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Abstract: The large net torque fluctuations in the reducer output shafts of conventional beam pump-
ing units and the existence of negative torque are the decisive factors that lead to their low efficiency
and high energy consumption. This study developed a positive torque modulation scheme for
conventional beam pumping units, which was based on the principle of the follow-up secondary
balance of the connecting rod. The CYJ10-4.2-53HF conventional beam pumping unit was selected as
the research object. The kinematic and dynamic simulation analysis of the modified pumping unit
was carried out using ADAMS software. The results showed that secondary balance torque curves
could realize the function of “peak cutting and valley filling” for the curves after the primary balance
and that the modified pumping unit could achieve a full-cycle positive value for the reducer output
shaft and verify the feasibility of our modulation scheme. A secondary balance offset angle of 315◦

was the best choice as the amplitude of the torque curve clearly increased and the phase remained
basically the same when the radius of the mass center of the secondary balance increased. Therefore,
when the offset angle value of the secondary balance weight was determined, the radius of the mass
center could be changed by adjusting the position of the secondary balance weight to achieve the
balance adjustment.

Keywords: beam pumping unit; positive torque; secondary balance; kinematic and dynamic analysis

1. Introduction

At present, oil production using sucker rod pumps is the main and most widespread
method for the operation of oil wells [1,2]. Currently, various sucker rod pumping units
are applied in the operation of oil wells. Among of the existing mechanical methods oil
production, the most common is the use of beam pumping units [2–4]. Beam pumping units
have a history of more than 150 years of application in over 900,000 oil wells worldwide.
Beam pumping units have the advantages of simple structures, reliability and durability [5]
and are still one of the main oil recovery methods for oil production in oil fields. There
are more than 200,000 oil wells in China, with beam pumping units employed in 80% of
them [6,7].

However, the torque in reducer output shafts is superposed on the polished rod torque
and the counterweight torque [8]. Since polished rod loads vary greatly in up-down strokes
and act on reducer output shafts through a four-link mechanism, they lead to the inherent
fluctuation characteristics of polished rod torque, which varies greatly in up-down strokes
and is mainly positive during the up stroke and negative during the down stroke [4,9,10].
Counterweight torque is a standard cosine curve, so counterweight torque is difficult to
balance effectively with polished rod torque for full cycles and reducer output shaft torque
fluctuates greatly and causes negative torque in beam pumping units. Reducer output
shaft torque is transmitted by motors through V-belts and gearboxes to ensure the normal
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operation of pumping units, so the fluctuation characteristics of reducer output shaft torque
directly determine the installed power of motors and the efficiency of the systems [9,11].
Large fluctuations and high peaks in reducer output shaft torque result in high installed
power and low system efficiency. Negative torque causes motor power generation, the
reverse impact of gears, reductions in the life cycles of motors and gearboxes and the
formation of inefficient areas in motors, so effectively balancing and reducing reducer
output shaft torque and eliminating negative torque is key to energy saving in beam
pumping units.

To solve these problems, many scholars and pumping unit manufacturing companies
have developed a variety of new energy-saving pumping units [12–18]. Although these
possess certain energy-saving effects, most of the new pumping units still do not solve
the problem of negative torque in the reducer output shaft and have the disadvantages
of poor reliability and difficult maintenance, which has restricted their development. On
the other hand, beam pumping units account for more than 80% of the total number of
pumping units, so it would be impossible to replace them all in a short time due to resource
utilization and economic costs. Therefore, reasonable schemes need to be developed to
carry out the low-cost transformation of conventional beam pumping units and modulate
negative torque in the reducer output shaft into positive torque [19].

In this study, the CYJ10-4.2-53HF conventional beam pumping unit was chosen as
the research object and a positive torque modulation scheme was developed, which was
based on the fixed-axis secondary balance principle. The energy-saving mechanism of
the modified beam pumping unit was verified via kinematic and dynamic analysis using
ADAMS. The laws of the key parameters that affect the impact of secondary balance on
torque curves was simulated and the key parameters were optimized.

2. Modulation Principle and Method
2.1. Modulation Principle

Based on the principle of fixed-axis secondary balance [20], torque modulation was
carried out for the CYJ10-4.2-53HF conventional beam pumping unit. As shown in Figure 1,
after the primary balance, negative torque appeared near 0◦ and 180◦ and peaks appeared
near 90◦ and 270◦. Within a pumping cycle, the torque presented two peaks and two valleys
after the primary balance. According to the net torque characteristics after the primary
balance, a secondary balance device was installed in the pumping unit. The secondary
balance rotation speed was twice that of the primary balance, which was achieved using
a secondary speed increasing mechanism. Within a pumping cycle, the torque that was
formed by the secondary balance in the reducer output shaft had two peaks and two valleys
and the peaks of the secondary balance torque corresponded to the valleys of the torque
after the primary balance and vice versa. After superposition, the original negative torque
became positive, the peak values became smaller and the whole torque curve became
gentler. The installed power of the pumping unit motor after the secondary balance was
remarkably smaller and the energy-saving effects were obvious [19].
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Figure 1. The principle of positive torque modulation according to fixed-axis secondary balance. 

2.2. Modulation Method 
The positive torque modulation method and the structure of conventional beam 

pumping units that are based on the principle of fixed-axis secondary balance are shown 
in Figures 2 and 3, respectively. The modified pumping unit included secondary balance 
system on the basis of the original balance system. The secondary balance system mainly 
included a speed increasing gearbox and a secondary counterweight. The original connect-
ing rod was replaced by a connecting rod frame, which connected the beam to the speed 
increasing gearbox. The input shaft of the speed increasing gearbox was equipped with a 
large gear and the output shaft was equipped with a small gear. The transmission ratio of 
the large gear to the small gear was 1:2. The input shaft of the speed increasing gearbox was 
fixed with a large crank and the output shaft was connected to the secondary counterweight 
[19]. 

 
Figure 2. A structure diagram of a positive torque beam pumping unit: 1, substructure; 2, manual 
brake; 3, motor; 4, belt; 5, pulley; 6, reducer substructure; 7, reducer; 8, primary counterbalance; 9, 
speed increasing gearbox; 10, secondary balance weight; 11, linkage frame; 12, beam balance weight; 
13, beam; 14, support; 15, horsehead; 16, wire rope; 17, polished rod eye. 

Figure 1. The principle of positive torque modulation according to fixed-axis secondary balance.

2.2. Modulation Method

The positive torque modulation method and the structure of conventional beam
pumping units that are based on the principle of fixed-axis secondary balance are shown
in Figures 2 and 3, respectively. The modified pumping unit included secondary balance
system on the basis of the original balance system. The secondary balance system mainly
included a speed increasing gearbox and a secondary counterweight. The original con-
necting rod was replaced by a connecting rod frame, which connected the beam to the
speed increasing gearbox. The input shaft of the speed increasing gearbox was equipped
with a large gear and the output shaft was equipped with a small gear. The transmission
ratio of the large gear to the small gear was 1:2. The input shaft of the speed increasing
gearbox was fixed with a large crank and the output shaft was connected to the secondary
counterweight [19].
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Figure 2. A structure diagram of a positive torque beam pumping unit: 1, substructure; 2, manual
brake; 3, motor; 4, belt; 5, pulley; 6, reducer substructure; 7, reducer; 8, primary counterbalance; 9,
speed increasing gearbox; 10, secondary balance weight; 11, linkage frame; 12, beam balance weight;
13, beam; 14, support; 15, horsehead; 16, wire rope; 17, polished rod eye.
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Figure 3. A structure diagram of a speed increasing gearbox: 1, gearbox; 2, secondary balance crank;
3, input shaft; 4, large gear; 5, output shaft; 6, small gear; 7, large crank; 8, connecting rod frame.

2.3. Working Process and Balance Analysis

When the pumping unit was working, the motion of the original connecting rod
was replaced by the speed increasing gearbox and the connecting rod frame because
they were fixed together. The secondary counterweight was fixed to the output shaft
of the speed increasing gearbox, so the secondary counterweight not only followed the
spatial plane movement of the speed increasing gearbox and the connecting rod frame,
but also rotated around the output shaft of the speed increasing gearbox. Therefore, this
positive torque modulation method could be called a follow-up secondary balance of the
connecting rod. The gravity and inertia forces of the secondary counterweight added a
dynamic counterweight to the primary balance crank to play the role of primary balance.
Therefore, it could be seen that the secondary balance that was based on the follow-up
of the connecting rod not only played the role of secondary balance, but also the role of
primary balance, which was conducive to reducing the weight of the primary balance and
saving steel [19].

3. Simulation Modeling

The influence of the quality parameters and structural parameters of each part of the
pumping unit on the dynamic properties of the transformed beam pumping unit was fully
considered. Firstly, the modified CYJ10-4.2-53HF pumping unit simulation prototype was
established using SolidWorks; then, the model was imported into ADAMS software to
calculate and systematically analyze the time response laws of the key parameters that
affected secondary balance.

3.1. Conditional Assumptions

When using ADAMS software for analysis, the following assumptions could be made,
according to the actual structural and bearing characteristics of the pumping unit and con-
sidering the main factors that affected the mechanical properties of the pumping unit [21]:

(1) The influence of the micro-stress deformation of each component was neglected and
the unit was regarded as a purely rigid body;

(2) The rotating bearing was simplified to be treated by the rotating pair in ADAMS and
the friction between the bearing and the shaft and the dissipation of the friction energy
were ignored;

(3) The gear transmission was simplified to be treated by the gear pair in ADAMS and
the energy dissipation during the gear transmission process was ignored;
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(4) The shapes of the fixed parts (such as the base, beam support, reducer base and
reducer shell), were simplified as they had no impact on the dynamic performance of
the pumping unit;

(5) The influence of the motor load on speed change was ignored and the crank of the
pumping unit was regarded as having a uniform angular speed rotation.

3.2. Virtual Prototype

According to the basic dimensions of each moving part of the CYJ10-4.2-53HF pump-
ing unit, as shown in Table 1, the full-scale model that was built in SolidWorks is shown in
Figure 4. The model was then saved in Parasolid format and imported into ADAMS.

Table 1. The basic size of the CYJ10-4.2-53HF unit (mm).

Pumping Unit Component CYJ10-4.2-53HF

Forearm Length A 4210
Back Arm Length C 2625

Connecting Rod Length P 3980
Height of Support Center H 6450
Height of Reducer Center G 2600

H–G 3850
Horizontal Distance I 3350

Crank Rotation Radius r 1205/1055/895
Overall Dimensions 10659 × 2188 × 8677
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3.3. Properties of the Modified Parts

Modifying the attributes of each part mainly included editing the part names and
qualities in ADAMS. The model qualities were mainly based on the actual quality settings
of the CYJ10-4.2-53HF pumping unit. The qualities of the main components that affected
the mechanical properties of the modified pumping unit are listed in Table 2.

Table 2. The mass of the main components of the modified CYJ10-4.2-53HF pumping unit.

Part Name Quantity
Mass (kg)

Part Name Quantity
Mass (kg)

Single Total Single Total

Beam 1 1759.2 1759.2 Tail Bearing Seat 1 192.7 192.7
Horsehead 1 363.1 363.1 Secondary Balance Crank 2 160.3 320.6

Primary Balance Crank 2 1429 2858 Secondary Balance Weight 4 307 1228
Large Counterweight 2 1390 2780 Speed Increasing Gearbox 2 301.6 603.2
Small Counterweight 2 1116 2232 Large Gear 2 57.6 115.2

Composite Balance Weight 1 458 458 Small Gear 2 19.8 39.6

Crossbeam 1 237.4 237.4 Large Gear Shaft of Speed
Increasing Gearbox 2 39.8 79.6

Connecting Rod 2 52 104 Small Gear Shaft of Speed
Increasing Gearbox 2 33 66
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3.4. Constraints

The constraints were realized by applying various kinematic pairs. The constraints
between the various parts of the modified beam pumping unit mainly involved fixed pairs,
rotating pairs, gear pairs and driving constraints. The specific settings are listed in Table 3.

Table 3. The motion constraints of the modified CYJ10-4.2-53HF pumping unit.

Constraint Type Constrained Parts

Fixed Pair

Base and ground
Support and base
Reducer and base

The output shaft of the reducer and the large crank
The large crank and the input shaft of the speed increasing gearbox

The small crank and the output shaft of the speed increasing gearbox
The connecting rod frame and the speed increasing gearbox

Rotating Pair

Beam and support
The reducer and the output shaft of the reducer

The input shaft of the speed increasing gearbox and the speed
increasing gearbox

The output shaft of the speed increasing gearbox and the speed
increasing gearbox

Gear Pair The large gear and the pinion of the speed increasing gearbox

Driving Constraint The output shaft of the reducer

3.5. Boundary Conditions

The rotation drive constraint was applied to the output shaft of the reducer so that
the crank rotated at a uniform speed. The stroke frequency of the pumping unit was set
at 6 times/min, i.e., the rotation angular speed of the rotation drive constraint was 36◦/s
and the time that was required for a full pumping cycle was 10 s. The gravity, inertia and
vibration forces and other factors that affected the suspension point load of the pumping
unit were fully considered. The suspension point load variation curve of real conditions in
a pumping cycle was applied to the simulated suspension point, as shown in Figure 5.
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4. Analysis of Simulation Results

In order to ensure the accuracy of our simulation results, the number of simulation
steps was set to 500. The time history change curves of various required parameters were
extracted in the postprocessing of the simulations and the simulation results were analyzed.
The virtual simulation model in ADAMS is shown in Figure 6.
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4.1. Kinematic Simulation

Figure 7 shows the displacement, velocity and acceleration curves of the suspension
point of the beam pumping unit. As can be seen from Figure 8, the rotation process of the
small crank was non-uniform in angular velocity as the maximum absolute value of the
angular velocity was at the bottom of dead center and the average value of the angular
velocity was −72◦/s, which was twice the angular velocity of the large crank. This was to
ensure the periodicity and the repeatable superposition of the motion.
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As can be seen from Figure 9, the angular velocity of the beam was negative most of
the time and was only positive for a fraction of the time because the crank rotation angle of
the up stroke was more than 180◦ and the crank rotation angle of the down stroke was less



Energies 2022, 15, 5496 8 of 15

than 180◦. The maximum angular velocity of the up and down strokes was nearly 1/2 of
a stroke of the suspension point, while the maximum angular acceleration was near the
upper and lower boundaries of dead center.
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4.2. Dynamic Simulation
4.2.1. Analysis of the Torque Superposition Process

Ignoring the influence of the motion inertia of the four-bar linkage, only the crank
torque curve that was applied by the suspension point load was considered. The primary
balance and secondary balance masses were set to zero and the suspension point load was
applied according to the load curve that was shown in Figure 5. After the simulations,
the torque curve of the reducer output shaft was obtained, as shown in Figure 10. Due to
the structure of the four-bar linkage, the action time of the up stroke was more than 5 s
under the action of the suspension point load (which was more than 180◦) while the action
time ofn the down stroke was less than 5 s (which was less than 180◦).
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point load.

The suspension point load, secondary balance weight and four-bar linkage weight
were all set to zero to consider the reducer output shaft torque curve that was formed
under the action of the primary balance alone. The reducer output shaft torque curve after
simulation is shown in Figure 11. As can be seen from Figure 11, the torque curve followed
an approximate sinusoidal variation law under the action of the primary balance, which
was negative during the up stroke and positive during the down stroke.
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The secondary balance mass was set to zero so as to only consider the reducer output
shaft curve that was formed under the action of the suspension point load and the primary
balance. As can be seen from the curve in Figure 12, there was still negative torque at the
upper and lower boundaries of dead center after the primary balance.
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As can be seen from Figure 13, the torque variation law that affected the large gear
and the pinion was completely consistent and was similar to the sinusoidal law. There
were two peaks and valleys, which were formed in a cycle. Because the reference diameter
of the large gear was twice that of the pinion, the torque amplitude of the large gear was
also twice that of the pinion and the curve was completely symmetrical along the abscissa
at 4.5 s.
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As can be seen from Figure 14, the torque of the secondary balance weight that acted
on the output shaft of the reducer was very different from that of the large gear shaft
of the speed increasing gearbox. The torque amplitude of the reducer output shaft was
greater than that of the large gear shaft because the torque in the large gear shaft was only
from the rotation of the secondary balance weight, while the torque in the reducer output
shaft was superposed by two parts: the rotation of the secondary balance weight and the
primary balance, which was generated by its own weight and motion inertia force along
with the spatial plane motion of the connecting rod. It could also be concluded that the
secondary balance weight not only played the role of secondary balance in the positive
torque modulation scheme of the follow-up secondary balance of the connecting rod, but
also that of the primary balance. Compared to fixed-axis secondary balance, this positive
torque modulation scheme was conducive to reducing the mass of the primary balance
weight and saving steel.
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Figure 14. The contrast between the torque curve of the reducer output shaft and that of the large
gear shaft of the speed increasing gearbox under the action of the secondary balance weight.

The torque superposition process in the output shaft of the reducer is shown in
Figure 15. The torque from the output shaft of the reducer still had negative torque after
the primary balance; however, the net torque completely changed to a positive value after
the secondary balance and the peak torque decreased. The torque superposition process
achieved the effect of “peak cutting and valley filling” for the original torque curve, which
once again verified the feasibility of this positive torque modulation scheme.
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4.2.2. Influencing Factor Analysis of the Secondary Balance

At the initial moment, the coordinates of the rotation axis of the secondary crank were
(−119.6559262832, 3363.7915871441, −1771.9753325099), the distance between the mass
center of the secondary crank and the rotation axis was 377.55 mm and the coordinates of the
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mass center of the secondary balance at 12 o’clock were (−119.6559262832, 4012.3454134886,
−1771.9753325099). According to the coordinate transformation law:

x = x1
y = y1 + a cos θ
z = z1 − a sin θ

(1)

where:

x, y, z are the mass center coordinates of the secondary balance crank after rotation (mm);
x1, y1, z1 are the coordinates of the center of the secondary balance rotation (mm);
θ is the rotation angle of the crank centroid (◦);
a is the radius of the crank centroid (mm).

We rotated the secondary crank counterclockwise by 30◦, 60◦, 90◦, 180◦, 210◦, 240◦,
270◦, 300◦, 330◦ and 360◦ to obtain the mass center coordinates of the secondary balance
crank, as shown in Table 4.

Table 4. The mass center coordinates of the secondary balance crank at different initial positions (mm).

Offset Angle x y z

0◦ −119.6559262832 4012.3454134886 −1771.9753325099
30◦ −119.6559262832 3960.7594783429 −1957.7503325099
60◦ −119.6559262832 3822.5415871441 −2098.9432237087
90◦ −119.6559262832 3633.7915871441 −2149.5253325099

120◦ −119.6559262832 3445.0165871441 −2098.9432237087
150◦ −119.6559262832 3306.8236959452 −1957.7503325099
180◦ −119.6559262832 3256.2415871441 −1771.9753325099
210◦ −119.6559262832 3306.8236959452 −1583.2003325099
240◦ −119.6559262832 3445.0165871441 −1445.0074413110
270◦ −119.6559262832 3633.7915871441 −1394.4253325099
300◦ −119.6559262832 3822.5415871441 −1445.0074413110
330◦ −119.6559262832 3960.7594783429 −1583.2003325099

We set the suspension point load and the mass of the primary balance weight to zero
and the secondary balance mass to 1200 kg. Therefore, the output shaft torque of the
reducer was only caused by the secondary balance weight. Figure 16 shows the output
shaft torque curves of the reducer with different secondary balance offset angles. As can be
seen from Figure 16, the use of different offset angles had a great impact on the fluctuation
forms of the torque curves, which not only caused changes in the curve phases, but also led
to differences in the curve amplitudes. The curves that were composed of two peaks and
valleys were basically negative during the up stroke and positive during the down stroke.
The minimum and maximum values of the curves were generated near the middle of the
up and down strokes, respectively. According to the characteristics of the torque curve
of the reducer output shaft after the primary balance, the offset angle that corresponded
to a curve with a positive value at the beginning and end of the crank rotation cycle was
selected as the reference value for the reasonable offset angle of the secondary balance.
Three curves with offset angles of 270◦, 300◦ and 315◦ were then selected as the secondary
balance torque curves.

Only the torque curve of the reducer output shaft under the influence of the secondary
balance was considered. We set the suspension point load and the mass of the primary
balance weight to zero to change the mass of the secondary balance. The torque curve of
the reducer output shaft is shown in Figure 17. As can be seen from Figure 17, the changes
in the secondary balance mass only changed the torque amplitude and had no effect on
the phase.
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Figure 17. The function analysis of the reducer output shaft torque, which was influenced by the
different secondary balance masses.

The variation law of the reducer output shaft torque under the action of the sec-
ondary balance weight, which was influenced by different stroke frequencies, is shown
in Figure 18. The stroke frequencies that were applied to the virtual prototype were
6 times/min, 8 times/min and 10 times/min. As can be seen from Figure 18, the variation
law of the reducer output shaft torque curve under the different stroke frequencies was
basically unchanged. As the stroke frequency increased, the amplitude increased and
the minimum value decreased slowly, while the maximum value increased significantly
and the positive torque value at the bottom of dead center decreased when the abscissa
was zero. Therefore, it could be concluded that the greater the stroke frequency, the more
unfavorable the secondary balance effect.
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The initial centroid coordinates of the secondary balance when the offset angle was
300◦ and the centroid radius was 377.55 mm, 500 mm and 750 mm are shown in Table 5.

Table 5. The initial centroid coordinates of the secondary balance crank with different centroid radii
when the offset angle was 300◦ (mm).

Centroid Radii (mm) x y z

377.55 −119.6559262832 3822.5415871441 −1445.0074413110
500 −119.6559262832 4012.3454134886 −1771.9753325099
750 −119.6559262832 4008.7915871441 −1122.4562796715

The torque curves of the reducer output shaft with an offset angle of 300◦ and different
centroid radii of the secondary balance crank are shown in Figure 19. When the radius of
the center of the mass increased, the amplitude of the torque curve increased obviously and
the change in centroid radius had little effect on the phase of the curve. Therefore, when
the offset angle value of the secondary balance weight was determined, the centroid radius
could be changed by adjusting the position of the secondary balance weight to achieve
balance adjustment.
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4.2.3. Determination of a Reasonable Offset Angle

Among the factors that affected the secondary balance, the torque curve of the sec-
ondary balance that acted on the reducer output shaft had to be determined once the
offset angle of the secondary balance was determined. The mass and centroid radius of
the secondary balance could be ignored because they only affected the amplitude of the
secondary balance and had little influence on the phase of the secondary balance that acted
on the torque of the reducer output shaft. The torque amplitude that was required by the
secondary balance was related to the suspension point load of the actual pumping unit.
Therefore, only the offset angle of the secondary balance, which was independent from the
actual conditions, was determined here.

The applied suspension point load was consistent with the above suspension point
load. We set the mass of the primary balance crank and the balance weight as shown in
Table 2. We set the total mass of the secondary balance crank and the balance weight as
1200 kg and we set the secondary balance offset angle as 285◦, 300◦, 315◦ and 330◦ for the
simulation tests. The secondary balance centroid coordinates when the offset angle was
300◦ and 330◦ are shown in Table 5. The centroid coordinates when the offset angle was
285◦ and 315◦ were, respectively:

(−119.6559262832, 3731.5087176225, −1407.2900367944)
(−119.6559262832, 3900.7597523817, −1505.0071672729)

The torque curves of the reducer output shaft for the different secondary balance offset
angles are shown in Figure 20. The curves were prone to have negative values near the
bottom of dead center and the abscissa at 3 s corresponded to a rotation angle of 108◦. As
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can be seen from Table 6, the torque values were all positive when the secondary balance
offset angle was 300◦ or 315◦ and were all negative values when the offset angle was 285◦

or 330◦. Because the minimum value of the torque at 315◦ was greater than that at 300◦

while the maximum value, average value and root mean square value at 315◦ were less
than those at 300◦, the secondary balance offset angle of 315◦ was the best choice.
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Figure 20. The reducer shaft torque curves for the different secondary balance offset angles.

Table 6. A comparison of the reducer output shaft torque values for the different secondary balance
offset angles.

Secondary Balance Offset Angle Minimum Value Maximum Value Average Value Root Mean Square Value

285◦ −6.877 47,199 17,980 22,636
300◦ 1753.6 45,094 17,978 21,955
315◦ 2396.5 42,869 17,974 21,499
330◦ −275.74 40,667 17,970 21,168

5. Conclusions

Based on the principle of secondary balance, a basic scheme for the positive torque
modulation of a conventional beam pumping unit with the follow-up secondary balance of
the connecting rod was developed. A modified mechanical structure for the connecting
rod and a speed increasing gearbox were designed. The modified pumping unit could
realize full-cycle positive torque, reduce the installed power and produce good energy-
saving effects. It provided a feasible solution to the need for energy-saving traditional
beam pumping units. This study analyzed the kinematics and dynamics of the modified
pumping unit and the influence of key parameter laws on the effects of secondary balance
using ADAMS, which revealed the mechanisms of the positive torque modulation. Our
main conclusions were as follows:

(1) The small crank rotated with a non-uniform angular velocity, but its average an-
gular velocity was approximately twice that of the large crank so as to ensure the
repeatability and superposition of the motion cycle;

(2) Secondary balance not only played the role of secondary balance in balancing negative
torque, but also the role of the primary balance. Different secondary balance offset
angles not only caused changes in the curve phase, but also led to changes in the curve
amplitude. The best choice for the secondary balance offset angle was 315◦. The sec-
ondary balance torque curve could realize the “peak cutting and valley filling” for
the curve after the primary balance, which achieved full-cycle positive values for the
reducer output shaft net torque and verified the feasibility of this modulation scheme;

(3) When the radius of the secondary balance mass center increased, the amplitude of
the torque curve increased obviously and the phase remained basically the same.
Therefore, when the offset angle of the secondary balance weight was determined, the
radius of the mass center could be changed by adjusting the position of the secondary
balance weight to achieve balance adjustment.
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