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Abstract: This work is focused on the numerical determination of Shannon probabilistic entropy for
MEMS devices exhibiting some uncertainty in their structural response. This entropy is a universal
measure of statistical or stochastic disorder in static deformation or dynamic vibrations of engineer-
ing systems and is available for both continuous and discrete distributions functions of structural
parameters. An interval algorithm using Monte Carlo simulation and polynomial structural response
recovery has been implemented to demonstrate an uncertainty propagation of the forced vibrations
in some small MEMS devices. A computational example includes stochastic nonlinear vibrations
described by the Duffing equation calibrated for some micro-resonators, whose damping is adopted
as a Gaussian, uniformly and triangularly distributed input uncertainty source.

Keywords: Shannon entropy; MEMS vibrations; Duffing equation; random damping

1. Introduction

It is well known that the probabilistic entropy of the given random variable or process
represents an averaged level of uncertainty in its numerical or experimental realizations.
It is also a mathematical extension of its thermodynamic origin, invented by Boltzmann,
and now it may serve as a universal measure of disorder in the given engineering system.
The first method of its calculation was proposed by Claude Shannon [1,2], although the
term “entropy” was introduced by Johann von Neumann; this has been used multiple
times to analyse disorder in various engineering systems [3]. The original definition
by Shannon includes a summation of probabilities of various admissible states of the
given experiment multiplied with their logarithms; such an entropy was determined from
the very beginning using various estimation methods [4]. Various further extensions
and modifications have been worked out independently and presented by Renyi [5,6],
Tsallis [7–10], and Kolmogorov and Sinai [11,12]. They are available now for both discrete
and continuous probability distributions of the stochastic response for a given engineering
system, and are also applicable in some non-engineering studies [13].

Despite the calculation method, maximum entropy is equivalent to minimum knowl-
edge about some phenomenon and vice versa. The majority of research related to probabilis-
tic engineering mechanics recalls most frequently the maximum entropy principle [14,15],
which states that the probability distribution giving the best representation of the current
knowledge state about a given engineering system is the one having the largest probabilis-
tic entropy.

The main numerical difficulty in probabilistic entropy calculation is the necessity of the
final probability density function availability. This makes many of the stochastic computer
techniques like Bayesian methods [16], Karhunen-Loeve, polynomial chaos, or stochastic
perturbation technique [17] simply inapplicable; this is the reason why the traditional
Monte Carlo simulation scheme [18,19] may be preferred in this context. Some studies
in the area of applications of probabilistic structural dynamics have been documented in
the literature [20]. An interesting alternative could be the determination of probabilistic
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distance (divergence) in between two probability densities, which can represent the general
input signal and the output response. It can be useful in civil engineering to model limit
functions, being an inherent part of reliability assessment. Such a probabilistic distance
may link extreme structural effort of the given nature with its corresponding capacity
(in the context of deformations and/or stresses), so it could be an alternative measure
of the structural safety or may be employed for sensitivity in engineering design [21]. A
huge variety of relative entropy models is available now in the literature: it is necessary
to recall the Kullback–Leibler approach [22] (exhibiting a well-known lack of symmetry),
Jensen–Shannon, Hellinger [23], Chernoff [24], Mahalanobis [25], or Bhattacharyya [26]
probabilistic differences.

The purpose of this study is the determination of probabilistic entropy fluctuations in
some micro-resonator-forced vibration problems with uncertainty described by the Duffing
equation; its understanding seems to be necessary for further, more general, numerical anal-
yses of the disorder and uncertainty propagation in nonlinear vibrations of various MEMS
devices [27–29]. Let us note that entropy propagation in stochastic structural dynamics has
been studied before for some elastic beams with cross-sectional uncertainty [30]. The need
for randomness analysis in the case of these devices is motivated by a lot of different rea-
sons: (i) material and geometrical imperfections, (ii) environmental actions, measurements,
and vibrations (as well as their sources), (iii) statistical scattering in the shape, response
and material characteristics of their structural components, (iv) coupling in-between differ-
ent physical fields, phenomena and properties (thermo-electro-magneto-mechanical) and
their time delay in various exploitation conditions [31]. The damping coefficient of these
micro-devices is chosen as the input uncertainty source because this parameter decisively
affects its dynamic response, and its probability distribution is modelled using alternatively
uniform, triangular as well as Gaussian distributions; all these distributions are based on
the same upper and lower bounds for the uncertainty interval. The deterministic vibrations
spectrum is obtained numerically using the Runge–Kutta–Fehlberg algorithm [32] imple-
mented in the computer algebra system MAPLE, and this is the basis for the polynomial
Least Squares Method [33] approximation of the micro-resonator displacements concerning
the damping coefficient. Further parts programmed in the same system include Monte
Carlo sampling (MCS) of the damping parameter and the same sampling of the dynamic
response and final Shannon entropy calculation using a formula adjacent to the interval
representation of the statistical data. Due to the highly nonlinear character of the physical
phenomenon and of the corresponding dynamic equilibrium equation, numerical simula-
tion is the only uncertainty analysis method; analytical formulas derived and widely used
for linear stochastic systems cannot be simply used in this case. The approach proposed
in this work may be used for more advanced MEMS analyses using commercial Finite
Element Method codes like COMSOL or ABAQUS, for computer simulation of inelastic
deformation in solids, for disorder propagation analysis in various computational fluid
mechanics problems.

2. Governing Equations of the Problem

Problem 1. Determine Shannon entropy H(y(c; t)) for a dynamical system having a single degree
of freedom and governed by the following differential equation:

m
..
y(t) + c

.
y(t) + k1y(t) + k2y2(t) + k3y3(t) = F sin(ωt) (1)

where m denotes the mass of the vibrating structure, c stands, obviously, for the damping coefficient,
discrete values k1, k2 and k3 are first, second and third-order stiffness coefficients related to various
physical fields and sources, F and ω are the amplitude and frequency of the modulation signal.
External forcing has been chosen as perfectly periodic at the initial stage to verify how stationary
signals affect the structural response of the MEMS. It also enables for some verification of the
output signals and is frequently chosen in various theoretical and numerical studies. Initial
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equation of motion is solved with traditional initial conditions equivalent to static equilibrium in
the undeformed configuration:

y(t = 0) = 0,
.
y(t = 0) = 0, (2)

Shannon entropy is to be determined from its classical definition at any discrete-time
moment τ. It yields [3,34]:

H(y(c, τ)) = −
n

∑
i=1

pi(y(c, τ)) log(pi(y(c, τ))), (3)

where n denotes the total number of subintervals enabling discretization of the entire
probability domain of the given structural response. Let us note that this formula could be
generalized towards the continuous PDFs as

Ĥ(y(c, τ)) = −
+∞∫
−∞

py(x) log
(

py(x)
)

dx. (4)

This formula would be applicable if only any reliable numerical method of determi-
nation of the density py(x) would be available. The majority of such an approach would
be insensitivity to the output PDF partition during post-processing of the Monte Carlo
simulation results. Interval analysis for estimation of the Shannon entropy [35,36] is further
employed, so that: let us consider a continuous random variable b with its probability
density function gb(x) discretized by a set of subintervals of constant length δ. The mean
value theorem leads to the following representation of pb(x) in each ith subinterval:

pb(xi) =
1
δ

(i+1)δ∫
iδ

pb(x) dx. (5)

Let us introduce further the quantized random variable x̂ defined as

x̂ ≡ xi f or iδ ≤ x̂ ≤ (i + 1)δ, (6)

with probability equal to

pi =

(i+1)δ∫
iδ

pb(x) dx = δ pb(xi). (7)

According to the Shannon definition, probabilistic entropy corresponding to a partition
of pb(x) into n equal subsets equals [37,38]

H(x̂) = −
n
∑

i=1
pi log(pi) = −

n
∑

i=1
δpb(xi) log(δpb(xi)) =

= −
n
∑

i=1
δpb(xi) log(pb(xi))− log(δ).

(8)

Finally, calculation of probabilistic moments of the structural response at any discrete-
time moment τ undergoes, using classical statistical estimators (as in [39]),

E[y(c, τ)] =
1
M

M

∑
j=1

yj(c, τ),Var(y(c, τ)) =
1

M− 1

M

∑
j=1

{
yj(c, τ)− E

[
yj(c, τ)

]}2. (9)

M denotes in these relations the total number of random trials, while the coefficient
of variation of the structural response is obtained by a ratio of standard deviation to the
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corresponding expectation. Further determination of probabilistic entropy for the given
MEMS device proceeds directly thanks to the determination and partition of the probability
distribution function of its structural response. This in turn proceeds via the iterative
solution of the following equation:

m
..
y(j)(t) + c(j)

.
y(j)(t) + k1y(j)(t) + k2y2

(j)(t) + k3y3
(j)(t) = F sin(ωt), (10)

Since the damping coefficient is taken as the Gaussian input variable with expectation
and standard deviation equal to E[c] and σ(c), respectively, its discrete realizations are
obtained via an equidistant partition of the interval [E[c] − 3σ(c), E[c] + 3σ(c)]. These
discrete solutions substituted to the Least Squares Method fitting procedure enable one to
determine the structural response as a polynomial of its damping, and the order of this
polynomial is optimized using minimization of the fitting variance and RMS error as well
as maximization of the correlation factor of the approximating polynomial to the fitting
dataset. Having determined the response polynomial, one may apply the classical MCS
strategy to make a histogram of this response, whose further processing results in Shannon
entropy value. Such an algorithm enables the application of non-Gaussian parameters or
even a couple of various uncertainty sources at the same time.

3. Mems Device Description

The so-called L-shaped micro-resonator is the engineering device under consideration
here. It consists of two parallel electrodes (the driving one and the sensing one; see Figure 1).
External acceleration includes in this resonator some longitudinal force and it is modelled
as a slender beam having a constant cross-section, inertia moment, and Young’s modulus.
It is axially constrained at both ends and it oscillates in bending mode due to a certain
electrostatic actuation. Some relaxation at one end of such a micro-resonator is modelled
by introducing an equivalent axial spring. It is well known that L-shaped micro-resonators
exhibit a coupled non-linear response, which consists of electrostatic non-linearity resulting
from the parallel plates actuation as well as mechanical non-linearity in the axial stretching.
The equation of motion of such a resonant beam including both effects may be directly
derived from the Hamilton principle [40] and it is relevant to the equivalent single degree
of freedom (d.o.f.) dynamic model. Needless to say, such a micro-device is very sensitive to
the operation temperature range [40], but this effect has been postponed here due to the
brevity of presentation and discussion.
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Figure 1. L-shaped micro-resonator.

Numerical analysis reported here has been completed with experimental input data
adopted after [41]. Mechanical and electrical contributions km and ke to the overall stiffness
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of the micro-resonator are represented by the following stiffness coefficients ki, i = 1, 2, 3,
which in turn are taken as

k1 = (km1 − ke1) = (0.829 − 0.068) = 0.761 N/m, (11)

k2 = 0 N/m2,

k3 = (km3L − ke3) = (1.45 × 1011 − 2.2 × 1010) = 12.3 × 1010 N/m3.

The second order stiffness k2 simply vanishes for the perfect micro-resonators, where
the gaps in between the resonator and driving, as well as sensing electrode are equal to
each other. In this specific case, Equation (10) becomes the Duffing equation, whose further
numerical solution enables stochastic response analysis. Some other physical phenomena
appearing in the micro-resonators together with their mathematical consequences have
been reported in detail in [40]. The effective mass of the micro-resonator was calculated
in [41] from its length L = 400 µm, width t = 1.2 µm, out of the plane thickness w = 15 µm,
the silicon mass density ρ = 2330 kg

m3 . The value m = 0.3965 × M = 6.65 × 10−12 kg is
obtained, using the formula that gives the equivalent mass m as a fraction of the total
beam mass M = 16.78 × 10−12 kg. The mean value of the damping coefficient has been
proposed using the formula c = 1

Q

√
km

[
Nsec

m

]
, where k includes all the stiffnesses

introduced in Equation (1); the expected value of damping parameter c has been taken as
equal to E [c] = [0.00394] x 10−6 [Nsec/m] and the coefficient of variation of this physical
parameter is taken further from the interval α(c) ∈ [0.00, 0.20]. The harmonic external force
representing electrostatic actuation is introduced as

F sin(ωt) = η va(t), (12)

where

η = α Vp
ε0wL

d2 , α = 0.523, Vp = 2 ÷ 9 [V], ε0 = 8.8541878176× 10−12 [F/m].

w = 15 µm, L = 400 µm, d = 2.1 µm, va(t) = va sin(ωt), va = 5× 10−3 ÷ 1× 10−1 [V] (13)

In the above relations, α denotes the coefficient related to the mechanical behavior
of the resonator, Vp is the bias voltage, ε0 is the absolute vacuum permittivity constant, d
means the gap between the oscillating beam and the electrode, va(t) is the actuation voltage,
usually modulated at the mechanical frequency of the oscillating beam ω. Finally, the
external force has the following multiplier: F = 56.7× 10−10 [N], while a frequency ω has
been adopted as 103.

4. Numerical Simulation and Discussion

The entire numerical simulation has been programmed and performed in the computer
algebra system MAPLE 2019.2. This computational environment has been preselected
because it offers a Runge–Kutta–Fehlberg numerical solution of the Duffing equation,
the Least Squares Method polynomial approximations for the given discrete datasets,
and also random number generators, statistical estimation of the resulting probabilistic
characteristics, together with histogram creation. Some additional procedures enabling
statistical optimization of approximation order, Shannon entropy estimation have been
additionally implemented into a single MAPLE script. The computer system MAPLE
offers also interoperability with other computer simulation systems (both academic and
commercial), building and usage of the user’s own Windows applications, as well as macro-
procedures supervising cyclic usage of other mathematical and engineering software.

It is of paramount importance when the Monte Carlo simulation is to be carried out.
It should be mentioned that neither the chosen computer system nor other commercial
mathematical packages directly enable computations of probabilistic entropy in the context
of differential equations solution.
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A flowchart of numerical analysis programmed in the system MAPLE is schematically
shown in Figure 2 below. The following notation has been adopted: (i) M means the
total number of random samples in the Monte Carlo scheme, (ii) N denotes the number
of discrete time moments in dynamic analysis, while (iii) P corresponds to the order of
polynomial approximation, whose optimal choice is P’.
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One of the most important parts in this methodology is numerical recovery of the
polynomial response functions and statistical optimization of its order. They are carried
out both for several input discrete damping coefficients and the corresponding structural
outputs. The main goal is to find the polynomial, whose order guarantees that the poly-
nomial is the closest to the datasets linking the damping and structural response. Such a
procedure is completed at each discrete time moment for the given domain of structural
vibrations. Various order fitting polynomials are numerically determined using the Least
Squares Method approach (consecutively from 2 to 9) and then, the variance as well as the
correlation factor are computed for all these orders. Optimal polynomial minimizes the
variance (also the mean square error) and maximizes the correlation factor at the same time.
It can be concluded from the results contained in Table 1 that the 4th order polynomial basis
has been found as the most efficient. It is confirmed with the results shown in this table
that optimal 4th order approximation minimizes the squares sum in the LSM procedure,
while the differences in this parameter obtained for various orders may have a few orders
of magnitude.

Table 1. Statistical optimization results for the polynomial response order.

Polynomial
Order Correlation RMS Error Squares Sum Fitting Variance

2 0.944648 6.50235 × 10−12 4.65126 × 10−22 4.65228 × 10−23

3 0.999390 7.22270 × 10−13 5.76870 × 10−24 5.86760 × 10−25

4 0.999571 6.09214 × 10−13 4.11380 × 10−24 2.90649 × 10−24

5 −0.594698 7.08217 × 10−10 5.51726 × 10−18 2.45674 × 10−19

6 −0.924625 8.02584 × 10−9 7.08554 × 10−16 4.98402 × 10−16

7 0.936636 8.11866 × 10−7 7.25038 × 10−12 3.53456 × 10−12

8 −0.942430 8.61679 × 10−5 8.16740 × 10−8 1.25495 × 10−6

9 −0.937340 6.38454 × 10−4 4.48386 × 10−6 6.55977 × 10−7

Having an optimal polynomial basis for the structural response, we studied the un-
certain behavior of the micro-resonator in terms of its first two probabilistic moments
computed for the input coefficient of variation of damping equal to α(c) = 0.10. Expected
values and coefficients of variations have been presented in the left and the right graph of
Figure 3 and they are included here for a comparison with further Shannon entropies. It is
seen that initial expectations show some periodicity, but the most important conclusion is
that the resulting coefficient of variation exhibits an enormously large value at a certain
discrete time of the vibration process. The value larger than 1.0 was never observed in
classical solid mechanics with uncertainty and follows the coupled electro-mechanical char-
acter of this phenomenon. It may be of special importance while analyzing the reliability of
such a microdevice, where traditionally second order moments play a decisive role.
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After determination of the first two moments of the structural response, it is necessary to
make an initial numerical study concerning the numerical convergence of Shannon entropy
(and its possible sensitivity) while increasing the partitioning density of the structural response
histogram. A Gaussian random variable has been preselected for this study, and it has an
expected value equal to 10, and also a few different standard deviations taken in turn as
σ = [0.05, 0.10, 0.15, 0.20, 0.25, 0.30]. The results corresponding to the increasing number of
subintervals n have been contrasted in Figure 4. It is seen that the entropy under consideration
is less sensitive to this partitioning for smaller standard deviations of the given uncertainty
source (especially when σ = 0.05 here). Huge statistical dispersion (close to σ = 0.20 and higher)
needs may cause some numerical discrepancies for a smaller n close to 10 and demands each
time determination of the stability region starting usually from n = 25.

Energies 2022, 15, x FOR PEER REVIEW 8 of 14 
 

 

After determination of the first two moments of the structural response, it is neces-
sary to make an initial numerical study concerning the numerical convergence of Shannon 
entropy (and its possible sensitivity) while increasing the partitioning density of the struc-
tural response histogram. A Gaussian random variable has been preselected for this study, 
and it has an expected value equal to 10, and also a few different standard deviations 
taken in turn as [0.05,0.10,0.15,0.20,0.25,0.30]σ = . The results corresponding to the in-
creasing number of subintervals n have been contrasted in Figure 4. It is seen that the 
entropy under consideration is less sensitive to this partitioning for smaller standard de-
viations of the given uncertainty source (especially when σ = 0.05 here). Huge statistical 
dispersion (close to σ = 0.20 and higher) needs may cause some numerical discrepancies 
for a smaller n close to 10 and demands each time determination of the stability region 
starting usually from n = 25. 

  

Figure 3. The expected values of the MEMS device vibration (left) and its coefficient of variation 
(right). 

A determination of the satisfactory partition of both input and output uncertainty 
guarantees efficient estimation of probabilistic entropy, which can be evaluated when the 
coefficient of variation reaches its extreme value. Shannon entropy is expected to be more 
efficient in uncertainty evaluation while periodic or quasi-periodic vibrations are ana-
lyzed, because of the huge increase of the coefficient of variation, especially when the ex-
pected value tends to 0 (cf. Figure 3, right diagram). Application of this technique to multi 
degrees of freedom models for MEMS is possible by replacing Equation (10) with its ma-
trix counterpart and by determination of the optimal polynomial responses in a local man-
ner—for each degree of freedom separately. 

 
Figure 4. Convergence rate for the interval entropy computations. Figure 4. Convergence rate for the interval entropy computations.

A determination of the satisfactory partition of both input and output uncertainty
guarantees efficient estimation of probabilistic entropy, which can be evaluated when
the coefficient of variation reaches its extreme value. Shannon entropy is expected to be
more efficient in uncertainty evaluation while periodic or quasi-periodic vibrations are
analyzed, because of the huge increase of the coefficient of variation, especially when the
expected value tends to 0 (cf. Figure 3, right diagram). Application of this technique to
multi degrees of freedom models for MEMS is possible by replacing Equation (10) with its
matrix counterpart and by determination of the optimal polynomial responses in a local
manner—for each degree of freedom separately.

Three different probability distributions having the same variability ranges have been
tested to model statistical scattering of structural damping in this MEMS system, namely, in
turn—Gaussian, uniform, and also the triangular one. The total number of random trials in
the MCS algorithm has been set as 200,000 and probabilistic entropy has been computed in
any second for a time period t ∈ [0.0, 50.0 s] . The range of Gaussian distribution has been
restricted following the three-sigma rule. The results of numerical simulation have been
collected in Figures 5, 7, and 9 in the form of probabilistic Shannon entropies time variations,
and also in the form of their logarithms, cf., Figures 6, 8, and 10; the right additional column
has been added to better expose time fluctuations second by a second. These data have
been contrasted for four different input coefficients of variation of structural damping α (c)
= [0.05, 0.10, 0.15, 0.20] to see an impact of the input statistical scattering of this damping.

Figures 5–10 show clearly that probabilistic entropies (and their logarithms) have
the same patterns for all three different probability distributions and that they all reach
extreme values at the very end of the simulated dynamic process. A comparison of Figure 3
(right) with Figure 5, Figure 7, and Figure 9 exhibits that the pattern of time fluctuations
of the resulting CoVs and these adjacent to probabilistic entropies are almost the same.
Generally, the variability ranges of all entropies for three different PDFs seem to be very
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similar to each other. However, as one could expect after the maximum entropy principle,
the largest values of Shannon entropy are obtained when the damping coefficient has
Gaussian distribution, then—in turn—for the uniform and triangular PDFs. It is also seen
that the resulting probabilistic entropy is proportional to the input coefficient of variation
of structural damping, i.e., they increase with each other.
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A very important aspect is that computational time relevant to determination proba-
bilistic entropy is almost the same, while for the increasing number of random samples
above 106, it is even shorter than statistical estimation of the first two probabilistic moments
of the structural response. If one could estimate the first four probabilistic characteristics
(including also skewness and kurtosis [41]), then the entropy calculus brings definitely
more information about uncertainty propagation with definitely smaller computer effort.
This is seen for the single-degree-of-freedom system, whereas the Stochastic Finite Element
Method analysis of large scale systems would show huge disproportion of computer power
consumption. Therefore, a proper calculation and interpretation of probabilistic entropy
may bring essential time savings while using the Monte Carlo simulation approach.
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Although time variations of these entropies exhibit some remarkably high and rapid
fluctuations, the mean values of probabilistic entropy increase systematically in each case
study. It means that uncertainty (disorder) in each dynamical system subjected to harmonic
excitation increases in the presence of random damping. This is, in turn, quite consistent
with engineering practice and shows that this system becomes less and less predictable
together with an increase of vibrations time. Finally, one may observe that this vibration
undergoes some critical points, where the resulting CoV reaches huge extreme values,
while the uncertainty level for the remaining part throughout this vibration process is a
few times smaller. This especially happens while the mean value of the displacement is
very close to the initial value (see Figure 4).

5. Concluding Remarks

A simulation-based approach for the determination of probabilistic entropy in some
MEMS devices, whose dynamic response follows the Duffing equation, has been demon-
strated in this work. A majority of the proposed approach has no upper bounds on the
input uncertainty level and no limitation for the number of various design random param-
eters. Interval representation of the given probability density function applied together
with the Monte Carlo simulation scheme of the structural response enables for reliable
and relatively fast computation of probabilistic entropy propagation in many engineering
systems including MEMS devices. As was demonstrated, it does not demand a large effort
in the discretization of the resulting probability distribution—one can model non-Gaussian
distribution of any physical, material, or geometrical parameters. It can be done both
using some analytical solutions provided with the computer algebra programs like MAPLE
as well as thanks to its common application with some commercial FEM systems (like
COMSOL, ANSYS, or ABAQUS). It would be very instructive to compare the mechanical
model presented and discussed above with a full multi-physics simulation of the electro-
magneto-mechanical system vibrations to discover similarities and also possible divergence.
An influence of the temperature field on the MEMS signal analysis and vibrations would
be very important from the technological point of view [40], where uncertainty seems to be
quite natural.

Probabilistic Shannon entropy exhibits almost the same extreme values and the cor-
responding time moments as the output coefficient of variation of the dynamical system
response. It has been demonstrated that both approaches based on probabilistic character-
istics of the structural responses and their probabilistic entropy exhibit huge values, many
times larger than in traditional civil engineering structures, where such MEMS devices
are applicable. Such a huge output uncertainty needs special modelling attention and
excludes application of less precise stochastic methods like lower order expansions; in this
context, the proposed entropy-based structural analysis has no limitations. That is why this
methodology seems to be very promising in further uncertainty quantification in elasto-
dynamics; civil engineering applications of this apparatus can be especially beneficial in
seismic uncertainty analysis [42]. However, numerical Shannon entropy determination may
be sensitive to the PDF partitioning of the structural response, so some initial sensitivity
analysis would be required. Further computational experiments should include relative
probabilistic entropies analysis, where an additional divergence (like Kullback–Leibler, for
instance) in between a forced vibration and the resulting extreme structural response, would
be considered. A possible alternative for the Monte Carlo simulation-based determination
of entropy could be the Probability Transformation Method proposed by Falsone [43].
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