping conditions of 90 s for the 3 operational points indicated in Tables 4 and 5.
In both fronts, the circled points represent the chosen optimal solution. Note that the Pareto
fronts obtained when using both stopping conditions are identical, verifying the correct
convergence of the algorithm.
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Figure 3. Pareto fronts and selected optimal solutions for 3 of the 35 operating points used in
the implementation of the optimization with SPEA2 with stopping criterion after 50 iterations.
(a) Operational point 8; (b) Operational point 16; (c) Operational point 26.
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Figure 4. Pareto fronts and selected optimal solutions for 3 of the 35 operating points used in the
implementation of the optimization with SPEA2 with stopping criterion after 90 s. (a) Operational
point 8; (b) Operational point 16; (c) Operational point 26.

6.5. NSGA-II’s Performance Results

For the NSGA-II algorithm, the MATLAB implementation available in [45] is used.
The parameters’ settings used are as follows: population equal to 100, probability of
recombination equal to 0.8 and probability of mutation equal to 0.3. In addition, the binary
tournament is used to select the best individuals. Once again, the parameter values are
chosen based on tests carried out in order to reduce the execution time and obtain a Pareto
front with good distribution and sufficient number of solutions.

Table 6 presents the selected solutions, as evolved by NSGA-II, together with the
corresponding values of the objective functions for the 3 operational points (the results for
all the 35 operational points used in the optimization are available in Appendix A of [43]). In
this table, nbest stands for the solution, εa the effectiveness of the cooling tower, Pg the global
power required by fans and chillers and ec the savings in terms of energy consumption.

Table 6. Optimal solutions obtained by NSGA-II for the 4 operational points.

Point
NSGA-II—50 Iterations NSGA-II—90 s

nbest (Hz) Tbest (◦C) εa Pglobal (kW) ec (%) nbest (Hz) Tbest (◦C) εa Pglobal (kW) ec (%)

8 44.46 6.26 0.5196 859.03 9.37 46.04 6.28 0.5223 859.98 9.26
16 59.88 6.95 0.7448 928.58 11.96 59.78 6.93 0.7444 930.36 11.78
26 56.87 6.71 0.7301 372.54 15.76 57.37 6.73 0.7323 373.09 15.62

Table 7 exhibits the parameters of the optimal solutions obtained that guarantee the
established restrictions for the 3 operational points (the results for all the 35 operational
points used in the optimization are available in Appendix B of [43]). Recall that Taeco stands
for the predicted temperature for the water of the condenser circuit that leaves the cooling
tower and travels towards the chillers, and Tasco the predicted temperature for the water in
the condenser circuit that leaves the chillers and goes towards the cooling tower.
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Table 7. Verification of compliance of NSGA-II with the operational restrictions of the equipment for
the 3 operational points.

Point
NSGA-II—50 Iterations NSGA-II—90 s

nbest (Hz) Tbest (◦C) Taeco (◦C) ∆T (◦C) Tasco (◦C) nbest (Hz) Tbest (◦C) Taeco (◦C) ∆T (◦C) Tasco (◦C)

8 44.46 6.26 26.18 3.24 30.92 46.04 6.28 26.16 3.22 30.89
16 59.88 6.95 25.74 1.25 31.76 59.78 6.93 25.74 1.25 31.78
26 56.87 6.71 24.56 1.25 28.79 57.37 6.73 24.55 1.24 28.78

Comparing the results obtained for the stopping criteria after 50 iterations and after
90 s, it appears that, after a number of iterations greater than 50, for the operational points,
indicated in Table 6, the optimization converged to solutions that reduce the overall energy
savings while achieving a better or similar value for tower effectiveness. In this case, the
optimization regarding operating point 8 presents a reduction of 0.11% in energy savings
for an increase of 0.27% in the effectiveness of the tower. The optimization regarding point
26 shows a 0.14% reduction in overall energy savings for a 0.22% increase in effectiveness.
Unlike the others, for point 16 the optimization exhibits a reduction in both consumption
and effectiveness, respectively, of 0.18% and 0.04%, and this is due to the fact that the
execution with stopping criterion of 90 s is not a continuation of that of 50 iterations. As
noted before, for the stochastic character of the algorithms, it cannot be guaranteed that
they will converge to exactly the same solution, but rather to very close points.

Figure 5 shows the Pareto front obtained when using the stopping condition of 50 iter-
ations for the 3 operational points indicated in Tables 6 and 7. Figure 6 presents the Pareto
front achieved for the stopping criterion of 90 s for the 3 operational points indicated in
Tables 6 and 7. The circled points represent the selected optimal solution. Note that the
Pareto fronts obtained for the two stopping criteria are practically identical, verifying the
proper convergence of the algorithm.
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Figure 5. Pareto fronts and selected optimal solutions for 3 of the 35 operating points used in
the implementation of the optimization with NSGA-II with stopping criterion after 50 iterations.
(a) Operational point 8; (b) Operational point 16; (c) Operational point 26.
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Figure 6. Pareto fronts and selected optimal solutions for 3 of the 35 operating points used in the
implementation of the optimization with NSGA-II with stopping criterion after 90 s. (a) Operational
point 8; (b) Operational point 16; (c) Operational point 26.
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6.6. Micro-GA’s Performance Results

For the Micro-GA algorithm, the Toolbox SGALAB from MATLAB [46] is used. The
parameters’ settings used are as follows: population memory equal to 100, external memory
equal to 100, percentage of non-replaceable memory equal to 20%, internal Micro-GA
population equal to 6, recombination rate equal to 0.8, mutation rate equal to 0.2, number of
Micro-GA iterations until achieving nominal convergence equal to 4 and a replacement cycle
of 15 iterations. The binary tournament is used for selecting the best individuals. These
values are obtained based on the recommended values in [21] and through experiments in
order to obtain a Pareto boundary with good distribution with a fast possible convergence.
It is noteworthy to point out that higher values for the mutation rate and for the initial
population only increased the algorithm convergence time, leaving the results practically
unchanged. Differently from what is indicated in [21], where it is suggested that values
for the internal population should be set as 3 to 4, we notice, in this case, that the use of an
internal population equal to 6 allowed us to further reduce the algorithm convergence time.

Table 8 presents the selected solutions, as evolved by Micro-GA, together with the
corresponding values of the objective functions for the 3 operational point s(The results for
all the 35 operational points used in the optimization are available in Appendix A of [43]). In
this table, nbest stands for the solution, εa the effectiveness of the cooling tower, Pg the global
power required by fans and chillers and ec the savings in terms of energy consumption.

Table 8. Optimal solutions obtained by Micro-GA for the 4 operational points.

Point
Micro-GA—50 Iterations Micro-GA—90 s

nbest (Hz) Tbest (◦C) εa Pglobal (kW) ec (%) nbest (Hz) Tbest (◦C) εa Pglobal (kW) ec (%)

8 43.50 6.26 0.5179 857.17 9.58 43.54 6.20 0.5179 865.90 8.58
16 56.67 6.77 0.7322 946.05 10.21 53.24 6.81 0.7181 929.14 11.90
26 57.29 6.74 0.7320 372.23 15.83 58.30 6.65 0.7363 378.59 14.27

Table 9 exhibits the parameters of the optimal solutions obtained that guarantee the
established restrictions for the 3 operational points (the results for all the 35 operational
points used in the optimization are available in Appendix B of [43]). As before, Taeco stands
for the predicted temperature for the water of the condenser circuit that leaves the cooling
tower and travels towards the chillers, and Tasco the predicted temperature for the water in
the condenser circuit that leaves the chillers and goes towards the cooling tower.

Table 9. Verification of compliance of Micro-GA with the operational restrictions of the equipment
for the 3 operational points.

Point
Micro-GA—50 Iterations Micro-GA—90 s

nbest (Hz) Tbest (◦C) Taeco (◦C) ∆T (◦C) Tasco (◦C) nbest (Hz) Tbest (◦C) Taeco (◦C) ∆T (◦C) Tasco (◦C)

8 43.50 6.26 26.19 3.25 30.93 43.54 6.20 26.19 3.25 30.98
16 56.67 6.77 25.81 1.32 32.03 53.24 6.81 25.87 1.38 32.05
26 57.29 6.74 24.55 1.24 28.77 58.30 6.65 24.53 1.22 28.80

Comparing the results obtained after executing the Micro-GA with different stopping
criteria, i.e., after 50 iterations and after 90 s, we note that the optimization regarding
operating point 8 offered the same effectiveness for both criteria, varying only in the
achieved global energy savings. After 90 s, a reduction of 1.00% is achieved. Recall that the
different stopping criteria occasion different executions, and due to the stochastic character
of the optimization algorithms, there could be a deviation between the results. Nonetheless,
a convergence confirmation of the algorithm regarding the region containing the optimal
solutions is apparent. The optimization regrading operational point 16 shows a reduction
of 1.41% in the tower’s effectiveness in order to obtain a 1.72% increase in global energy
savings. For point 26, the optimization reaches a reduction of 1.58% in the overall energy
savings in order to obtain an increase of 0.43% in the tower’s effectiveness.

As observed for operational points 26, the result obtained after 90 s is below that
obtained after 50 iterations, since the reduction in energy savings is lower than the increase
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in effectiveness in the tower. This is due to the fact that the criterion for choosing the
optimal solution adopted does not verify whether the new optimal solution obtained in a
new execution is better or worse than the one obtained in the previous optimization, with
50 iterations. The stopping criteria are applied in two different executions of the algorithm.
Thus, after reaching the stopping criterion, the optimal point is simply chosen based on the
lowest mean square of the normalized objectives, without evaluating whether the result
obtained with the stopping criterion after 90 s is better or worse than after 50 iterations.
In this work, the comparison between the optimal solutions obtained for each stopping
criterion is performed in a stage after the execution of the algorithm.

Figure 7 presents the Pareto fronts obtained for the stopping criterion of 50 itera-
tions for the 3 operational points indicated in Tables 8 and 9. Figure 8 shows the Pareto
fronts obtained for the stopping criterion of 90 s for the 3 operational points indicated in
Tables 8 and 9. The circled points represent the preferred optimal solution. Note that the
reached Pareto fronts do not have satisfactory solution distribution, as was the case for
SPEA2 and NSGA-II. It can also be observed that there is a visible displacement in the
optimal solutions obtained after 90 s, which is not satisfactory. Even so, the obtained results
confirm the convergence of the algorithm, since the variations verified for the objectives
are very small and the solutions for the two stopping criteria are very close.
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Figure 7. Pareto fronts and selected optimal solutions for 3 of the 35 operating points used in
the implementation of the optimization with Micro-GA with stopping criterion after 50 iterations.
(a) Operational point 8; (b) Operational point 16; (c) Operational point 26.
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Figure 8. Pareto fronts and selected optimal solutions for 3 of the 35 operating points used in the
implementation of the optimization with Micro-GA with stopping criterion after 90 s. (a) Operational
point 8; (b) Operational point 16; (c) Operational point 26.

7. Performance Comparison

We now compare the results obtained by the optimization processes when using multi-
objective algorithms SPEA2, NSGA-II and Micro-GA. First of all, the obtained results are
compared to collected field data to evaluate the gains obtained in terms of energy savings
and cooling tower effectiveness. Then, the results achieved by the algorithms are compared
with each other in order to choose the most adequate algorithm for the application. Three
metrics are used in the comparison and selection process:
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• The average, minimum and maximum savings obtained in terms of power consump-
tion by the refrigeration system;

• The average, minimum and maximum effectiveness reached for the cooling tower;
• The ratio between the average savings in terms of overall power consumption and the

corresponding reduction in terms of average effectiveness of the cooling tower;

where the average values are computed by applying the optimization results to the 21,385
collected field data regarding the 35 operational points. In this work, the third metric will
be termed Energy Efficiency Ratio (EER). It is computed using Equation (14):

EER =
PSavg

∆εavg
(14)

Table 10 presents the evaluated metrics results of SPEA2, NSGA-II and Micro-GA,
regarding both stopping criteria. The values indicated refer to the application of the results
obtained for the 35 operational points as presented in Appendix A of [43] to the 21,385 actual
field data collected from the real refrigeration system. The execution time indicates the
average time spent by the implementation of the considered algorithm with the stopping
criterion of 50 iterations. This time duration is given in seconds. For the 90 s case, we report
the number of required iterations instead, as the execution time is fixed, i.e., 90 s.

Table 10. Metrics evaluation for the three applied algorithms regarding both stopping criteria.

Metric
After 50 Iterations After 90 s

SPEA2 NSGA-II Micro-GA SPEA2 NSGA-II Micro-GA

PSavg (%) 8.48 8.28 8.43 8.50 8.32 8.43
PSmin (%) −3.72 −4.09 −4.64 −3.72 −4.26 −3.66
PSmax (%) 26.07 25.36 25.67 25.27 26.16 25.46

εavg 0.6232 0.6219 0.6183 0.6247 0.6200 0.6159
εmin 0.4843 0.4826 0.4818 0.4833 0.4818 0.4816
εmax 0.8474 0.8470 0.8350 0.8473 0.8466 0.8285

Time (s) 15.70 69.82 77.92 90 90 90
#Iterations 50 50 50 548 63 78

In Table 10, we can observe that the algorithms implemented in MATLAB (NSGA-II
and Micro-GA) require a longer execution time for 50 iterations compared to algorithms
implemented in C++ (SPEA2). This result is expected. However, it is noteworthy that the
execution time in a dedicated implementation for real usage purposes will depend on the
characteristics of the running processor and available memory resources. Moreover, a more
efficient codification of the selected algorithm can always be achieved. For both stopping
criteria, we can also observe that the algorithm that achieved the best average power
savings is SPEA2 followed Micro-GA by NSGA-II. Figure 9 allows a visual comparison
of the improvement yielded in terms of average power savings for both stopping criteria
(PSavg—50 i; and PSavg—90 s). It is noteworthy to point out that SPEA2 provides a solution
that offers a greater average power saving in the case of the 90 s based stopping criterion.

Moreover, note that for both stopping criteria, SPEA2 presents the best average ef-
fectiveness, but in this case followed by NSGA-II then Micro-GA. For the first stopping
criterion, the optimization time for SPEA2 is the lowest but in the case of the second stop-
ping criterion, the number of iterations required by SPEA2 is the highest. Notably, there
are records of negative values of power energy savings, which occur at points wherein the
fan speed in the field collected data is 30 Hz. In these cases, the optimization also suggests
increasing their speed in order to increase the tower’s effectiveness, with a consequent
increase in the power energy consumption of the system. This is consistent and matches
the expected solution for the proposed optimization system. Figure 10 allows a visual
comparison of the improvement yielded in terms of average effectiveness of the tower for
both applied algorithms for both stopping criteria (εavg—50 i; and εavg—90 s). Once again,
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it is noteworthy to point out that SPEA2 provides a solution that offers a greater average
cooling tower effectiveness in the case of the 90 s based stopping criterion.
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Figure 9. Comparison of average power savings for both stopping criteria as obtained by the
applied algorithms.
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Figure 10. Comparison of average effectiveness improvements for both stopping criteria as obtained
by the applied algorithms.

It is known that the system’s effectiveness depends not only on the setpoints of the
cooling tower operation, but also on external factors, such as ambient temperature and wet
bulb temperature. Thus, the reference value for evaluating the algorithms must be at least
the average effectiveness obtained by applying the 21,385 operational points collected for
the cooling tower modeling, which is 0.6761. Hence, the best algorithm for the application
must be the one that achieves the highest average global power savings, with the least
possible detriment to the average effectiveness of the cooling tower.

It is noteworthy to point out that, in Table 11, for all three algorithms, the value of EER
is greater than 1, which is quite satisfactory. This means that the power savings achieved
outweigh the reduction in effectiveness of the cooling tower. So, for both stopping criteria,
we note that we have In decreasing order of performance: SPEA2, NSGA-II then Micro-GA.
SPEA2 offers the highest value of EFR, which corresponds to 1.60 and 1.65, respectively. So,
for the second stopping criterion, SPEA2 achieves a power savings of about to 1.65 times
the reduction in the tower effectiveness.
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Table 11. Results for the selection of the best algorithm considering both stopping criteria.

Metric
After 50 Iterations After 90 s

SPEA2 NSGA-II Micro-GA SPEA2 NSGA-II Micro-GA

PSavg (%) 8.48 8.28 8.43 8.50 8.32 8.43
εavg (%) 62.32 62.19 61.83 62.47 62.00 61.59
∆εavg (%) 5.29 5.42 5.78 5.14 5.61 6.02
EER 1.60 1.53 1.46 1.65 1.48 1.40

A reduction in the performance of the NSGA-II and Micro-GA algorithms can be seen
when comparing the values of FER obtained with the stopping criteria after 50 iterations
and after 90 s. For NSGA-II, this factor reduces from 1.53 to 1.48, and for Micro-GA, from
1.46 to 1.40. This is mainly due to the criterion used to choose the optimal solution, which
is impacted by the Pareto front distribution. In this case, after 90 s, NSGA-II and Micro-GA
added points to the Pareto front that led the adopted decision criterion to choose optimal
solutions that favored an increase in terms of average effectiveness of the cooling tower.
Figure 11 allows a visual comparison of the improvement yielded in terms of average
effectiveness of the tower for both applied algorithms for both stopping criteria (εavg—50 i;
and εavg—90 s). Note that, as expected, the solution provided by SPEA2 offers a greater
energy efficiency ration in the case of the 90 s based stopping criterion.
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Figure 11. Comparison of energy efficiency ratio achieved by the best solutions for both stopping
criteria as obtained by the applied algorithms.

So, it is now safe to conclude that SPEA2 is the best algorithm for the studied ap-
plication and that the 90 s based stopping criterion is more adequate as it allows for a
more interesting trade-off between average power saving and average tower effectiveness,
yielding a better ration regarding energy efficiency.

8. Conclusions

The proposed work analyzes the feasibility of applying a multi-objective optimization
to the operation of refrigeration systems based on cooling towers and chillers, in order to
obtain the operational setpoints that meet the best compromise between two conflicting
objectives: reduction of energy consumption and increasing of the tower’s effectiveness.
This allows obtaining the maximum energy efficiency possible for the whole refrigeration
system. For this purpose, it is necessary to formally model the main equipment involved
in the considered refrigeration system. Precise and faithful models for the cooling towers
and its fans and for the chiller have been developed previously. We also conducted a
preliminary survey to select evolutionary multi-objective optimization algorithms to be
applied. Algorithms SPEA2, NSGA-II and Micro-GA are chosen so as to investigate their
performance regarding the energy efficiency optimization.
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We conducted a thorough analysis of the Pareto fronts yielded by the usage of the
chosen algorithms. This is performed based on two optimization scenarios with regards
to the stopping criterion to be used: either a fixed number of iterations (50 iterations)
or a fixed time interval (90 s). We considered these two possibilities so as to obtain the
optimal solution to be applied to the real refrigeration system, hence yielding the expected
energy efficiency. These iteration and time thresholds are thus set to meet the requirements
of the application and to verify the performance impact of the solution reached by the
optimization process. After analyzing the obtained global performance results, we conclude
that the results obtained with SPEA2 when combined with the stopping criterion of after
90 s should be adopted.

There are several directions to carry on this work aiming at improving the analysis.
The used models can be made more sophisticated to offer support for other kind of chillers.
In addition, it would be interesting to compare the performance of the chosen algorithms
by varying the speed of the condensed and chilled water pumps. The frequency converters
could be considered in the optimization process. In this case, the variation of the speed
of the cooling tower’s fans would have to be taken into account. Furthermore, in the
present work, the increase in terms of water consumption of the refrigeration system is
not considered in contrast to the reduction of the cooling tower’s effectiveness. Thus,
developing a model that estimates the system’s water consumption in terms of the tower’s
effectiveness would be interesting. There is also the possibility to explore the usage of
other kinds of multi-objective optimization algorithms, such as those based on swarming
strategies as apposed to the evolutionary strategy. Among these algorithms, we can
mention the work in progress exploring multi-objective particle swarm optimization and
multi-objective tribe optimization. Another possible direction could be the study of the
effects of cryogenic fluids on the system’s energy efficiency.
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