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Abstract: The biofuel management of a biofuel-penetrated district heating system is complicated
due to its association with multiple and polymorphic uncertainties. To handle uncertainties and sys-
tem dynamic complexities, an inexact two-stage compound-stochastic mixed-integer programming
technique is proposed, innovatively based on the integration of different uncertain optimization ap-
proaches. The proposed technique can not only address the inexact recourse problems sourced from
multiple and compound uncertainties existing in the pre-regulated biofuel supply–demand match
mode, but can also quantitatively analyze the conflicts between the economic target that minimizes
the system cost and the risk preference that maximizes the heating service satisfaction. The developed
model is applied to a real-world biofuel management case study of a district heating system to obtain
the optimal biofuel management schemes subject to supply–demand, policy requirement constraints,
and the financial minimization objective. The results indicate that biofuel allocation and expansion
schemes are sensitive to the multiple and compound uncertainty inputs, and the corresponding
biofuel-deficit change trends of three heat sources are obviously distinct with the system’s condition,
varying due to the complicated interactions of the system’s components. Beyond that, a potential
trade-off relationship between the heating cost and the constraint-violation risk can be obtained by
observing system responses with thermalization coefficient varying.

Keywords: biofuel management; biofuel-penetrated district heating system; compound uncertainties;
risk management; optimization

1. Introduction

Against the background of worldwide carbon neutrality, biomass energy has received
growing attention and been gradually penetrating into heating systems in the recent years
in Northern China [1,2]. A typical biofuel-penetrated district heating system (BDHS)
involves a main coal-fired heat source (MCHS) and several biomass-based peak-shaving
heat sources (BPHSs) to meet the overall heating demand. The biofuel management (BM) of
a BDHS is complicated and associated with different activities, including energy resource
supply and distribution, market enthusiasm, demand variation, policy guidance, and
environmental impact. As a result, controversial and conflict-laden issues related to the
biofuel/heat supply–demand, pollutant emission-limitation, and cost expectation may
exist during BM [3]. Therefore, the effective BM of a BDHS is important, because it can
not only improve the heating comfort level and system economy, but can also reduce and
sequester carbon dioxide and offset its emissions from fossil fuel sources effectively. Beyond
the complicated interaction, the BM complexity of a BDHS can be further intensified by
various uncertainties (e.g., supply intermittency, volatility, and demand fluctuation) and
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their various interaction [4]. If the uncertainties are ignored or simplified, the modelling
condition may not reflect the reality, and the generated decisions may lead to mismatching
or even serious accidents.

During the past decades, there was little research focusing on the uncertainty within
the fuel management of a heating system, while a number of inexact optimization tech-
niques were proposed to tackle uncertainties and complexities in the field of energy man-
agement and analysis (EMA) [5,6]. Among them, the interval linear programming (ILP)
proposed by Huang et al. has been considered to be an effective approach to handling the
inexact system parameters and model inputs, which cannot be expressed with precision but
can only be described as discrete intervals (i.e., interval numbers with deterministic lower
and upper bounds) [7]. For example, Huang et al. applied the ILP model to a hypothetical
problem of solid waste management for the first time, indicating that reasonable solutions
can be generated for both the upper and lower bounds of the objective function cases [8].
Guo et al. developed an ILP-based method for a regional energy-management system, and
the solutions expressed with interval numbers can be obtained to provide energy deci-
sion alternatives [9]. Cai et al. addressed the uncertainties in the energy planning model
through the ILP approach and improved the robustness of an interactive decision support
system for the Region of Waterloo in Canada [10]. From previous application studies, it
can be seen that, in addition to the advantage of a lower data requirement, the effective
two-step interactive solution algorithm of ILP can generate the interval solutions with a low
uncertainty degree, leading to the widespread acceptance of ILP, not only in EMA [11,12],
but also in other resource management fields [13,14]. Thus, the ILP technique is suitable for
coping with the economic and biomass-pellet-fuel quality parameters during BM. However,
the ILP is incapable of dealing with the probabilistic variable (e.g., biofuel-availability
scenarios) that are associated with different levels of economic penalties when the planned
biofuel-allocation targets are violated.

Considering a real BDHS with several BPHSs, the local available biofuels cannot be
quantified precisely because of market enthusiasm, biomass-pellet-fuel production capacity
and policy orientation, and the biofuel availability can be represented with an interval
variable corresponding to different stochastic scenarios such as abundant, medium, and
scarce available levels (i.e., a type of compound uncertainty) [15]. Beyond the compound
uncertainty existing on the supply side, another type of compound uncertainty lying on the
heat-demand side could also aggravate the decision-making difficulty. The heat provisions
undertaken by heat sources may be simultaneously affected by the continuous-type random
residents’ behaviors (e.g., the random ventilation and the selective use of district heating
service) and discrete-type random meteorological condition during heating periods. In
this situation, the compound-random parameters (i.e., a birandom variable), which is a
measurable mapping from a probability space to a collection of random variables, would
be generated for reflecting reality accurately and make it difficult for decision makers to
provide a satisfactory heating service to the heat consumers [16]. For coping with the
complex decision problem induced by the multi-stochastic uncertainties, a class of effec-
tive recourse optimization techniques known as two-stage stochastic programming (TSP),
and its derivatives, were proposed previously and have been successfully applied to the
energy management studies [17,18]. Through merging different randomness into both
decision stages and running the recourse mechanism, the TSP-based techniques can effec-
tively lower the risk of decision-making misplay when using the traditional deterministic
optimization methods.

Specifically, Lin and Huang constructed an inexact stochastic two-stage energy-planning
model for Beijing Municipality to manage the energy systems and greenhouse-gas emis-
sions under uncertainty, suggesting that the proposed recourse model was applicable in
reflecting the complexities of multi-uncertainty, dynamic, and interactive municipal energy-
management systems [19]. Zhou et al. applied the TSP technique in the optimal design
of a distributed energy system in a hotel. The proposed model presented the advantage
of the recourse mechanism during the decision process, compared with a deterministic
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optimization model [20]. Ji et al. integrated the TSP into the day-ahead dispatch model
for an electricity system management with wind power under uncertainty. The integrated
model was capable of providing different optimal dispatch strategies corresponding to
different scenarios for thermal power units and wind turbines [21]. Fu et al. improved the
general TSP by introducing the discrete random variable into the first decision stage and
applied the improved model into a real-world district heating system, obtaining hybrid
fuel management schemes under different scenario combinations [22]. Nevertheless, the
previous studies reveal that the TSP method and its derivatives can deal with discrete-type
stochastic uncertainties in both decision stages effectively while they can hardly handle
the compound-random uncertainty embedded within the constrained right-hand-side
parameters or address the quantitative risk of violating uncertain constraints.

Fortunately, chance-constrained programming (CCP) is an alternative capable of
tackling continuous-type random parameters in the constraints. CCP requires that all of
the constraints should be satisfied in a proportion of cases under given probability levels,
which could be linked to a system risk or the constraint satisfaction degree in the resource
and energy management [23]. Previously, a plethora of CCP methods was proposed to
deal with the risk-oriented power planning and resource management issues, whereas the
applications of this method in the field of fuel management of a BDHS were scarce [24,25].
Through combining the recourse model (i.e., the TSP-based technique) with CCP, the
compound-random uncertainties can be effectively decoupled and directly communicated
into the solving optimization process, such that a wealth of pertinent information could
be effectively merged into the decision process and multiple decision alternatives could
be generated through the risk-based interpretation for the solutions. In addition to the
complexity of the mentioned uncertainties with different formats, the dynamic complexities,
such as timing, sizing, and siting decisions in terms of the heating-capacity expansion
schemes of heat sources, should also be considered for the high-quality fuel management.
From a long-term planning point of view, the heating capacities of existing heat sources will
have cumulative or time-sharing limits, while the residents’ heat demands keep growing,
owing to the population increase and society development. This tendency may bring about
the insufficient heating capacities of the existing heat sources to cover the overall increasing
heat demand, indirectly impacting fuel utilization and adjustment. Therefore, the heating
capacity expansion is also a crucial issue in BM for a BDHS, where the decision should
contain whether a particular heat source development or expansion option needs to be
undertaken. Mixed-integer linear programming (MILP) is a beneficial tool for this purpose
by using integer variables to indicate whether an expansion action is conducted [26]. MILP
has been widely used in the research fields of power, industry, logistics, and transportation,
which could be taken as a helpful reference for BM [27,28].

Consequently, the main objective of this study is to propose an inexact two-stage
compound-stochastic mixed-integer programming technique for facilitating the real BM
of a BDHS under multiple and compound uncertainties. The novelty and contributions
of this research paper are outlined in the following aspects. (1) The developed technique
incorporates CCP, TSP-derivative, and MILP optimization techniques into a general ILP
model framework innovatively, and will be applied to a practical BDHS case in northeastern
China for the first time to support BM. (2) The generated scheme results will be beneficial
for (a) coping with multiple and compound uncertainties in the formats of interval numbers,
probability distributions, and interval-stochastic and compound stochastic variables lying
in the BM of a BDHS; (b) identifying the biofuel allocation patterns of different heat
sources under different system conditions and various scenario combinations; (c) facilitating
the dynamic analysis of heating-capacity-expansion decisions; and (d) addressing the
conflicts between economic objectives and system risk levels during the BM of a BSHS.
This paper is structured as follows: Section 1 provides an overview of existing work
conducted in the area of the uncertain optimization techniques for energy and resource
management, the object of our study and the main contributions; Section 2 introduced the
devised methodology, including the quantitative technique of the compound-stochastic
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heat provisions and integrated biofuel-management model technique under multiple and
compound uncertainties; Sections 3 and 4, respectively, describe the real case study utilized
for demonstrating the practicality and validity of the proposed model and states the model
results and discussion, which are followed by Section 5, which outlines the conclusion and
potential challenges in the future work.

2. Methodology

Consider a problem wherein a decision maker of the BM in a BDHS is in charge of opti-
mizing the biofuel allocation among several BPHSs and identifying their capacity-expansion
schemes, with the objective of minimizing the total system cost. Various uncertain factors
lying in the BDHS, such as biofuel availability, residential heat demands, and the associ-
ated economic implications, are linked to the BM process and presents multiple and even
compound features. To tackle these uncertainties and system dynamic complexities, a
novel optimization approach for BM of a BDHS is proposed in this paper. The traditional
energy and resource-management recourse model under uncertainty is initially introduced
as the basis of the proposed model; and then the quantitative technique of the compound
stochastic heat provisions is provided to compute the model-constraint boundaries; last,
an inexact two-stage compound-stochastic mixed integer programming and its solution
method are developed via the integration of other different uncertain optimization models
into the traditional recourse model.

2.1. Inexact Two-Stage Dual-Stochastic Programming

The traditional interval two-stage stochastic programming (ITSP) proposed by Huang
and Loucks is capable of tackling the interval and stochastic uncertainties via the com-
bination of ILP and TSP, and the recourse–decision can be obtained in terms of interval
values after the random event have occurred in the second stage [29,30]. Nevertheless,
such decision complexity of the BM in a BDHS could be further exacerbated by the other
uncertainty existing in the first stage, which cannot be handled by ITSP. For instance, the
annual fluctuation of the local meteorological condition imposes stochastic characteristics
on the users’ heat demands, further influencing the predetermined biofuel allocation plan
in the first decision stage. According to Fu et al., one potential approach for better address-
ing additional randomness is to predefine the various first-stage decisions corresponding
to the foreseeable random events, and the corrective decisions associated with economic
penalties can be obtained subsequently under different stochastic scenario combinations
after another random event has taken place in the second stage [22]. Based on this tech-
nical route, an inexact two-stage dual-stochastic programming (ITDSP) method can be
developed, which is capable not only of handling the uncertainties presented as discrete
intervals (e.g., economic and technical parameters), but also of reflecting a novel type of
complex running mechanism of “recourse” caused by dual stochastic uncertainties in both
decision stages. For the BM, a typical ITDSP model can be formulated as follows.

min f± =
L

∑
l=1

N

∑
n=1

phd
l CBF±nl TBF±nl +

L

∑
l=1

N

∑
n=1

M

∑
m=1

phd
l pba

m PBD±n DBF±nml (1)

subject to:
N

∑
n=1

(TBF±nl − DBF±nml) ≤ AVBF±m , ∀m, l (2)

HD±nl ≤ σ · TBF±nl , ∀n, l (3)

TBFnl ,max ≥ TBF±nl ≥ DBF±nml ≥ 0, ∀n, m, l, (4)

where the mathematical symbol “±” in superscript denotes that the corresponding pa-
rameters are interval parameters/variables; the subscripts n, m and l stand for different
heat sources, biofuel-availability levels, and different residents’ heat-demand levels, respec-
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tively, n = 1, 2, . . . , N, m = 1, 2, . . . , M and l = 1, 2, . . . , L; f means the expectation of the
biofuel management cost; TBF means the projected biofuel amount supplied to the heating
system (i.e., the first-stage decision variable); CBF stands for the unit price of the purchased
biomass-pellet fuel; DBF is the biofuel deficit amount owing to the mismatch between the
projected biofuel supply and the real requirement (i.e., the second-stage decision variable);
PBD is the economic penalty (including the additional transport and management cost)
because of the biofuel deficit; AVBF represents the available biofuel amount from the local
supply channels; HD means the space-heating demand of the residents; σ is the conversion
coefficient; phd represents the probability of a certain heat-demand level; pba denotes the
probability corresponding to a certain biofuel-availability level, which is independent of phd,
and scenario combinations can thus be generated via sampling the underlying probability
distributions phd and pba.

2.2. Heat Provisions Undertaken by Heat Sources

To conveniently map the heat-load profile and compute the design heat provisions,
the non-dimensional comprehensive equations (NCEs) method can be used. The NCEs
method has been widely adopted in Northern China owing to the demand of the relatively
small-scale meteorological and building data when compared with those of the recent data-
driven methods and the traditional simulation techniques [5]. The design heat provisions
undertaken by BPHSs can be obtained and presented as follows:

Qnb = 24Q′n

[
(1− β)Nβ −

β0(Nβ − 5)1+b

(1 + b)(Nzh − 5)b

]
, (5)

where Qnb denotes the design heat provision undertaken by BPHSs, Q′n represents the total
design space-heating load β denotes the thermal coefficient, β0 denotes the temperature
correction coefficient, Nβ is the cumulative up-time of a BPHS, b stands for the exponential
value of non-dimensional heating duration, and Nzh is the total heating duration.

In the practical BM for a BDHS, beyond the objective meteorological change during
the heating season as mentioned before, the residents’ subjective random actions, including
their ventilation actions and willingness to use heating services, will also impact biofuel
consumption by changing the real heat provision indirectly. Thus, the compound-stochastic
heat provisions can be formed via merging two layer of randomness and should be embed-
ded within the modelling parameter (i.e., heat provisions or residents’ heating demands).
Such compound-stochastic uncertainty can be formulated as shown in Figure 1.

To be more specific, in the first layer, the traditionally designed heat provisions under
discrete-random meteorological conditions can be achieved by setting the temperature
parameters of NCEs lower/higher than those under the “normal” condition to a certain
extent and adjusting the heat durations to be longer/shorter than those of the “normal”. In
the second layer, the randomness of residents’ actions is further taken into consideration,
and, given the expectation and variance of heat provisions under different meteorological
conditions (e.g., different “freezing-degree” levels), the continuous-random heat provisions
(e.g., Gaussian distribution) corresponding to a discrete-probabilistic “freezing degree”
level, can be generated. Therefore, the proposed compound-stochastic heat provisions can
also be explained as a “random variable” (i.e., continuous-random heat provisions), taking
random variable values (i.e., discrete-probabilistic meteorological conditions).
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2.3. Inexact Two-Stage Compound-Stochastic Mixed-Integer Programming and Its
Solution Method

In addition to the compound-stochastic heat provisions on the constraint right-hand
sides mentioned in Section 2.2, considering the difference between the existing heating
capacity and the future heating demand, the dynamic complexity of the heating-capacity
expansion of a BDHS needs to be merged into the ITDSP model framework as well. As
a consequence, an inexact two-stage compound-stochastic mixed-integer programming
(ITCS-MIP) method can be developed innovatively by integrating the CCP and MIP tech-
niques into the ITDSP model framework to tackle the BM problem related to the compli-
cated component interaction and dynamic evolution, as well as multiple and compound
uncertainties. The developed ITCS-MIP model can be formulated as follows.

min f± =
L

∑
l=1

N

∑
n=1

phd
l CBF±nl TBF±nl +

L

∑
l=1

N

∑
n=1

M

∑
m=1

phd
l pba

m PBD±n DBF±nml +
K

∑
k=1

N

∑
n=1

XD±nk · CD±k (6)

subject to:
N

∑
n=1

(TBF±nl − DBF±nml) ≤ AVBF±m , ∀m, l (7)
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Pr{ HDt
nl ≤ σ · TBF±nl } ≥ 1− p, ∀n, l (8)

TBFnl ,max ≥ TBF±nl ≥ DBF±nml ≥ 0, ∀n, m, l (9)

XD±nk =

{
1; i f heating capacity expansion is undertaken
0; i f otherwise

}
(10)

DE±n ≤
K

∑
k=1

XDnk · DHk + E±n , ∀n, (11)

where the subscript k stands for the different heating capacity expansion options, k = 1, 2, . . . , K;
XD is a binary decision variable for identifying whether or not a heating capacity expansion action
needs to be executed; CD represents the cost of a heating-capacity expansion choice; Pr{}denotes
the probability of the events in {}; p is a set of predetermined constraint-violation (i.e., system risks)
probability levels, and thus HD is a type of compound-stochastic parameter; DE denotes the heat
load undertaken by a BPHS; DH means a heating capacity expansion alternative; E stands for the
existing heating capacity of a BPHS.

Among the multiple and polymorphic uncertainties (e.g., compound-stochastic variables,
interval-stochastic variables, and discrete intervals) existing in the developed ITCS-MIP model,
the nonlinear chance constraints ought to be initially converted into the “crisp constraint” [31,32].
Thus, according to the equivalent transformation method [33,34], the constraint (i.e., constraint (8))
can be reformulated equivalently as follows.

HDt,1−p
nl ≤ σ · T±nl , (12)

where HDt,1−p
nl = F−1(1− p), given the cumulative distribution function of F(p) and the probability

(i.e., p) of violating constraint.
In such a manner, the compound-stochastic uncertainty existing in the model can be converted

into the traditional discrete probability distribution and the ITCS-MIP model is transformed to a
general ITDS-MIP model under a constraint-violation probability (i.e., system risk) level. After that,
the interactive two-step solution algorithm can be used to cope with the interval parameters in the
reformulated model [8,29]. In general, via the crisp conversion of chance constraints of CCP in
conjunction with the interactive two-step solution algorithm of ILP, the developed ITCS-MIP model
is able to cope with the discrete probabilistic, compound-stochastic, and interval uncertainties lying
in the model parameters/coefficients. The detailed modelling process and solution procedure is
summarized in the Figure 2.
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3. Case Study
3.1. Biofuel Management Problem Statement of the Investigated BDHS

A biofuel-penetrated district heating system (BDHS) located in Jinpu New District, Dalian City
of China, is used for demonstrating the practicality and validity of the ITCS-MIP model on BM.
The main BM problem to be solved is how to allocate limited local biomass-pellet fuel during three
consecutive heating seasons to different biomass-based peak-shaving heat sources (BPHSs) in this
BDHS by minimizing the total system cost with considering heating capacity expansion and the
biofuel-shortage penalty.

The BDHS has three BPHSs (fueled with solid pellet biofuels) marked as BPHS_1, BPHS_2, and
BPHS_3 with the heating efficiencies of [0.845, 0.855], [0.835, 0.84], and [0.825, 0.83], respectively. They
provide the corresponding peak-shaving heating service to Heping, Hongqi, and Shengli sub-districts.
In the normal meteorological condition, the heating period is 130 days. However, owing to both the
existing climatic change and the residents’ random actions, the compound-stochastic uncertainties
would be embedded within the heat provisions undertaken by different BPHSs. In this context, the
traditional NECs method applicable to the “normal” heating season will lead to serious deviation
from the practical heat provisions in the “severe” or “mild” heating seasons.

To quantify the uncertain heat provisions under different “freezing-degree” levels, on one
hand, the appearance probabilities (i.e., the first layer of the birandom uncertainty) of the “severe”,
“normal”, and “mild” heating seasons are, respectively, assumed to be 0.25, 0.45, and 0.30, and the
corresponding meteorological parameters for NECs modeling are shown in Table 1. On the other
hand, considering residents’ irregular behaviors in the heating season, such as the random actions
for ventilating and employing a district heating service, this type of uncertainty (i.e., the second
layer of the birandom uncertainty) can be expressed as a continuous random variable (e.g., Gaussian
distribution). In detail, the design heat provisions corresponding to the “normal” heating season
can be used as the mean value of the practical heat provision distribution. After that, according to
Figure 1, the practical heat provisions under different “freezing degree” levels and predetermined risk
probability levels can be achieved with the aid of the given variance (i.e., 1000 GJ used herein) and the
NECs method mentioned in Section 2.2. The obtained heat provisions under the compound-stochastic
uncertainty are shown Tables A1–A3. in Appendix A.

Table 1. Modelling parameters for NCEs method [5].

“Freezing Degree”
Level

Average Outdoor
Temperature, ◦C

Design Outdoor
Temperature, ◦C

Design Indoor
Temperature, ◦C

Space-Heating
Durations, day

“Severe”
(phd = 0.125) −2.4 −11.5 18 140

“Normal”
(phd = 0.55) −1.9 −11 18 130

“Mild”
(phd = 0.325) −1.4 −10.5 18 120

In reality, the biofuel availability for a BDHS is affected by a range of events, such as the local
biomass-harvest level, the forest residue accessibility, biomass-pellet-fuel production capacity, and
the within-year meteorological condition. Thus, a kind of stochastic-interval uncertainty is utilized
herein to represent the practical biofuel amount corresponding to a certain available level (i.e., a
scarce, medium, or abundant level). The specific biofuel amounts under different available levels are
provided in Table 2. When the supplied biomass-pellet fuel amount cannot meet the demands of the
heat sources, the biofuel deficit would occur, and the BM manager has to turn to the other markets,
causing the biofuel deficit cost obviously higher than normal. The biomass-pellet fuel prices in normal
conditions are [310, 350], [332, 361], and [341, 372] CNY·t−1, corresponding to planning periods
1, 2, and 3, respectively. Related economic parameters are presented in Table A4 in Appendix A. The
heating value of the biomass-pellet fuel is [17.02, 17.83] GJ·t−1.
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Table 2. Biofuel available amount, 103 t [5].

Biofuel Available Level Period 1 Period 2 Period 3

Abundant (pba = 0.3) [9.60, 9.97] [11.53, 11.94] [13.04, 13.52]
Medium (pba = 0.45) [11.92, 12.36] [13.85, 14.29] [15.37, 15.91]

Scarce (pba = 0.25) [13.27, 13.65] [15.14, 15.56] [17.28, 17.81]

Furthermore, the existing heating capacities of the BPHSs may not sufficiently meet the increas-
ing heat-load demand owing to the incremental heating area year by year; and beyond that, the
potential thermalization coefficient variation could also result in the undertaken heat-load variation
of BPHSs, causing the heat-load mismatch between the supply and demand sides and indirectly
impacting BM. Thus, the heating capacity expansion issue is incorporated into the modeling frame-
work. The existing heat capacities of BPHSs_1, _2, and _3 are, respectively, 29MW, 14MW, and 7MW,
and the corresponding heat loads to be undertaken are provided in Table A5 in Appendix A. The
available expansion choices are, respectively, 7MW, 14 MW, and 28 MW for three BPHSs, and the
corresponding costs are [600, 720] × 103, [1100, 1250] × 103, and [2000, 2300] × 103 CNY.

3.2. Modeling Formulation
Based on the overview of the investigated BDHS, different uncertain inputs can be identified,

quantified, and expressed, and the developed ITCS-MIP model is suitable for coping with the practical
BM problem mentioned above. The modeling process based on the ITCS-MIP framework is presented
in Figure 3, and the specific model objective and constraints are given hereunder:

Min f±cost= f±1 + f±2 + f±3 + f±4 (13)

f±1 =
I

∑
i=1

K

∑
k=1

T

∑
t=1

phd
k · CCB±t · XCB±ikt +

I

∑
i=1

J

∑
j=1

K

∑
k=1

T

∑
t=1

pba
j · CDB±it · p

hd
k ·XDB±ijkt (14)

f±2 =
I

∑
i=1

J

∑
j=1

K

∑
k=1

T

∑
t=1

Qb± · lb±i · CSPH±it ·
(

pba
j · p

hd
k · XDB±ijkt + phd

k · XCB±ikt

)
(15)

f±3 =
M

∑
m=1

I

∑
i=1

YD±im · CGE±m (16)

f±3 =
M

∑
m=1

I

∑
i=1

YD±im · CGE±m (17)

subject to:
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Constraints for the biomass-pellet fuel allocation to BPHSs:

I

∑
i=1

(
TSHTa,1−pr

ikt
Qb± · lb±i

− XDB±ijkt) ≤ AVBF±jt , ∀j, k, t (18)

XDB±ijkt ·Qb± · lb±i ≤ η± · TSHTa,pr
ikt , ∀i, j, k, t (19)

TSHTa,1−pr
ikt ≤ XCB±ikt ·Qb± · lb±i , ∀i, k, t (20)

0 ≤ XDB±ijkt, ∀i, j, k, t (21)

0 ≤ XCB±ikt, ∀i, k, t (22)

Constraints for the heating capacity expansion:

MHLα
ikt ≤

M

∑
m=1

YD±im · GEHm + EHCi, ∀i, k, t (23)

M

∑
m=1

YD±im ≤ 1, ∀i (24)

YD±im =

{
1; i f heating capacity expansion is undertaken
0; i f otherwise

}
(25)

Nonnegative constraints:

0 ≤ XCB±ikt, XDB±ijkt, YD±im, ∀i, j, k, t, m (26)

The detailed nomenclature for decision variables and modeling parameters is provided
in Nomenclature.

4. Result Analysis and Discussion
The ITCS-MIP model developed in this research work integrates a variety of uncertain opti-

mization techniques, such as the TDSP, IPP, CCP, and MIP methods, to handle the multiple and
polymorphic uncertainties. Consequently, the results of the BM scheme (i.e., biofuel deficit assign-
ment) and its derivative (i.e., heating capacity expansion) can be obtained in terms of the solutions
under different scenario combinations (i.e., the biofuel availability and “freezing degree” level of
a heating season). Moreover, the detailed sensitivity of various system conditions, including the
violation-risk probability level, planning period, and thermalization coefficient, can also be exam-
ined on the obtained results for the in-depth analysis. The representative thermalization coefficient
values (α) are set to 0.5, 0.55, and 0.6 based on the latest “China Energy Saving Law”, and the control
coefficient for biofuel deficit (i.e., η) is [0.45, 0.47] in the constraints.

4.1. Result Analysis
Figures 4–6 jointly present the biofuel-deficit allotment pattern among three BPHSs under

various scenario combinations with different system conditions, indicating that the biofuel deficits
of different BPHSs would vary markedly due to the uncertain modeling inputs and the temporal
and spatial variations of the system conditions. In detail, the biofuel deficit fluctuates significantly
in BPHS_1 under different scenario combinations, while the fluctuations of BPHSs_2 and _3 are
relatively insignificant. More specifically, on one hand, with the “freezing degree” of the heating
season changing from the mild level to the severe, the biofuel deficits of the three BPHSs would
increase with different magnitudes. Among them, BPHS_1 has the highest deficit with the largest
amplitude of variation, followed by BPHS_2, and the deficit of BPHS_3 is the lowest. For instance,
under the system conditions of α = 0.5, Pr = 0.01 and the scarce biofuel availability, the biofuel deficits
of BPHS_1 would be, respectively, [3870.34, 4337.59], [2879.69, 3291.18], and [1885.89, 2241.48] tons,
corresponding to severe, normal, and mild “freezing-degree” in Period 2; the corresponding deficits of
BPHS_2 would be [2129.79, 2360.12], [1982.59, 2196.97], and [1834.87, 2033.30] tons; while the deficits
of BPHS_3 would be [671.61, 744.30], [621.95, 689.28] and [572.12, 634.04] tons, respectively. That is
mainly because, with the outdoor temperature declining (when season “freezing-degree” varying
from the “mild” to the “normal” and then to the “severe”), more biofuels should be fed into BPHSs for
satisfying the increasing heat demand when the other system conditions are unchanged. Moreover,
since the penalty cost of BPHS_3 is the lowest for the biofuel deficit, and the cost of BPHS_2 ranks
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the second, the deficits of the BPHSs_3 and _2 should be assigned initially for economic optimality
when the biofuel availability is at a fixed level. However, due to the deficit control constraints
[i.e., in Equation (19)] existing in the ITCS-MIP model, the deficit of BPHSs_2 and _3 would reach
their control-constraint boundaries when the “severe” heating season appears, and thus more biofuel
deficits should be assigned to the BPHS_1; by contrast, during some “normal” or “mild” heating
seasons, the deficit in BPHSs_2 and _3 would still be within their permissible constraint ranges,
causing a lower or even no biofuel deficit in BPHS_1.
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Figure 4. Biofuel deficit variation trend of different BPHSs under various scenario combinations at
α = 0.5 and Pr = 0.01.

Energies 2022, 15, 5406 12 of 24 
 

 

for economic optimality when the biofuel availability is at a fixed level. However, due to 
the deficit control constraints [i.e., in Equation (19)] existing in the ITCS-MIP model, the 
deficit of BPHSs_2 and _3 would reach their control-constraint boundaries when the “se-
vere” heating season appears, and thus more biofuel deficits should be assigned to the 
BPHS_1; by contrast, during some “normal” or “mild” heating seasons, the deficit in 
BPHSs_2 and _3 would still be within their permissible constraint ranges, causing a lower 
or even no biofuel deficit in BPHS_1. 

 
Figure 4. Biofuel deficit variation trend of different BPHSs under various scenario combinations at 
α = 0.5 and Pr = 0.01. 

 
Figure 5. Biofuel deficit variation trend of different BPHSs under various scenario combinations 
with different Pr levels at α = 0.5 in Period 1. 

0

1000

2000

3000

4000

5000

6000

Se
ve

re
N

or
m

al
M

ild
Se

ve
re

N
or

m
al

M
ild

Se
ve

re
N

or
m

al
M

ild
Se

ve
re

N
or

m
al

M
ild

Se
ve

re
N

or
m

al
M

ild
Se

ve
re

N
or

m
al

M
ild

Se
ve

re
N

or
m

al
M

ild
Se

ve
re

N
or

m
al

M
ild

Se
ve

re
N

or
m

al
M

ild

Scarce Medium Abundant Scarce Medium Abundant Scarce Medium Abundant

BHS_1 BHS_2 BHS_3

B
io

fu
el

 d
ef

ic
it 

(t
on

ne
s)

Lower bound in Period 1
Lower bound in Period 2
Lower bound in Period 3
Upper bound in Period 1
Upper bound in Period 2
Upper bound in Period 3

0

1000

2000

3000

4000

5000

Se
ve

re
N

or
m

al
M

ild
Se

ve
re

N
or

m
al

M
ild

Se
ve

re
N

or
m

al
M

ild
Se

ve
re

N
or

m
al

M
ild

Se
ve

re
N

or
m

al
M

ild
Se

ve
re

N
or

m
al

M
ild

Se
ve

re
N

or
m

al
M

ild
Se

ve
re

N
or

m
al

M
ild

Se
ve

re
N

or
m

al
M

ild

Scarce Medium Abundant Scarce Medium Abundant Scarce Medium Abundant

BHS_1 BHS_2 BHS_3

B
io

fu
el

 d
ef

ic
it 

(t
on

ne
s)

Lower bound under Pr=0.01
Lower bound under Pr=0.05
Lower bound under Pr=0.1
Upper bound under Pr=0.01
Upper bound under Pr=0.05
Upper bound under Pr=0.1
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different Pr levels at α = 0.5 in Period 1.

On the other hand, with the biofuel availability changing from the scarce level to the abundant,
the deficit result of BPHS_1 shows a significant downward trend, while the deficit variations of
BPHSs_2 and _3 are insignificant. Specifically, as shown in Figure 4, the biofuel deficit of BPHS_1
would be [3554.45, 3935.28], [1234.45, 1545.28], and [0, 255.28] tons corresponding to the scarce,
medium, and abundant biofuel availability at the normal “freezing degree” level in Period 1; the
corresponding deficits of BPHS_2 would be [1796.02, 1990.29], [1796.02, 1990.29], and [1680.47,
1990.25] tons, respectively; while the deficits of BPHS_3 would remain unchanged, which is [559.02,
619.52] tons. It is mainly due to the fact that when the biofuel demand and its influencing factors
are at the fixed levels, the increasing biofuel supply will lead to a decrease in the total biofuel deficit
in the BDHS. Subsequently, considering the deficit penalty difference among the BPHSs mentioned
above, a large decline of the biofuel deficit in BPHS_1 would thus occur with the biofuel availability
changing from the scarce level to the abundant, and the deficit in BPHS_1 may be even less than
those in BPHSs_2 and _3 at the medium and abundant levels, as Figures 4–6 show.
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Figure 6. Biofuel deficit variation trend of different BPHSs in Period 2 under various scenario
combinations with different α values at Pr = 0.95.

Figure 4 also examines the biofuel deficit variation trend from Period 1 to Period 3 under various
scenario combinations, indicating that the biofuel deficit in BPHS_1 would decline (or decline to
even no deficit under some scenarios) observably while the corresponding biofuels in BPHSs_2
and _3 would rise slightly. For example, from Period 1 to Period 3, the deficit in BPHS#1 would be
[1234.45, 1545.28], [559.69, 941.18], and [420.46, 779.67] tons under the scenario combination of the
medium biofuel availability and at the normal “freezing degree” level, respectively; correspondingly,
the deficit in BPHS#2 would be [1796.02, 1990.29], [1982.57, 2196.97], and [2187.77, 2424.37] tons
and the deficit in BPHS#3 would be [559.02, 619.51], [621.95, 689.26], and [691.17, 765.98] tons. In
fact, the biofuel demands could grow over time with the heating area increasing, but the biofuel
supply growth could be stronger than the demands due to the subsidy policy and market effect. The
difference between the supply and demand would thus lead to the total biofuel deficit decreasing,
and the downward variation trend of the deficit in BPHS_1 would be consequently dramatic when
the biofuel deficits in BPHSs_2 and _3 reach their corresponding constraint bounds.

Figure 5 describes the biofuel deficit variation trend of different BPHSs under various sce-
nario combinations with different Pr levels at α = 0.5 in Period 1. It can be found that, with the
constraint–violation risk level increases (i.e., the Pr level increases), the biofuel deficit would be
lowered in BPHS_1, and the deficit in BPHSs_2 and _3 would mount up slightly under most scenario
combinations. For instance, when the Pr level varying from 0.01 to 0.1, the deficit in BPHS#1 would be
[1234.45, 1545.28], [1058.09, 1355.96], and [964.67, 1255.02] tons under the scenario combination of the
medium biofuel availability and at the normal “freezing degree” level, respectively. In comparison,
the deficits in BPHSs_2 and _3 would be correspondingly [1796.02, 1990.25] and [559.02, 619.52]
tons, [1816.37, 2012.8] and [579.61, 642.34], [1827.22, 2024.82] and [590.59, 654.50] tons. This can
be mainly explained by the fact that the increased constraint–violation risk level (i.e., Pr) would
lower the totaling heat provisions and the associated biofuel deficit under each scenario combination.
Thereafter, when the penalty difference of the BPHSs makes the biofuel deficit preferentially allocated
to BPHSs_2 and _3, the biofuel deficit in BPHS_1 would decrease dramatically when the Pr level
raised, while the corresponding deficits in BPHSs_3 and _2 would increase slightly owing to the
controlling effect of the deficit-associated constraint (i.e., in Equation (19)). It is worth noting that,
although a lower Pr level would result in a lower risk of biofuel shortage and a higher heating
satisfaction degree, there would be a potential waste of biofuel and heat supply when the “freezing
degree” of heating season is mild, and the biofuel availability level is abundant.

Figure 6 shows the biofuel deficit variation trend of different BPHSs in Period 2 under var-
ious scenario combinations with different α values at Pr = 0.95. It can be seen that, with the α

value increasing from 0.5 to 0.6, the biofuel deficits in three BPHSs would all decline significantly.
For instance, at α = 0.5, the biofuel deficits in BPHSs_1, _2, and _3 would be [1709.52, 2052.11],
[1855.22, 2055.86], and [592.72, 656.87] tons under the scenario combination of the scarce biofuel
availability and the mild “freezing degree” level, respectively; at α = 0.55, the corresponding deficits
would be 0, [357.18, 698.34], and [452.71, 501.71] tons under the same scenario combination; at
α = 0.6, there would be no biofuel deficits in three BPHSs. Meanwhile, the results also show that the
biofuel deficits in different BPHSs would become 0 tons under nearly half of the scenario combina-
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tions, especially the deficits in BPHS_1 under more than two-thirds of the scenario combinations. In
reality, the thermalization coefficient (i.e., α) determines the heat-provision assignment between the
MCHS and the BPHSs. The increase in the thermalization coefficient means that the heat provisions
undertaken by the BPHSs would be lowered, which indirectly reduces the overall biofuel demand
and the corresponding biofuel deficit in each BPHS. Beyond that, the penalty-cost difference results
in the falling range of the biofuel deficit in BPHS_1 to be the largest among different BPHSs when the
α value is adjusted to a higher level. Thus, a 0 biofuel deficit would appear frequently in BPHS_1
under different scenario combinations.

Figure 7 presents the heating-capacity expansion result for each BPHS. The results indicate
that the expansion schemes of the three BPHSs would be different from each other under varied
thermalization coefficients (i.e., α). In detail, BPHS_1 would reach the expansion amounts of 14 MW,
14 MW, and 7 MW under α = 0.5, 0.55, and 0.6, which would have the highest capacity–expansion
amount in comparison with the other two BPHSs; whereas BPHS_3 would not expand over the
entire planning horizon, along with the α value varying from 0.5 to 0.6; at the same time, the
capacity–expansion amount of BPHS_2 is intermediate among that of three BPHSs. The various
capacity–expansion schemes for three BPHSs are because the gap between the actual peak heat-load
demand of each community and the existing heating capacity of the corresponding BPHS is different.
Beyond that, the arising α value can reduce the actual peak heat-load demand of a community, and a
relatively low capacity–expansion is able to compensate for the heat-load shortage for each BPHS.
Consequently, as mentioned above, the expansion amounts of BPHS_1 and _2 are gradually lowered
with the α value increasing.
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Figure 7. Heating capacity expansion scheme for each BPHS under different α values.

Figure 8 shows the solution of the objective function value representing the total heating-cost
expectation under different thermalization coefficients (i.e., α) and constraint–violation risk levels
(i.e., Pr) over the whole planning period. It can be found that all the solutions under different system
conditions can be obtained in terms of interval numbers, demonstrating that the developed model is
valid and sensitive to the uncertain modelling inputs. With the α or Pr values increasing, the heating
cost would fall to a different extent. On one hand, under Pr = 0.05, the heating cost corresponding to
α = 0.5, 0.55, and 0.6 would be [24.44, 29.00] × 106, [16.97, 20.01] × 106, and [11.94, 14.01] × 106 RMB,
respectively. Due to the α value representing the heat provision assignment between the MCHS and
the BPHSs, a high α value makes the heat provisions undertaken by BPHSs lowered, and the biofuel
demand and the corresponding deficit would also decline, causing the final heating cost decreased.
On the other hand, the heating cost would be lowered, along with the Pr value raising (i.e., with the
heating satisfaction decreasing), for example, under α = 0.55, the heating cost would be [17.19, 20.27]
× 106, [16.97, 20.01] × 106, and [16.86, 19.88] × 106 RMB, respectively, corresponding to Pr = 0.01,
0.05, and 0.1, reflecting that a low Pr level would lower the constraint-violation risk by utilizing a
relatively high system cost; conversely, a high Pr level would sacrifice the quality of the heating
service (i.e., supply insufficient heat to communities) in order to reduce the heating cost. Therefore,
in general, the adjustment of the Pr level could also reveal the decision-maker’s preference regarding
the tradeoff between the heating cost and the constraint–violation risk.
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4.2. Discussion
The practicality and validity of the established ITCS-MIP model can be verified by the real

case we used, and the model can be applied widely to the similar district heating systems partly
fueled by biomass-pellet fuels. However, in the context of the “reaching carbon neutral by 2060”
strategy of China, this development direction encouraged by the government has driven remarkable
technological progress in terms of heat storage and other renewable-energy heating technologies
(e.g., wind, solar energy, or ground-source heat pumps) in China. Different renewable energy and
heat storage technologies can be incorporated simultaneously into the traditional district heating
systems [35,36]. The integrated heating systems tend to be more complex due to higher amounts of
system components or modules (e.g., solar, wind energy heating equipment, and thermal storage
devices) and their interactions lying in the system. Beyond that, the concomitant multiple and
polymorphic uncertainties will also be introduced into the modelling system and could indirectly
lead to changes in fuel–energy management patterns by affecting heat loads (or heat provisions). In
fact, although the ITCS-MIP model has merits, including its high efficiency in obtaining the optimum
solution under uncertainties and decreasing the calculation complexity, there are potential limitations
that exist in the proposed model for the future of fuel–energy management and should be addressed in
future research. For example, the developed model cannot deal with the fuzzy uncertainty embedded
within the heating duration or the compound uncertainties originated from other renewable-energy
heating technologies. Meanwhile, its solution may be one-sided, since only the single objective is
considered instead of multiple objectives, and the impacts among different targets are ignored. The
corresponding interactive complexity and uncertainties need to be identified, quantified, and handled
by developing advanced inexact optimization techniques. Thus, other optimization techniques,
such as multi-objective optimization, mixed-integer programming, dynamic programming, fuzzy
optimization, and intelligent optimization algorithms, should be merged into the ITCS-MIP model
framework to cope with the complicated energy-optimization problem within a multi-energy, multi-
module, multi-interaction, and multi-uncertainty context. Moreover, considering that other single
and compound uncertainties could exist in the future district heating system, factorial analysis, causal
analysis, or other advanced techniques need to be applied to obtain the factor-interaction impacts on
the model response.

5. Conclusions
In this paper, an inexact biofuel-management model is developed by integrating different

uncertain programming techniques for real biofuel-based heating sources. The proposed model can
address multiple and compound uncertainties lying in the system and generate the optimal biofuel
management schemes, in terms of biofuel allocation planning and heating capacity expansion subject
to supply–demand, policy requirement constraints, and the financial minimization objective. Beyond
that, the model can also quantitatively analyze the conflict between economic targets that minimize
the system cost and risk preference that maximize heating-service satisfaction.

Due to the penalty difference of the BPHSs and the complicated interaction model constraints,
the results indicate that (1) with the biofuel availability changing from the scarce level to the abundant,
the deficit result of BPHS_1 shows a significant downward trend while the deficit variations of
BPHSs_2 and _3 are insignificant. (2) When the “freezing degree” of the heating season changes from
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the mild level to the severe, BPHS_1 has the highest deficit with the largest amplitude of variation,
followed by BPHS_2, and the deficit of BPHS_3 is the lowest. (3) With the α value increasing from
0.5 to 0.6, the biofuel deficits in three BPHSs would all decline significantly. Meanwhile, BPHS_1
would reach the expansion amounts of 14 MW, 14 MW, and 7 MW, which would have the highest
capacity–expansion amount in comparison with the other two BPHSs, whereas BPHS_3 would not be
expanded over the entire planning horizon. (4) It can be found that, with the constraint–violation risk
level increasing (i.e., the Pr level increases), the biofuel deficit would be lowered in BPHS_1, while
the deficit in BPHSs_2 and _3 would mount up slightly under most scenario combinations. Moreover,
a low constraint–violation risk (i.e., a high heating satisfaction level) would potentially lead to a high
heating cost.
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Nomenclature

fcost Total heating cost, CNY
f 1 Biofuel purchase and supply cost, CNY
f 2 Heat supply cost, CNY
f 3 Heating capacity expansion cost, CNY
f 4 Pollutant removal cost, CNY
pba Probability corresponding to a certain biofuel available level, p.u.
phd Probability corresponding to a certain “freezing degree” level, p.u.
CCB Normal Biofuel price for BPHSs, CNY·tonne−1

CDB Biofuel deficit price for a BPHS, CNY·tonne−1

XCB Planned biofuel consumption in a BPHS, tonne
XDB Biofuel deficit in a BPHS, tonne
Qb Heating value of biofuel, GJ·tonne−1

lb Heating efficiency of a BPHS, %
CSPH Heat supply price of a BPHS, CNY·GJ−1

COPT Pollutant removal price, CNY·GJ−1

AVBF Biofuel available amount, 103 tonne
YD A binary variable representing whether capacity expansion is executed, p.u.
CGE Cost of a heating-capacity expansion choice in a BPHS, CNY
EHC Existing heating capacity of a BPHS, MW
MHL Maximum heating load undertaken by a BPHS, MW
GEH Heating capacity expansion choice in a BPHS, MW
TSHT Heat provision undertaken by a BPHS, GJ
i Biofuel-based heating source (i = 1~3 for BPHS_1, _2 and _3)
j Biofuel available level (j = 1~3 for scarce, medium, and abundant level)
k “Freezing degree” level of a heating season (k = 1~3 for severe, normal, and mild level)
pr Risk probability level (Pr = 0.01, 0.05, 0.1)
t Planning period (t = 1, 2, and 3)
m Heating capacity expansion choice (m = 1~3 for 7, 14, and 28 MW)
α Thermalization coefficient (α = 0.5, 0.55, or 0.6), p.u.
η Control coefficient for biofuel deficit, p.u.
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Appendix A

Table A1. Heat provisions undertaken by different peak-shaving heating sources under α = 0.5, GJ.

Percentile Heat Source “Freezing Degree” Period 1 Period 2 Period 3

1%

BPHS_1
Severe 153,898.6 169,521.1 186,705.9

Normal 143,440.4 158,017.1 174,051.4
Mild 132,948.9 146,476.4 161,356.6

BPHS_2
Severe 64,627.19 71,322.54 78,687.43

Normal 60,145.1 66,392.24 73,264.1
Mild 55,648.72 61,446.22 67,823.48

BPHS_3
Severe 19,991.5 22,223.28 24,678.24

Normal 18,497.47 20,579.85 22,870.47
Mild 16,998.67 18,931.17 21,056.93

5%

BPHS_1
Severe 154,580 170,202.5 187,387.3

Normal 144,121.8 158,698.5 174,732.8
Mild 133,630.3 147,157.8 162,038

BPHS_2
Severe 65,308.69 72,004.04 79,368.93

Normal 60,826.6 67,073.74 73,945.6
Mild 56,330.22 62,127.72 68,504.98

BPHS_3
Severe 20,673 22,904.78 25,359.74

Normal 19,178.97 21,261.35 23,551.97
Mild 17,680.17 19,612.67 21,738.43

10%

BPHS_1
Severe 154,943.3 170,565.8 187,750.6

Normal 144,485.1 159,061.8 175,096.1
Mild 133,993.6 147,521.1 162,401.3

BPHS_2
Severe 65,671.99 72,367.34 79,732.23

Normal 61,189.9 67,437.04 74,308.9
Mild 56,693.52 62,491.02 68,868.28

BPHS_3
Severe 21,036.3 23,268.08 25,723.04

Normal 19,542.27 21,624.65 23,915.27
Mild 18,043.47 19,975.97 22,101.73

90%

BPHS_1
Severe 157,506.5 173,129 190,313.8

Normal 147,048.3 161,625 177,659.3
Mild 136,556.8 150,084.3 164,964.5

BPHS_2
Severe 68,235.09 74,930.44 82,295.33

Normal 63,753 70,000.14 76,872
Mild 59,256.62 65,054.12 71,431.38

BPHS_3
Severe 23,599.4 25,831.18 28,286.14

Normal 22,105.37 24,187.75 26,478.37
Mild 20,606.57 22,539.07 24,664.83

95%

BPHS_1
Severe 157,869.8 173,492.3 190,677.1

Normal 147,411.6 161,988.3 178,022.6
Mild 136,920.1 150,447.6 165,327.8

BPHS_2
Severe 68,598.39 75,293.74 82,658.63

Normal 64,116.3 70,363.44 77,235.3
Mild 59,619.92 65,417.42 71,794.68

BPHS_3
Severe 23,962.7 26,194.48 28,649.44

Normal 22,468.67 24,551.05 26,841.67
Mild 20,969.87 22,902.37 25,028.13

99%

BPHS_1
Severe 158,551.2 174,173.7 191,358.5

Normal 148,093 162,669.7 178,704
Mild 137,601.5 151129 166,009.2

BPHS_2
Severe 69,279.89 75,975.24 83,340.13

Normal 64,797.8 71,044.94 77,916.8
Mild 60,301.42 66,098.92 72,476.18

BPHS_3
Severe 24,644.2 26,875.98 29,330.94

Normal 23,150.17 25,232.55 27,523.17
Mild 21,651.37 23,583.87 25,709.63
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Table A2. Heat provisions undertaken by different peak-shaving heating sources under α = 0.55, GJ.

Percentile Heat Source “Freezing Degree” Period 1 Period 2 Period 3

1%

BPHS_1
Severe 119,844.1 132,061.2 145,499.9

Normal 111,664.1 123,063.2 135,602.1
Mild 103,468.1 114,047.5 125,684.9

BPHS_2
Severe 50,032.4 55,268.27 61,027.74

Normal 46,526.69 51,411.99 56,785.83
Mild 43,014.09 47,548.13 52,535.58

BPHS_3
Severe 15,126.57 16,871.86 18,791.68

Normal 13,958 15,586.43 17,377.71
Mild 12,787.13 14,298.48 15,960.96

5%

BPHS_1
Severe 120,525.5 132,742.6 146,181.3

Normal 112,345.5 123,744.6 136,283.5
Mild 104,149.5 114,728.9 126,366.3

BPHS_2
Severe 50,713.9 55,949.77 61,709.24

Normal 47,208.19 52,093.49 57,467.33
Mild 43,695.59 48,229.63 53,217.08

BPHS_3
Severe 15,808.07 17,553.36 19,473.18

Normal 14,639.5 16,267.93 18,059.21
Mild 13,468.63 14,979.98 16,642.46

10%

BPHS_1
Severe 120,888.8 133,105.9 146,544.6

Normal 112,708.8 124,107.9 136,646.8
Mild 104,512.8 115,092.2 126,729.6

BPHS_2
Severe 51,077.2 56,313.07 62,072.54

Normal 47,571.49 52,456.79 57,830.63
Mild 44,058.89 48,592.93 53,580.38

BPHS_3
Severe 16,171.37 17,916.66 19,836.48

Normal 15,002.8 16,631.23 18,422.51
Mild 13,831.93 15,343.28 17,005.76

90%

BPHS_1
Severe 123,452 135,669.1 149,107.8

Normal 115,272 126,671.1 139,210
Mild 107,076 117,655.4 129,292.8

BPHS_2
Severe 53,640.3 58,876.17 64,635.64

Normal 50,134.59 55,019.89 60,393.73
Mild 46,621.99 51,156.03 56,143.48

BPHS_3
Severe 18,734.47 20,479.76 22,399.58

Normal 17,565.9 19,194.33 20,985.61
Mild 16,395.03 17,906.38 19,568.86

95%

BPHS_1
Severe 123,815.3 136,032.4 149,471.1

Normal 115,635.3 127,034.4 139,573.3
Mild 107,439.3 118,018.7 129,656.1

BPHS_2
Severe 54,003.6 59,239.47 64,998.94

Normal 50,497.89 55,383.19 60,757.03
Mild 46,985.29 51,519.33 56,506.78

BPHS_3
Severe 19,097.77 20,843.06 22,762.88

Normal 17,929.2 19,557.63 21,348.91
Mild 16,758.33 18,269.68 19,932.16

99%

BPHS_1
Severe 124,496.7 136,713.8 150,152.5

Normal 116,316.7 127,715.8 140,254.7
Mild 108,120.7 118,700.1 130,337.5

BPHS_2
Severe 54,685.1 59,920.97 65,680.44

Normal 51,179.39 56,064.69 61,438.53
Mild 47,666.79 52,200.83 57,188.28

BPHS_3
Severe 19,779.27 21,524.56 23,444.38

Normal 18,610.7 20,239.13 22,030.41
Mild 17,439.83 18,951.18 20,613.66
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Table A3. Heat provisions undertaken by different peak-shaving heating sources under α = 0.6, GJ.

Percentile Heat Source “Freezing Degree” Period 1 Period 2 Period 3

1%

BPHS_1
Severe 90,304.58 99,567.65 109,757.1

Normal 84,107.47 92,750.85 102,258.6
Mild 77,907.64 85,931.04 94,756.77

BPHS_2
Severe 37,372.62 41,342.52 45,709.4

Normal 34,716.72 38,421.02 42,495.76
Mild 32,059.64 35,498.24 39,280.7

BPHS_3
Severe 10,906.64 12,229.94 13,685.57

Normal 10,021.34 11,256.11 12,614.35
Mild 9,135.652 10,281.85 11,542.67

5%

BPHS_1
Severe 90,986.08 100,249.1 110,438.5

Normal 84,788.97 93,432.35 102,940
Mild 78,589.14 86,612.54 95,438.27

BPHS_2
Severe 38,054.12 42,024.02 46,390.9

Normal 35,398.22 39,102.52 43,177.26
Mild 32,741.14 36,179.74 39,962.2

BPHS_3
Severe 11,588.14 12,911.44 14,367.07

Normal 10,702.84 11,937.61 13,295.85
Mild 9817.146 10,963.35 12,224.17

10%

BPHS_1
Severe 91,349.38 100,612.4 110,801.8

Normal 85,152.27 93,795.65 103,303.3
Mild 78,952.44 86,975.84 95,801.57

BPHS_2
Severe 38,417.42 42,387.32 46,754.2

Normal 35,761.52 39,465.82 43,540.56
Mild 33,104.44 36,543.04 40,325.5

BPHS_3
Severe 11,951.44 13,274.74 14,730.37

Normal 11,066.14 12,300.91 13,659.15
Mild 10,180.45 11,326.65 12,587.47

90%

BPHS_1
Severe 93,912.48 103,175.6 113,365

Normal 87,715.37 96,358.75 105,866.5
Mild 81,515.54 89,538.94 98,364.67

BPHS_2
Severe 40,980.52 44,950.42 49,317.3

Normal 38,324.62 42,028.92 46,103.66
Mild 35,667.54 39,106.14 42,888.6

BPHS_3
Severe 14,514.54 15,837.84 17,293.47

Normal 13,629.24 14,864.01 16,222.25
Mild 12,743.55 13,889.75 15,150.57

95%

BPHS_1
Severe 94,275.78 103,538.9 113,728.3

Normal 88,078.67 96,722.05 106,229.8
Mild 81,878.84 89,902.24 98,727.97

BPHS_2
Severe 41,343.82 45,313.72 49,680.6

Normal 38,687.92 42,392.22 46,466.96
Mild 36,030.84 39,469.44 43,251.9

BPHS_3
Severe 14,877.84 16,201.14 17,656.77

Normal 13,992.54 15,227.31 16,585.55
Mild 13,106.85 14,253.05 15,513.87

99%

BPHS_1
Severe 94,957.28 104,220.3 114,409.7

Normal 88,760.17 97,403.55 106,911.2
Mild 82,560.34 90,583.74 99,409.47

BPHS_2
Severe 42,025.32 45,995.22 50,362.1

Normal 39,369.42 43,073.72 47,148.46
Mild 36,712.34 40,150.94 43,933.4

BPHS_3
Severe 15,559.34 16,882.64 18,338.27

Normal 14,674.04 15,908.81 17,267.05
Mild 13,788.35 14,934.55 16,195.37
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Table A4. Related economic parameters.

Economic Parameter Heat Source Period 1 Period 2 Period 3

Biofuel deficit price for
a BPHS, CNY·t−1

BPHS_1 [410, 435] [415, 440] [420, 445]
BPHS_2 [400, 417] [405, 423] [410, 437]
BPHS_3 [385, 405] [395, 412] [405, 424]

Heat supply price of a
PHS, CNY·GJ−1

BPHS_1 [0.81, 0.92] [0.83, 0.94] [0.85, 1.01]
BPHS_2 [0.82, 0.91] [0.85, 0.96] [0.87, 1.08]
BPHS_3 [0.94, 1.07] [0.99, 1.13] [1.04, 1.16]

Pollutant removal price
in a PHS, CNY·GJ −1

BPHS_1 [0.95, 1.11] [0.97, 1.13] [0.99, 1.15]
BPHS_2 [0.99, 1.15] [1.01, 1.17] [1.03, 1.20]
BPHS_3 [1.02, 1.19] [1.04, 1.22] [1.07, 1.25]

Table A5. Heating load undertaken by different peak-shaving heating sources, MW.

Thermalization
Coefficient Heat Source “Freezing Degree” Period 1 Period 2 Period 3

α = 0.5

BPHS_1
Severe 37.77948 38.92424 40.10368

Normal 34.34498 35.38567 36.45789
Mild 30.91048 31.8471 32.8121

BPHS_2
Severe 16.19121 16.68182 17.18729

Normal 14.71928 15.16529 15.62481
Mild 13.24735 13.64876 14.06233

BPHS_3
Severe 5.397069 5.560605 5.729097

Normal 4.906426 5.055096 5.20827
Mild 4.415783 4.549586 4.687443

α = 0.55

BPHS_1
Severe 34.00153 35.03181 36.09331

Normal 30.91048 31.8471 32.8121
Mild 27.81944 28.66239 29.53089

BPHS_2
Severe 14.57209 15.01363 15.46856

Normal 13.24735 13.64876 14.06233
Mild 11.92262 12.28388 12.6561

BPHS_3
Severe 4.857362 5.004545 5.156187

Normal 4.415783 4.549586 4.687443
Mild 3.974205 4.094627 4.218699

α = 0.6

BPHS_1
Severe 30.22358 31.13939 32.08294

Normal 27.47599 28.30854 29.16631
Mild 24.72839 25.47768 26.24968

BPHS_2
Severe 12.95296 13.34545 13.74983

Normal 11.77542 12.13223 12.49985
Mild 10.59788 10.91901 11.24986

BPHS_3
Severe 4.317655 4.448484 4.583278

Normal 3.925141 4.044076 4.166616
Mild 3.532627 3.639669 3.749954
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