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Abstract: Micro-cogeneration (micro-combined heat and power) is a technology that simultaneously
produces decentralized thermal and electrical energy with a power of less than 50 kWel. This
technology consists of using the waste heat generated by a thermodynamic process to meet the
heating and hot water demands of buildings. The use of biomass as a fuel offers important advantages:
use of a renewable energy, carbon neutrality, availability, and low cost. Furthermore, the analysis
and optimization of hybrid energy systems, which include existing micro-cogeneration systems
powered by renewable energy, is a scientific challenge needing experimental characterization of such
micro-cogeneration systems. In this context, a biomass Stirling micro-CHP unit (µCHP), was tested
to characterize its energy performance. A dynamic model based on these experimental investigations
was developed to evaluate its thermal power output and energy efficiencies. The dependence of the
nominal load on the water flow rate of the consumer and the inlet temperature of the fluid heated
by the cogeneration system was studied. Results showed that the flow rate of the heat transfer fluid
rejecting heat from the µCHP unit influences the temperature of the heat transfer fluid exiting the
µCHP to supply domestic hot water to the user, which, if too high, will prompt the self-guarding
mechanism of the machine.

Keywords: micro-cogeneration; biomass; Stirling engine; building; energy production

1. Introduction

To facilitate the energy transition, it is necessary to develop sustainable energy tech-
nologies. Micro-combined heat and power (µCHP) is such a technology that simultaneously
produces decentralized heat and electricity energy at low power (electrical power lower
than 50 kWel) [1]. Micro-cogeneration consists of exploiting the waste heat generated by a
thermodynamic process to meet the heat and hot water demands of buildings [2].

Micro-CHP technology offers significant benefits: reduced primary energy consump-
tions, reduced CO2 emissions, and lack of requirements for central plant and network
construction [3]. Micro-CHP technology can contribute to the transition of the traditionally
centralized energy supply system towards a more sustainable system [4].

A biomass engine was previously tested in INSA Strasbourg to characterize its per-
formance. The unit used to co-generate heat and power is the PELLEMATIC Condens_e
model, which was manufactured by the Austrian company “ÖkoFEN” [5].

The unit has been tested for peak shaving purposes in local grids and found to be
profitable in transition heating periods (spring and autumn) and winter, while, in the
summer, the heat produced was greater than the demand [6].

The unit has been paired with an open-source Building Energy Management System
(oBEMS) aimed at reducing the building energy demand [7]. The developed system was the
first of its kind, due to the fact that the BEMS focused on low-temperature heat networks
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with distributed generation, whereas BEMS have previously been largely focused on
electrical controls.

The ÖkoFEN micro-cogeneration unit is fitted with a free-piston type Stirling engine,
which has a broad use in biomass, biogas, and natural gas cogeneration.

Several studies of CHP applications equipped with a Stirling engine were
reviewed [8–23]. The characteristics of the units presented in the studies are synthesized in
Table 1. In some studies, certain categories of information were not available.

Table 1. Stirling engine-fitted µCHP/CHP units.

Source Stirling Type Working Fluid
Thermal

Power
[kWth]

Power
[kWel]

TStirling
[◦C] Fuel Use Fuel Type ηth ηel

[8] N/A Nitrogen 20 1 549 Combustion Pellets 81% 9%
[13] N/A N/A N/A N/A N/A Gasification Biomass 46% 23%
[14] N/A Nitrogen 8 1 823 Combustion Natural gas 90% 9%
[15] Alpha N/A N/A N/A 600 N/A N/A N/A N/A
[16] Gamma Nitrogen 20 1 500–660 N/A Biomass N/A N/A
[17] Gamma Helium N/A 1 370–410 Combustion Agricultural

waste N/A N/A
[18] Free piston N/A 1.1 1 N/A N/A Biomass 38% 42%
[19] Free piston N/A N/A 1 525 Combustion Natural gas N/A 23%
[20] Gamma N/A 15–40 0.3 625 N/A Pellets N/A N/A
[21] N/A N/A N/A N/A N/A N/A Wood residue N/A N/A
[22] N/A Helium 475 75 N/A N/A Chopped wood 74% 12%
[23] Alpha Nitrogen 6 0.92 460–480 Combustion Diesel N/A N/A

In terms of fuel comparison, it was found that sugarcane pellets and commercial
biomass pellets have similar temperature outputs [8]. The Stirling engine efficiency was
slightly lower when using sugarcane pellets. The ash level accumulations are higher for
sugarcane pellets; therefore, the heat exchanger surface must be cleaned more frequently
for this type of fuel, or the efficiency of the Stirling engine decreases.

The influence of the adiabatic combustion temperature on the maximum performance
of Stirling engines has been studied [9]. Adiabatic combustion temperatures from solid
biomass can reach up to 1100 ◦C. The authors propose the integration of an efficient
combustion cooling in order to prevent exceeding ash melting temperatures.

An experimental prototype µCHP based on a 100 kWth straw-fired boiler and a 14.8 kW
steam engine producing 1.1 kWel was investigated [10]. The authors found a correlation
between the resulted electrical efficiency of 2% and constructive factors such as the absence
of thermal insulation and the relatively large diameter of the steam piping.

A dynamic performance assessment of two internal combustion engines fueled by
natural gas and a reciprocating external combustion Stirling engine was performed using
simulation software [11]. The comparison showed that, for any of the proposed systems,
the primary energy consumption reduction can be up to 13.4%, and the CO2 equivalent
emissions can be reduced up to 18.9%, resulting in a reduction of 20.9% in operating costs
with respect to the conventional systems.

A thermodynamic and economic optimization of a solar-powered Stirling engine
µCHP was developed [12]. The best configuration studied can deliver 3.65 kWel of electric
power and 11.06 kWth of thermal power. The economic results show that the proposed
system has a payback period of approximately 10 years.

A Stirling engine was placed between a gasification unit and an internal combustion
engine [13]. The high temperature of the hot raw gas stream was found to be an economi-
cally attractive hot source for a Stirling engine. In this finance-oriented study, it was found
that profitability depends on the required investment costs and the investment becomes
more profitable as the cost of biomass rises.

The thermal efficiency has been studied for different domestic hot water tempera-
tures [14]. The analyzed temperatures were 30, 50, and 70 ◦C, and it was found that the
thermal efficiency was between 90% for 30 ◦C and 84% for 70 ◦C. In both cases, the electrical
efficiency slightly exceeded 9%.
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The integration of a Stirling engine in biomass-integrated gasification combined heat
and power (BIGCHP) was studied [15]. It was found that the function is best oriented
towards producing electrical power, because it is more costly than thermal output power.

The functioning with pellets of different diameters (Ø6 and Ø8 mm) was analyzed [16].
For the pellets having a diameter of Ø8 mm, the temperature ratio of the Stirling engine was
lower, and the regenerator effectiveness was higher. Moreover, a higher thermal efficiency
was recorded using Ø8 mm diameter pellets.

Agricultural biomass and wood waste were used as fuel to power a µCHP fitted with
a free-piston Stirling engine [17]. The power obtained was 10.71 W from the pruning of
trees and 25.79 W from sawdust.

A conceptual design and performance analysis of a free-piston Stirling engine was
conducted [18]. The components of a free-piston type Stirling engine were simulated and
optimized using different thermodynamic parameters and dimensional sizes.

A free-piston Stirling engine was also used for a µCHP application, running on natural
gas [19]. The study found that the developed Stirling engine had good power efficiency
even when functioning in a partial-load mode.

A pairing of a gamma-type Stirling engine with a fluidized bed combustor was realized
and it was found that the fluidized bed enabled the heat recovery produced in the gas
phase [20]. It was also found that higher temperatures can be achieved by placing the heater
of the Stirling engine in the fluidized bed, instead of the conventional flue gas stream.

A CHP application using a Stirling engine was studied in order to meet a 1.23 MWth
heat demand from a village [21]. It was concluded that CHP units fitted with Stirling
engines totaling 1 MWth could meet 70% of the heat demand, and the remainder could be
covered by a biomass furnace.

Before being implemented as µCHP, the Stirling engine was tested for CHP plants [22].
With a thermal power of 475 kWth and power of 75 kWth, it obtained similar efficiencies to
the µCHP applications.

A transient model of a µCHP unit running on diesel fuel was realized in the TRNSYS
program, describing the functioning process as a five-stage process [23]. The proposed
dynamic model showed that, during the start-up and steady states, the produced power is
proportional to the temperature difference between the Stirling engine block and the burner.

2. Materials and Methods

The ÖkoFEN PELLEMATIC Condens_e is an improved version of the Pellematic
Condens, which is fitted with a Stirling engine. Its output is described by a nominal
thermal power of 12 kWth and a nominal power of 1 kWel. Its partial thermal power can
drop to 8 kWth. It weighs 294 kg. It runs on wooden pellets, being fitted with an internal
30 kg fuel reservoir and connected to an additional 120 kg fuel silo. Its energy efficiency
index is 125. Its boiler temperature ranges from 25 to 85 ◦C. Its maximum operating
pressure is 3 bar. It has been tested by manufacturers to withstand pressures up to 4.6 bar.

Figure 1 shows the principal diagram of a biomass micro-cogeneration unit. The air
and biomass enter the furnace, producing heat, part of which is transferred to the heater of
the Stirling engine. The engine transforms the thermal power into mechanical power and,
through the generator, into electric power. The cooler of the Stirling engine transfers the
residual heat to the cold water coming from the end-user. This water is heated in 2 steps,
firstly from the rejected heat of the Stirling engine, and secondly from the remaining heat
of the flue gasses, through the economizer. When starting, the machine first mechanically
cleans the exhaust pipe of the previously deposed ash and combustion residue. The
machine is equipped with an automatic pneumatic fuel handling system. The electrical
combustion mechanism consuming 0.2 kWel is activated and heat from the combusting
pellets starts to release in the combustion chamber. The machine prioritizes the start of
the Stirling engine, whose inner working fluid (helium) will be heated to 220 ◦C prior to
producing power. At the starting point, it produces 100 to 120 W, and it increases to 850 to
1000 W in 60 min depending on the configured thermal flow output. The exhaust fumes are
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used to heat the heat transfer fluid (water) entering the machine that transports heat to the
end-user through a regenerator. The fumes have a temperature of 40 ◦C upon exit due to the
heat exchange with low temperature water entering the µCHP circuit, as shown in Figure 1.
After the temperature of the Stirling engine has reached 220 ◦C, an internal heat exchanger
transfers additional heat from the engine to the water that transports heat to the user, while
simultaneously ensuring the cooling of the Stirling engine. Once the Stirling engine starts
functioning, the starting phase is finished and the combustion process is stabilized, the
system starts circulating heat transfer fluid towards the user with a nominal temperature of
60 ◦C. The hot water temperature can reach 75 ◦C if the flow rate is too low to evacuate heat
from the machine. If this temperature is reached, the safeguard mechanism of the machine
will automatically switch the functioning to partial load, to trigger circuit cooldown.
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Figure 1. A biomass cogeneration unit with Stirling engine adapted from [23].

As shown in Figure 2, the displacement piston (3) pushes helium through the heat
exchanger (2) from the Stirling head (1) to the cooler (4). The spring (8) on the opposite
casing at the bottom pulls the piston back upwards. The helium is alternatively heated and
cooled, and as a result it expands and contracts again. The working piston (5) is moved
up and down by these pressure waves. The magnetic working piston (5) is surrounded
by a fixed magnetic coil (6) with copper windings (7). The maximum electrical output is
1050 W. The engine efficiency is 26% and its designed life is 50,000 h. It is sealed and does
not require maintenance.

The ÖkoFEN Pellematic Condens_e machine has its own internal sensors that can
be accessed locally, and through an Internet connection. The machine was tested in an
ON–OFF regime. Data was registered from the moment that the machine was turned on
and one hour after it was turned off, to observe parameters during cooling. The first tests
were performed for a total period of 270 min (4.5 h), including the cooling period. The
period was chosen so that the machine could put itself into partial load if necessary. As
soon as this happened, the experiment ended, because the goal was to produce electrical
power and a partial load has a negative impact on this production.

The data acquisition system is presented in Figure 3. The red arrow set represents the
process of measuring the thermal power output of the machine, the blue arrows that of
electrical power output, and the green arrows that of fuel mass flow.
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The thermal power output, represented with a red arrow, was measured by heat
transfer fluid flow and temperature. The water flow rate was recorded by a Flowmeter
Burkert 8035t, connected to a 100 S/s/channel, 4-Channel C Series Universal Analog
Input Module, model NI 9219, made by National Instruments, connected to a National
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Instruments CompactDAQ Chassis, connected to a LabVIEW algorithm that registered the
data once per minute in Excel. The heat transfer fluid temperature was recorded with a
JUMO PT100 model, connected to a C Series Temperature Input Module made by National
instruments, connected to the National Instruments CompactDAQ Chassis, connected to
the LabVIEW algorithm writing in Excel.

The blue arrow set represents the process of measuring the output power, which was
recorded internally by the ÖkoFEN PELLEMATIC Condens_e, and the data were recorded
once per minute.

The green arrow set represents the process of measuring the fuel mass, which was
recorded on a WALL-E Floor scale and connected to the PC with an RS232 to USB cable,
then exported to Excel via the DINI-TOOLS program. The fuel mass flow was determined
by recording the weight of the machine once every 60 s, because the fuel reservoir was
inside the µCHP.

The characteristics of the measuring sensors used are shown in Table 2.

Table 2. Characteristics of measuring sensors.

Type Metrologic Means Measurement Range Uncertainty

Water temperature JUMO PT–100 −20 ◦C to +150 ◦C 0.1 ◦C
Water flow rate Flowmeter Burkert 8035 0.5 L/min to 1000 L/min 1%

Fuel mass WALL-E Floor Scale 0 kg to 600 kg 0.03%

Exhaust gas Combustion analyzer
ECOM EN2

NO (0–5000 ppm)
CO (0–4000 ppm)

Figure 4 shows the measured and calculated parameters of the heat transfer fluid
(water) and flue gas on the micro-cogeneration unit. Details are given in Appendix A
Tables A1–A3.

The formula used to calculate the thermal power of the heat transfer fluid is presented
below as Equation (1). To calculate the flue gas temperatures, iterative calculus was used,
as shown in Figure 5. Equation (2) was used to calculate the thermal power of the flue gas
and, through Equation (3) [24], the flue gas temperature TFG

i was calculated.

Punit
th i =

Fcw

60
·ρwater·cpwater

(
Tunit

i+1 − Tpipe
i

)
(1)

Punit
th i = ηFG−W

HE ·Punit FG
th i (2)

Punit FG
th i = vthCO2FG

·
(
ρ

TFG
i+1

CO2
·cTFG

i+1
pCO2
·TFG

I+1 − ρ
TFG

i
CO2
·cTFG

i
pCO2
·TFG

i

)
+ vthSO2FG

·
(
ρ

TFG
i+1

SO2
·cTFG

i+1
pSO2
·TFG

I+1 − ρ
TFG

i
SO2
·cTFG

i
pSO2
·TFG

i

)
+ vthN2FG

·
(
ρ

TFG
i+1

N2
·cTFG

i+1
pN2
·TFG

I+1 − ρ
TFG

i
N2
·cTFG

i
pN2
·TFG

i

)
+ vthH2Oair

·
(
ρ

TFG
i+1

H2O·c
TFG

i+1
pH2O
·TFG

I+1 − ρ
TFG

i
H2O·c

TFG
i

pH2O
·TFG

i

)
+ (λ− 1)·vthdryair

·
(
ρ

TFG
i+1

wet air·c
TFG

i+1
pwet air

·TFG
I+1 − ρ

TFG
i

wet air·c
TFG

i
pwet air

·TFG
i

)
+ (λ− 1)

·vthH2OFG
·
(
ρ

TFG
i+1

H2O·c
TFG

i+1
pH2O
·TFG

I+1 − ρ
TFG

i
H2O·c

TFG
i

pH2O
·TFG

i

)
(3)

To calculate the heat transfer coefficient for the flue gas, polynomial functions of the
5th degree were calculated using the Microsoft Excel functions shown in Table 3, based on
property tables [25] of specific heat

[
kJ

kg·m3

]
and densities

[
kg
m3

]
of all composing elements

of the flue gas, which depend on temperature. The parameters (specific heat and density)
were determined through polynomial functions of the 5th degree by correlating the values
of property tables [25] (Y) to their corresponding temperatures (X).
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Table 3. The units comprising the thermal flow.

Coefficient Excel Function

x5 = @INDEX
(
LINEST

(
known Y′s, known X′ ŝ{1, 2, 3, 4, 5}

)
, 1
)

x4 = INDEX
(
LINEST

(
known Y′s, known X′ ŝ{1, 2, 3, 4, 5}

)
, 1, 2

)
x3 = INDEX

(
LINEST

(
known Y′s, known X′ ŝ{1, 2, 3, 4, 5}

)
, 1, 3

)
x2 = INDEX

(
LINEST

(
known Y′s, known X′ ŝ{1, 2, 3, 4, 5}

)
, 1, 4

)
x1 = INDEX

(
LINEST

(
known Y′s, known X′ ŝ{1, 2, 3, 4, 5}

)
, 1, 5

)
x0 = INDEX

(
LINEST

(
known Y′s, known X′ ŝ{1, 2, 3, 4, 5}

)
, 1, 6

)
Measurements were performed by varying the heat transfer fluid flow rate and the

thermal output configuration of the machine. The flow rate variation was undertaken by
manipulating a pump in the heat transfer fluid’s circuit. The pump has three flow rate
settings, which are referred to as Flow 1, Flow 2, and Flow 3. The thermal output variation
was undertaken by regulating the machines’ settings. The thermal output configuration
power was 10, 12, and 14 kWth. The purpose of varying the heat transfer fluid flow rate
and the thermal output power configuration was to determine the impact on the capacity
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to evacuate the produced heat. In terms of efficiency, the question was whether it is more
efficient to send heat from the machine to the end-user at a slower speed, consuming less
fuel, or whether it is more efficient to send more heat, consuming more fuel. This would
determine how the machine fits an end-user household, in order to obtain the best use of
fuel. Each of the 3 flows was paired with 3 thermal power outputs, resulting in a total of
9 configurations, as shown in Table 4.
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Table 4. The 9 tested configurations of the 3 thermal outputs paired to the 3 heat transfer fluid
flow rates.

Power, Flow 1 Power, Flow 2 Power, Flow 3

10 kWth, F1 10 kWth, F2 10 kWth, F3
12 kWth, F1 12 kWth, F2 12 kWth, F3
14 kWth, F1 14 kWth, F2 14 kWth, F3

The flow rate was measured once per minute during the start and end of functioning,
and arbitrarily in short intervals of 1 to 10 min after stabilization. Once the flow stabilized,
the variation between the average value of the flow and instantaneous values was between
−1.12% and 0.42%. Using Equation (4), the categorizing into phases was undertaken.
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For each configuration, the flow was divided into 5 stages: boot phase, start phase,
constant phase, end phase, and stop phase, as explained in Table 5. A flow was considered
“constant” if the produced thermal power varied with less than 5% in comparison to the
highest value recorded for the respective experiment. If the heat transfer fluid temperature
was not recorded in Excel by the LabVIEW algorithm, it meant that the experiment was
over; therefore, the stage was that of “end”.

= if(noted_stage = ”stop”, ”stop”
if(recorded_temperature = ”null”, ”end”
if(thermal_power_generated = 0, ”boot”

if(thermal_power_generated > 0.95·
maximum_thermal_power_generated, ”constant”, ”starting”))))

(4)

Table 5. The 5 stages of the experimental study.

Stage Description

Boot combustion process has started
Start thermal power evacuation process has started

Constant thermal power production is constant
Stop thermal power production is stopping
End thermal power production ended

If neither of the two met the conditions, the flow was considered as part of the starting
phase. This was performed using 4 IF clauses in Excel, as shown in Equation (4) and
explained in Figure 5.

Of the 5 phases of the experiment, those considered for the flow were the start, constant,
and end phase. The thermal output of the machine depended on whether it was sending
heat transfer fluid to the heat exchanger with the end-user; therefore, the flow had a
significant impact on the stage of the experiment.

Figure 6 shows the three phases of the flow. Values of the flow start from and stop
at approximately 2.5 L/min, due to the machine beginning and stopping to circulate heat
transfer fluid. During the starting phase, the goal is to power-up the Stirling engine in the
shortest time possible; therefore, there is no output heat from the machine, in order to attain
a 420 ◦C temperature in the hot source of the Stirling engine (TST

hot 2). During the constant
phase, the cold source of the machine (TST

cold) is cooled to a temperature of 36 ◦C, by the
water present in the inner circuit of the machine (Tunit

2 ). The iCube laboratory where the
tests were conducted had an average temperature of 23 ◦C; therefore, even with no thermal
power output, the cooling of the Stirling engine was possible. No tests were conducted
with a room temperature above 36 ◦C.
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Using the INDEX and the LINEST functions in Microsoft Excel, the coefficients of the
3rd degree equation (start phase), 1st degree equation (constant phase), and 2nd degree
equation (ending phase) were automatically calculated, for a more precise calculation of
the functions. The equations describing the flows in the start, constant, and ending phases
are shown in Equations (5)–(7). The functions are shown in Tables 6–8. It is important to
note that every time a new phase started, the minute at which the flow varied was reset
to 0.

Fstart(x) = x3 · c0 + x2 · c1 + x1 · c2 + x0 · c3 (5)

Fconstant(x) = x1 · c0 + x0 · c1 (6)

Fend(x) = x2 · c0 + x1 · c1 + x0 · c2 (7)

Table 6. Functions used for determining the 3rd degree equation of the flow in the starting phase.

Coefficient Microsoft Excel Function

x3 = @INDEX
(
LINEST

(
known Y′s, known X′ŝ{1, 2, 3}

)
, 1
)

x2 = INDEX
(
LINEST

(
known Y′s, known X′ŝ{1, 2, 3}

)
, 1, 2

)
x1 = INDEX

(
LINEST

(
known Y′s, known X′ŝ{1, 2, 3}

)
, 1, 3

)
x0 = INDEX

(
LINEST

(
known Y′s, known X′ŝ{1, 2, 3}

)
, 1, 4

)
Table 7. Functions used for determining the 1st degree equation of the flow in the constant phase.

Coefficient Microsoft Excel Function

x1 = SLOPE
(
known Y′s, known X′s

)
x0 = INTERCEPT

(
known Y′s, known X′s

)
Table 8. Functions used for determining the 2nd degree equation of the flow in the ending phase.

Coefficient Excel Function

x2 = @INDEX
(
LINEST

(
known Y′s, known X′ŝ{1, 2}

)
, 1
)

x1 = INDEX
(
LINEST

(
known Y′s, known X′ŝ{1, 2}

)
, 1, 2

)
x0 = INDEX

(
LINEST

(
known Y′s, known X′ŝ{1, 2}

)
, 1, 3

)
Figure 7 shows the calculated flow in comparison to the measured flow. The constant

phase was considered equal to the coefficient of the 1st degree function. The starting
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phase and the ending phase were calculated using the obtained equations. By measuring
the flow and through functions presented in Tables 6–8, values were obtained for each
minute of functioning, enabling the correlation with the other data that was obtained in a
1 min interval.
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Figure 7. An example of a flow function in its entirety.

In the STOP phase of the experiment, when the machine was no longer consuming
pellets, its weight remained the same; the weight would then be recorded, and it would
be subtracted from all the weights measured until that point. This showed the effective
mass of biomass that was consumed in the experiment. As Figure 8 shows, these
weights were recorded and the “SLOPE” function was used in Excel to determine the
consumption of biomass during the experiment, in order to calculate the fuel power
consumed. The Excel function is shown in Equation (8). The “ABS” function was used
in the formula because the slope shows the decrease in fuel mass in the inner reservoir
of the machine; therefore, its value is negative. The aim was to obtain the hourly mass
consumption of the machine.

= ABS
(
SLOPE

(
known Y′s, known X′s

)
·60
)

(8)
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Figure 8. An example of a mass flow function during an experiment.

To obtain the fuel power used by the machine, Equation (9) was used. The lower
heating value of the fuel was taken from previous works [26], which included a lower
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heating value analysis of the fuel performed by a third-party laboratory. The previous
study [26] studied a different µCHP, but used the same fuel from the same manufacturer;
thus, the composition of the fuel remained the same.

Pf uel = LHVf uel · f m f uel (9)

The thermal and power efficiencies were calculated by Equations (10) and (11).

ηth =
Pth

Pcomb
=

.
Vwater

60 ·ρwater·cpwater
(T6 − T5)

Pcomb
(10)

ηel =
Pel

Pcomb
(11)

An overview of the CHP-to-user circuit is presented in Figure 9. The thermal power
was calculated according to temperatures in points 6 and 5 of the diagram presented below,
as also shown in Equation (10). In calculating the total efficiency of the system, the thermal
losses occurring between points 6 and 7 were considered and included in the final efficiency
of the CHP unit. The reason for this inclusion was that the machine itself is being described
in this article and not the circuit connecting it to the user. The thermal losses occurring
depend on the distance from the machine to the heat exchanger with the user, the isolation
of the pipes, and other parameters that are variable from one case to the other. Therefore,
the thermal losses were calculated with Equation (12) and the total efficiency was calculated
with Equation (13).

ηthloss
=

.
Vwater

60 ·ρwater·cpwater
(T7 − T6)

Pcomb
(12)

ηtotal =
(
ηth + ηthloss

)
+ ηel (13)
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Figure 9. The overview of the CHP-to-user circuit and the points of temperature measurement.

3. Results
3.1. Flow Results

As shown in Equation (1), the thermal power output of the cogeneration unit depends
on the difference between the high temperature (Thot) and the low temperature (Tcold), in
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addition to the flow of the heat transfer fluid conducting heat. The nominal temperature
for hot water is 60 ◦C and the machine has an inner safeguard, which lowers the thermal
output power automatically once the temperature of 75 ◦C is reached.

The flow of the heat transfer fluid conducting heat from the machine to the user
cannot be precisely set. It depends on the quantity of heat available after powering the
Stirling engine. The flow increases in correlation to the amount of heat to be rejected by the
cogeneration unit and its setting influences the maximum flow value attainable. Figure 10a
shows that, for all scenarios of functioning on the 1st pump setting, the flow reaches a
constant value of 2.85 L/min, which is the upmost limit of the F1 setting.
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Figure 10. Flow results for the F1 (a), F2 (b), and F3 (c) settings, depending on thermal output powers
of 10 kWth, 12 kWth, and 14 kWth.
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As the amount of produced thermal power increases, so must the heat transfer fluid
flow that evacuates heat from the Stirling engine and flue gasses. If this flow is sufficient
to evacuate the available heat from the machine, the temperatures of the heat transfer
fluid will remain around 60 ◦C. Figure 10b shows that the machine reaches a constant flow
limit of 3.4 L/min after more than 160 min for the 10 kWth thermal power output. For
the thermal output power of 12 and 14 kWth, the constant flow limit is superior to that of
the 10 kWth configuration. The limit reached is superior, at 3.7 L/min, which is consistent
with the superior amount of heat to be evacuated from the CHP unit. This limit is reached
faster for the 14 kWth configuration than for the 12 kWth configuration, in under 50 min, in
comparison to 90 min.

The 3rd configuration of the flow has the highest limit of flow. As shown in Figure 10c,
it reaches 4.1 L/min in the case of a thermal power output of 14 kWth. The limitation of
this pump can be observed since the flow remains approximately the same for the 10 kWth
thermal power output, which is 3.5 L/min for F2 and 3.7 L/min for F3, whereas the same is
available for the 12 kWth thermal power output, registering 3.7 L/min for F2 and 3.8 L/min
for F3. The 14 kWth thermal power output necessitates the biggest flow of heat transfer
fluid to evacuate heat from the CHP unit, reaching 4.1 L/min.

3.2. Heat Transfer Fluid Temperature in Corelation with the Heat Transfer Flow

As seen in the previous sub-section, the heat transfer flow conducting heat from the
machine to the user cannot be precisely set, but only limited. Upon stabilizing, the value
of the flow depends on the quantity of heat rejected by the Stirling engine. The flow rises
in correlation to the amount of heat to be rejected by the cogeneration unit, and its setting
influences the maximum flow value attainable.

Figure 11a shows that, for all thermal power outputs on the 1st pump setting F1, the
flow reaches a constant value limited to 2.85 L/min, as previously also seen in Figure 8.
By correlating the flow values with the temperatures of the heat transfer fluid evacuating
heat from the machine, it can be observed that the temperature rises above 60 ◦C for all
configurations. In the case of 14 kWth using Flow 1 (14 kWth F1), the temperature (Thot)
raises to 74 ◦C. The machine enables its safeguard of keeping its temperature below
75 ◦C and switches to a partial-load ratio functioning of the Stirling engine, in order to
lower the temperature of its inner water. The temperature of the 12 kWth configuration
using Flow 1 (12 kWth F1) steadily rises to the same temperature of 74 ◦C as for the
14 kWth F1 configuration, and the safeguard system of the machine activates partial-load
ratio mode.

The temperatures correlated to the functioning in Flow 2 in Figure 11b show that only
the 10 kWth configuration temperature (Thot 10 kWth F2) stayed at a temperature of 61
◦C, whereas the 12 kWth and 14 kWth configurations had temperatures of 64 and 69 ◦C.
These results show that, even with a lower thermal power output of 10 kWth, the flow
is insufficient to evacuate the heat produced by the machine for the heat transfer fluid
to remain at 60 ◦C. The return water was kept at a constant temperature of 10 ◦C, due
to the heat exchanger with the user, which had a temperature of 8 ◦C. On the consumer
side, the water heated in this heat exchanger was not recirculated in the circuit; thus, the
temperature of 8 ◦C was maintained.

In the flow configuration with the highest limit, F3, shown in Figure 11c, it can be
observed that the temperatures still reach values greater than 60 ◦C, which is the desirable
temperature for the domestic hot water arriving at the consumer. The highest temperature
attained is for the 14 kWth thermal power output, of 63 ◦C, whereas the second-highest
temperature is for the 12 kWth thermal power output, of 61 ◦C, and the third-highest is that
of the 10 kWth thermal output, of 60 ◦C.

Since the flow of the heat transfer fluid influences its temperature, the same thermal
power output of 10 kWth is compared to flows in settings F1, F2, and F3 in Figure 12a.
For the thermal power output of 10 kWth, the F2 and F3 flow configurations ensured a
temperature of the heat transfer fluid between 59 ◦C and 61 ◦C. However, for the F1 flow,



Energies 2022, 15, 5547 15 of 23

the temperature rose to nearly 69 ◦C, which shows that the F1 setting of the flow was
insufficient for evacuating heat from the machine.
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Figure 12. Heat exchanger temperatures for thermal power outputs of 10 kWth (a), 12 kWth (b), and
14 kWth (c).

As shown in Figure 12b, in the 12 kWth thermal power output configuration, the
temperature of the F2 and F3 configurations rose to the interval of 60 to 62 ◦C, i.e., 2 ◦C more
than in the 10 kWth thermal output configurations, while still remaining at an acceptable
level of near 60 ◦C. The F1 configuration also registered a rise in the temperature of the
heat transfer fluid of 2 ◦C, reaching 71 ◦C. This temperature is above the 60 ◦C threshold
that the domestic hot water should have when arriving to the consumer.

For the 14 kWth thermal power output configuration shown in Figure 12c, the tem-
peratures of the heat transfer fluid rise by 2 ◦C for the F3 flow setting, by 7 ◦C for the F2
flow setting, and by 2 ◦C for the F1 flow setting. The inconsistency of these raises is due to
the safeguarding mechanism of the machine because, intuitively, there should have been
a proportionate increase in temperature for the F1 flow setting, in comparison to the F2
and F3 settings. However, the CHP unit starts to automatically run in the partial-load ratio
mode, to decrease its temperature and prevent reaching the set limit of 75 ◦C, which may
damage its components.
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3.3. Generated Power and Stirling Engine Work Fluid Temperature

Because the CHP unit entered the partial-load ratio mode in many cases, it is interesting
to observe the power output that was generated as a function of different flow rate settings.
The same thermal power output was grouped with the three flow rates to observe the
variation in the power produced due to the machine’s safeguarding mechanism.

As seen in Figure 13a, the temperatures of the working fluid of the CHP unit reached
similar values, of 420 to 440 ◦C. It can be observed that the 14 kWth thermal output configu-
ration generates the most power, reaching values of 950 to 1000 W. This configuration was
also the fastest to reach a stable value of 700 W. The configurations 10 and 12 kWth reached
lower values in comparison to that of 14 kWth, halting at 900 W. The difference between the
10 and 12 kWth configurations is that, in the case of 12 kWth, the generated power of 900 W
stabilized faster than that of the 10 kWth configuration. However, the F3 configuration has
a more constant power generation with less noise.
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Figure 13. Generated power output and Stirling work fluid temperature for the F1 (a), F2 (b), and F3
(c) flow settings.
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For the flow setting F2, it can be observed in Figure 13b that the temperatures of the
working fluid of the Stirling engine are similar to those for the flow setting F1. Moreover,
similar to the case of the F1 configuration, the 14 kWth configuration with F2 achieves the
nominal generated power faster than the 10 and 12 kWth configurations. The generated
power for the 14 kWth case passes the 1000 Wel threshold after 220 min of functioning,
whereas it reaches 950 Wel for the 12 kWth configuration after 140 min; this value is
comparable to the 14 kWth configuration at that point in time. The 10 kWth configuration
reaches only 900 Wel after 200 min of functioning.

For the F3 flow setting, shown in Figure 13c, the 14 kWth thermal power output
configuration passes the 1000 Wel threshold much faster than in the F2 flow setting, after
145 min, in comparison to 220 min for F2. The temperatures of the working fluid remain
similar, in the interval of 420 to 440 ◦C. The power generated by the 12 kWth thermal power
output is relatively stable at 900 to 950 Wel, reaching this point after 65 min of functioning,
whereas for the 14 kWth configuration, this power is reached after 55 min of functioning. In
the case of 10 kWth, the generated power reaches the 900 Wel value after 150 min, and the
values remain under 950 Wel.

3.4. Fuel Mass Flow Consumption and Efficiencies

The fuel mass flow was calculated with Equation (3) for all configurations. The
results are shown in Figure 14. The highest consumption of fuel per hour was for the F2
flows for the three thermal power outputs (10, 12, and 14 kWth). For the 10 and 12 kWth
configurations, the F1 flow had a higher rate of consumption than that of the F3 flow,
whereas, in the case of 14 kWth, it was the opposite.
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Figure 14. The fuel mass flow consumption of the studied configurations.

The thermal and power efficiencies were calculated using Equations (10)–(12). The
results are shown in Figure 15. The highest overall efficiency calculated with Equation (8)
was that of the 12 kWth thermal power output with the flow F3 configuration. The ranking
of the nine total efficiencies is shown in Table 6. It can be observed that the flow of
heat transfer fluid evacuating heat from the machine was the defining factor in the total
efficiency of the configurations. As a general pattern, the greater the flow, the better the
total efficiency.
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Figure 15. Power and thermal efficiencies of the studied configurations.

Table 9 shows the values of the stable temperatures reached by the heat transfer fluid
and the time to reach said values, and also indicates whether the configuration yielded in
an automatic enabling of partial load functioning due to an insufficient heat evacuation.
Generally, for all configurations, the greater the flow (F1 < F2 < F3), the better the heat
evacuation from the µCHP unit and, therefore, the lower the stable temperature. With good
heat evacuation, the temperature will ideally stay around 60 ◦C; with medium-quality heat
evacuation, the temperature will stay below 75 ◦C; and, with poor-quality heat evacuation,
the temperature will exceed 75 ◦C, resulting in a partial load functioning.

Table 9. Heat transfer fluid properties and partial load functioning for the configurations.

Configuration Stable Temperature
[◦C]

Time to Reach Stable Temperature
[min]

Automatic Switch to Partial
Load Functioning

10 kWth, F1 69 160 YES
10 kWth, F2 60 75 NO
10 kWth, F3 58 75 NO
12 kWth, F1 71 150 YES
12 kWth, F2 61 80 YES
12 kWth, F3 59 80 NO
14 kWth, F1 74 120 YES
14 kWth, F2 69 100 YES
14 kWth, F3 62 60 NO

One of the premises of the current study was that only one configuration would be
manually applied at a time, per each test. However, if this premise were to be modified
and the machine was able to switch from one configuration to another, a higher thermal
power output could be configured with a lower heat transfer fluid flow in order to reach the
desired temperature as fast as possible, and then to switch to a more stable configuration.
In this case, the 14 kWth, F1 configuration would be best suited to power-up the system
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as fast as possible, although it has the lowest efficiency. After reaching the 60 ◦C value,
the configuration could be switched to 12 kWth, F3, for functioning while having the best
total efficiency. In the summer season, the end-user requirement for heat would diminish;
therefore, a lower thermal power configuration would be better suited. In this case, a
configuration of 10 kWth, F1, would be recommended to obtain to the nominal temperature
of 60 ◦C, after which the flow rate would be changed to F3.

Table 10 shows the time necessary for all configurations to reach 60 ◦C and 0.8 kWel.
The value of 60 ◦C was chosen because it is the configured end-user domestic hot water
temperature. The value of 0.8 kWel was chosen as 80% of the nominal power generation
capacity of the Condens_e µCHP unit produced by ÖkoFEN, because not all configurations
reach 1 kWel in power generation, whereas all configurations produce more than 0.8 kWel.

Table 10. Time required to reach the configured temperature of the heat transfer fluid for
each configuration.

Configuration Time to Reach 60 ◦C [min] Time to Reach 0.8 kWel [min]

10 kW, F1 25 110
10 kW, F2 70 110
10 kW, F3 150 110
12 kW, F1 20 80
12 kW, F2 20 70
12 kW, F3 80 60
14 kW, F1 20 40
14 kW, F2 25 50
14 kW, F3 55 50

4. Conclusions and Perspectives

Hybrid Renewable Energy Systems (HRESs) that use micro-cogeneration devices
are a key solution to increase the decarbonization of the building sector [27]. From this
perspective, a biomass Stirling micro-cogeneration device was tested in order to determine
its performance, and for consideration in analyses of such HRESs. In particular, a dynamic
model based on physics and experimental investigations was developed to evaluate its
output thermal power and power efficiencies.

In the tests conducted at Institut National des Sciences Appliquées de Strasbourg,
the cogeneration unit worked in nine configurations: three heat transfer fluid flow rates
and three thermal power outputs. The temperature of the heat transfer fluid fueling
the household end-user with domestic hot water was configured in the studied µCHP
unit to be 60 ◦C. In contrast to the study where the thermal efficiency increased with the
temperature of the domestic hot water [13], in this case, an increase in the temperature
of the domestic hot water correlates with an inability of the flow rate of the thermal
medium to reject the amount of thermal power produced by the machine. This results in
an accumulation of heat inside the µCHP unit, leading to a rise in temperature, which
triggers the self-protection mechanism of the machine when it reaches 75 ◦C. This self-
protection mechanism activates the part-load operation, which has a negative impact
on electric energy production, since a reduction in thermal power also has an impact on
Stirling hot-source temperature.

For further studies, it would be interesting to couple the µCHP unit with a thermal
storage unit, in order to determine the optimal functioning regime for heating a large tank
of water, and then maintaining its temperature. Since the studied µCHP unit is supposed
to meet the baseload demand of household electricity consumption, a photovoltaic-thermal
system (PVT) and battery system would be a relevant addition to the goal of energetic
self-sufficiency in terms of electricity production and consumption. A dynamic simulation
of a photovoltaic-thermal (PVT) system was previously conducted [28], evaluating the
PVT output power coverage of household power demands in two different European
climates and an a HRES based on a biomass Stirling micro-cogeneration system. A PVT
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was also thermo-economically assessed under three different European climates and sets of
economic conditions [27].
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Appendix A

Table A1. Measured parameters and equipment used in measurement.

Measured Parameter Equipment Used Equipment Model Symbol Unit

Cold water flow Flow sensor SE35 FCW
l

min

µCHP unit inner water temperature 1 Condens_e
temperature sensor N/A Tunit

1
◦C

µCHP unit inner water temperature 2 Condens_e
temperature sensor N/A Tunit

2
◦C

µCHP unit inner water temperature 3 Condens_e temperature sensor N/A Tunit
3

◦C
µCHP unit inner water temperature 4 Condens_e temperature sensor N/A Tunit

4
◦C

Cold water exiting the DHW HE
temperature 5 Temperature sensor JUMO PT100 Tpipe

5
◦C

Hot water entering the DHW HE
temperature 6 Temperature sensor JUMO PT100 Tpipe

6
◦C

Hot water exiting the µCHP unit
temperature 7 Temperature sensor JUMO PT100 Tpipe

7
◦C

Cold water exiting the µCHP unit
temperature 8 Temperature sensor JUMO PT100 Tpipe

8
◦C

Flue gas final temperature Combustion analyzer ECOM EN2 TFG
4

◦C

Stirling hot head outer temperature 1 Condens_e
temperature sensor N/A TST

hot 1
◦C

Stirling hot head inner temperature 2 Condens_e
temperature sensor N/A TST

hot 2
◦C

Stirling cold head temperature Condens_e
temperature sensor N/A TST

cold
◦C

Power output Condens_e
power sensor N/A P kWel

Fuel mass Weight scale WALL-E Floor Scale mfuel kg
Room air temperature Combustion analyzer ECOM EN2 Tair room

◦C
Exiting flue gas O2 content Combustion analyzer ECOM EN2 %OFG

2 %
Exiting flue gas CO content Combustion analyzer ECOM EN2 %COFG ppm
Exiting flue gas NO content Combustion analyzer ECOM EN2 %NOFG ppm
Exiting flue gas NOx content Combustion analyzer ECOM EN2 %NOFG

x ppm
Exiting flue gas SO2 content Combustion analyzer ECOM EN2 %SOFG

2 ppm
Exiting flue gas CO2 content Combustion analyzer ECOM EN2 %COFG

2 %
Exiting flue gas air excess Combustion analyzer ECOM EN2 λ −
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Table A2. Constants used in calculus.

Constant Value Symbol Unit

Water density 997 ρwater kg/m3

Water specific heat at constant pressure 4.18 cwater
p kJ/kg·K

Flue gas—water heat exchanger efficiency 0.98 ηFG−W
HE -

Table A3. Calculated parameters shown in results.

Calculated Parameter Symbol Unit

Thermal power output of the µCHP unit Punit
th kWth

Thermal power of water passing through HEFG
cold Punit

th 1 kWth
Thermal power of water passing through HEST

cold Punit
th 2 kWth

Thermal power of water passing through HEFG
med Punit

th 3 kWth
Thermal power of water passing through HEDHW Ppipe

th
kWth

Flue gas temperature exiting the combustion chamber CC TFG
1

◦C
Flue gas temperature exiting HEST

hot TFG
2

◦C
Flue gas temperature exiting HEFG

med TFG
3

◦C
Carnot efficiency ηc -
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