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Abstract: Eco-driving algorithms optimize the speed profile to reduce the energy consumption of a
vehicle. This paper presents an eco-driving algorithm for battery electric powertrains that applies a
split loss integration approach to incorporate the component losses. The algorithm consistently uses
loss models to overcome the drawbacks of efficiency maps, which cannot represent no-load losses
at zero torque. The use of loss models is crucial since the optimal solution includes gliding, during
which there are no-load losses. An analysis shows, that state-of-the-art nonlinear programming
algorithms cannot represent these no-load losses at zero torque with a small modeling error. To
effectively compute the powertrain losses with only a small error in comparison to the measurement
data, we introduce a tailored combination of nonlinear inequality constraints that interleave two
polynomial fits. This approach can properly represent reality. We parameterize the algorithm and
validate the vehicle model used with real-world measurement data. Furthermore, we investigate
the influence of the proposed interleaved fits by comparing them to a single continuous high-order
polynomial fit and to the state of the art. The algorithm is published open source.

Keywords: eco-driving; energy-efficient driving; nonlinear programming; battery electric vehicles;
open source; eco-acc; powertrain topologies

1. Introduction

A reduction in energy demand and emissions as well as mitigating traffic congestion
represent outstanding challenges. Connected, automated and electric vehicles may change
an individual transport system. Battery electric vehicles (BEVs) eliminate tailpipe emissions.
Nevertheless, their battery capacity, and hence their range, is limited. The automation of
BEVs may exacerbate this effect because auxiliary power consumption increases due to
the higher computational demand [1]. However, connected and automated vehicles may
increase traffic efficiency and therefore decrease energy demand [2,3] as well as improving
the energy efficiency of the vehicle itself by adapting its driving behavior [4], which could
reduce the drawbacks of BEVs.

Improving energy efficiency and consequently the range of BEVs can be divided into
two areas: vehicle design and vehicle operation. Energy-efficient driving saves energy
during operation, however, the boundary conditions are set during the vehicle conceptual
phase. In the conceptual phase the energy demand of the vehicle can be influenced by se-
lecting the powertrain topology and choosing and sizing the powertrain components [5–9].
In our previous studies, we have shown that the powertrain topology affects the optimal
speed profile of the vehicle and the resulting energy demand [10]. The joint optimization
of the powertrain and speed profile are addressed in [11,12]. However, the topologies
considered and driving scenarios are limited. For an electric race car, Borsboom et al. [13]
optimize the powertrain size and the speed profile for a transmission with a fixed gear ratio
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and a continuously variable transmission (CVT). However, their objective is a minimum
lap time and their powertrain topology is fixed.

Eco-driving describes a wide range of measures to make road transport more ecologi-
cal. Huang et al. [14] presented different definitions and scopes of eco-driving found in
the literature, including vehicle selection, route planning, driving style, cabin comfort, and
maintenance. A similar classification is given in [15]. Huang et al. [14] focus on driving
behavior: speed, acceleration, deceleration, route choice, idling, and accessories. Where
speed is concerned, they propose a constant speed as the optimal energy-efficient speed
profile. However, optimizing approaches reveal that, due to poor efficiency at low load,
cruising may not be as efficient as a periodic alternation between acceleration and coast-
ing [10,16–18], both for combustion engines and electric motors. This driving strategy is
also called Pulse and Glide (P&G).

Energy-optimal speed profiles differ in the literature, depending on the boundary
conditions and on the formulation of the optimization problem. In our previous paper [10],
we differentiated between the objective function formulations, which included

• Minimization of squared acceleration;
• “Wheel-to-distance” energy minimization;
• “Tank-to-distance” energy minimization.

In the following, the different objectives are discussed in detail.

1.1. Minimization of Squared Acceleration

The minimization of squared acceleration does not minimize energy but acceleration.
In many cases, acceleration correlates with the energy required. However, the P&G example
shows that this is not always the case. The advantage is fast calculations. Examples are
given in [19–22].

1.2. Wheel-to-Distance Energy Minimization

Wheel-to-distance energy minimizations minimize the required energy at the wheel.
Thus, air, roll, inclination and inertial resistance are minimized. Assuming a given vehi-
cle, the route choice and speed are the main levers for optimizing energy consumption.
Han et al. [16] present a wheel-to-distance optimal speed profile. In general, the optimal
wheel-to-distance speed profile consists of a fast acceleration/deceleration followed by a
constant speed until close to the destination. Deceleration should include coasting but can
also consist of harsh braking.

1.3. Tank-to-Distance Energy Minimization

Since all losses are relevant to the total energy demand of a vehicle, tank-to-distance
energy minimizations have the largest potential to save energy since they incorporate all
losses from the tank or battery up to the conversion into distance covered. The minimization
of tank-to-distance energy consumption represents an optimal control problem (OCP).
Diehl et al. [23] name dynamic programming (DP), direct methods and indirect methods
as the three basic approaches to solving OCPs, whereas direct methods are the most
widespread for real-world problems. Direct methods use nonlinear programming (NLP),
whereby numerical methods can be categorized into gradient-based methods and heuristic
methods [24]. Below, the literature relating to eco-driving with a defined electric powertrain
is analyzed. In doing so, we differentiate between optimizations using DP and direct
methods with gradient-based numerical methods.

1.3.1. Optimizations Using Dynamic Programming

DP is used to optimize speed profiles for electric vehicles [11,17,25], electric buses [18,26]
or electric trains [27].

Lin et al. [25] used DP to develop a driving assistance system based on speed profile
optimization. The powertrain is modeled with a constant transmission efficiency, a motor
efficiency map, and a Rint model representing the battery. So et al. [17] implemented an
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eco-driving algorithm, using DP. The case study is a lightweight vehicle. Motor and
power electronics are modeled by an efficiency map. Since the vehicle has in-wheel
motors, no transmission is modeled. Anselma and Belingardi [11] used a DP algorithm to
optimize the speed profiles of electric vehicles by simultaneously optimizing the powertrain.
The transmission is modeled as a constant efficiency. The authors state that they use
empiric loss maps to model the motor, however, in their equations, they use load-point-
dependent efficiencies for the motor and inverter. They model the battery with a Rint
model. In [18], we implemented a DP, algorithm and optimized speed profiles for electric
buses, varying gear ratio, and motor type. Constant transmission efficiency and motor
efficiency maps were used. The battery and inverter were neglected. Liao et al. [28]
implemented a temperature-dependent battery in their powertrain. They used a Rint
model with temperature-dependent open-circuit voltage (OCV) and internal resistance.
Motor and CVT are modeled as fits of efficiency maps. Franke et al. [27] used loss maps to
model the electric motor. However, since the research of Franke et al. relates to trains, the
boundary conditions differ.

1.3.2. Optimizations Using Direct Methods

Shao (p. 93ff [29]) presented NLP for a BEV with an induction motor (IM). The power
of the drivetrain Pdrv is modeled by a polynomial as a function of motor speed and torque

Pdrv = p00 + p10 ωm + p10 Tm + p11 ωm Tm (1)

with fitting coefficients pij, motor speed ωm and motor torque Tm. He used a Rint battery
model. The constraints he applied included jerk limitations, speed limitations, distance to
leading vehicle limitations, regenerative braking constraints based on the state of charge
(SOC) and vehicle speed, braking force balance constraints and discharging constraints.
The algorithm was implemented in Matlab and uses the interior-point solver IPOPT [30].

For an energy-optimal adaptive cruise control, Jia et al. [31] presented two algorithms,
a linearly constrained quadratic programming algorithm in the time domain and an NLP
algorithm in the space domain. Assuming constant transmission efficiency and a single-
speed transmission, the power consumption is a function of traction force Ft and vehicle
speed v for a specific SOC. The power is fitted by a polynomial with

P = p00 + p10 v + p10 Ft + p11 v Ft + p20 v2 + p02 F2
t (2)

For the space domain, power demand per meter is fitted as a function of traction force
and the square of velocity. This results in a more accurate fit than in the time domain.

Bertoni et al. [32] proposed an energy-efficient adaptive cruise control for connected
electric vehicles. They used a variable air drag coefficient based on the inter-vehicle distance
based on experimental data from [33]. To model the powertrain, they fitted the electric
motor power by

Pm = p11 ωm Tm + p02 T2
m, (3)

based on a scaled motor efficiency map and a transmission efficiency of 90%. Battery
internal losses were neglected. Again, this problem was solved with IPOPT.

Schwickart et al. [34] implemented a real-time energy-efficient model-predictive cruise
controller for an electric vehicle. The cost function consists of the squared energy consump-
tion which itself is modeled by fitting six planes to the electrical energy per meter. The
planes are incorporated into the algorithm by inequality constraints.

He et al. [35] used sequential quadratic programming (SQP) to enable eco-driving for
an electric sightseeing vehicle. Regarding the powertrain, they only implemented motor
current losses based on the current I, which itself is assumed to be linearly dependent on
the motor traction force F

Pc = R I2 = R (c F)2, (4)

with the current losses Pc, winding resistance R and constant c.
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We demonstrated in our previous research [10], that quadratic representations of
power are not sufficient for powertrains with multiple motors or multiple gears as these
fits are not suitable for finding the most efficient operation mode. We introduced higher
polynomial fits, for traction and recuperation each with

P =
n

∑
y=0

m−y

∑
x=0

pxy ωx
m Ty

m (5)

while we used fits of degree m = 6 and n = 6. The transmission was represented as a
constant efficiency, and battery and power electronics were neglected.

1.4. Review of Existing Algorithms and Scope of the Paper

Even though the usage of loss maps for motor and gearbox can be considered to be
state-of-the-art in simulation applications [7], their consistent usage has not been seen in
optimization applications. In [17,18], it is shown, that P&G, can help BEVs to achieve a
lower energy consumption than at constant speed because the high torque during accelera-
tion corresponds to high motor efficiency. These papers use efficiency maps to model the
motor losses and constant transmission efficiencies. However, with this implementation,
losses at zero torque (and zero speed) cannot be represented (p. 56 [7]). Thus, no-load losses
during gliding are neglected. Approaches that used fitting approaches [29,31,32,34] may
have included no-load losses at zero torque, however, they use low-degree polynomials
to fit the losses. We will show, that these fits are not capable of representing the actual
losses of the vehicle. As these fits are used in the eco-driving optimization algorithms,
the obtained solutions are sub-optimal. Since different powertrain topologies and motors
may also make it possible to reduce the energy demand of BEVs, these levers should
also be considered. Finally, the hypothesis of the paper is an eco-driving algorithm that
outperforms the current algorithms with respect to model accuracy by using detailed loss
models and their innovative integration into the algorithm. Thereby, the algorithm gains
more energy savings than other algorithms for battery electric powertrains. Additionally,
the algorithm’s predicted powertrain states and energy-saving potential shall coincide with
our real-world measurements. Thus, the scope of the paper is:

• To formulate an online capable eco-driving algorithm that consistently uses losses
instead of efficiencies for all relevant powertrain components in order to include the
powertrain’s no-load losses at zero torque in the optimization. To fit the losses with
only a small error, especially in the region at zero torque, we introduce a tailored
combination of nonlinear inequality constraints.

• To formulate an eco-driving algorithm that can handle different powertrain topologies
and incorporate the powertrain in a component-wise manner, so that the effect of differ-
ent powertrain components, such as different motors or transmission configurations,
can be addressed

• To implement a transmission loss model
• To parameterize and validate the algorithm with real-world data

The remainder of the paper is structured as follows: in Section 2, we give an overview
of loss modeling of wheel-to-distance losses and battery-to-wheel losses. Based on the
overview, we set our assumptions and propose an eco-driving algorithm that uses loss
models in Section 3. Furthermore, we present the conducted experiments. In Section 4, the
algorithm is parameterized. The results and an interpretation are presented in Section 5,
which focuses on the validity of the models and meta-models and presents a comparison to
the state-of-the-art.

2. Preliminaries on Powertrain Loss Modeling

Optimal speed profiles depend on the modeling techniques used for the powertrain
components and their power losses. In this section, we provide an overview of modeling
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the energy losses of a BEV. We differentiate between wheel-to-distance losses and battery-
to-wheel losses.

2.1. Wheel-to-Distance Losses

When moving, the vehicle experiences forces, namely air resistance, rolling resistance,
gravity and inertial force.

Aerodynamic forces arise due to the viscous friction of the surrounding air acting on
the vehicle surface and due to a pressure difference between the front and the rear of the
vehicle (p. 14f [36]). Equation (6) is commonly used to calculate the air resistance force:

Fair = 0.5 ρa ca aa v2
flow, (6)

with air density ρa, vehicle front surface aa, aerodynamic drag coefficient ca, and incident
velocity vflow.

On tarmac roads, the rolling resistance is mainly due to flexing losses of the wheel
(p. 50 [37]). The roll resistance force depends on the tire load, resulting in

Froll = fr Fz, (7)

with the rolling resistance coefficient fr and the tire load Fz. In many longitudinal sim-
ulations, fr is assumed to be constant, however, its value depends on velocity, pressure,
and temperature. A measuring method is proposed in SAE J 2452 [38] for determining the
rolling resistance. It is proposed to model the rolling resistance by

Froll = Fα
z Pβ

tire

(
a + b v + c v2

)
, (8)

with inflation pressure Ptire and the fitting coefficients α, β, a, b and c [39]. Others have
shown that cold tires increase the rolling resistance [40,41].

On inclined roads, the vehicle must overcome the force due to gravity (p. 16 [36]). The
force can be modeled by

Fslope = mveh g sin(α), (9)

with the vehicle’s mass mveh, acceleration due to gravity g and road gradient α. In contrast
to the resistance forces referred to above, this force acts either in or against the direction
of travel.

During acceleration, an additional force is required. However, it is not only necessary
to accelerate the mass of the vehicle but also its rotating parts, such as the wheels, shafts,
gears and the rotor of the motor (p. 16f [36], p. 79ff [42]). The drivetrain inertia IDT can be
calculated as being equal to an equivalent mass meq. The equivalent mass of rotating parts
can also be expressed by means of the factor λ (p. 82 [42]) resulting in a required force

Facc =

(
mveh +

IDT

r2
w

)
a = (mveh + meq) a = mveh λ a, (10)

with acceleration a and wheel radius rw. The equivalent mass meq depends on the power-
train and the selected gear. For passenger cars with combustion engines, λ ranges from
1.05 to 1.5, depending on the selected gear (p. 82 [42]). Most BEVs have single-speed trans-
missions. Thus, λ does not vary. By reverse engineering, Steinstraeter et al. [43] estimated a
drivetrain inertia of 10.42 kgm2 for a BEV based on BMW i3 and Tesla Model 3 components.

2.2. Battery-to-Wheel Losses

The total of the wheel-to-distance forces is provided by the powertrain and brakes.
Here, battery, inverter, motor and gearbox losses are relevant. As these losses are load-
point-dependent, simulations often use efficiency or loss maps. However, efficiency maps
cannot represent load-independent losses at zero torque, because one part of the product is
zero. Thus, loss maps are to be preferred.
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2.2.1. Battery Losses

There are different modeling approaches for batteries, namely mathematical, electro-
chemical, and electrical equivalent circuit network models and combinations of these. The
second and third are mainly used for electric vehicles [44]. The easiest electrical equivalent
circuit model consists of an internal resistance Ri and an ideal voltage source Vb0. This is
also referred to as a Rint model. With terminal power Pbat,out, the internal battery power
Pbat can be calculated according to (p. 50f [4]) as

Pbat =
V2

b0
2Ri
−Vb0

√
V2

b0 − 4Pbat,outRi

4R2
i

. (11)

The losses can be calculated as the difference between internal and output power.

2.2.2. Motor and Power-Electronic Losses

The main losses in power electronics are conduction and switching losses [45,46].
Conduction losses are due to the resistance of the conducting switches. Switching losses
are proportional to the switching frequency and arise since the switches cannot switch
instantly (p. 34 [47]). Many motor efficiency maps include the inverter. Thus, inverter
losses are often incorporated within motor losses (p. 47 [4]).

Motor losses can be categorized into copper losses, iron losses, mechanical losses, and
supplementary losses (p. 247 [48], p. 215/217 [49]). Furthermore, Mahmoudi et al. [50] use
magnetic losses as categorization. These losses can be incorporated into load-dependent
losses and load-independent losses. The latter is also called no-load losses. Examples of
load-independent losses are parts of the mechanical losses, such as windage losses, the iron
losses of a permanent-magnet synchronous motor (PMSM), and parts of the supplementary
losses (p. 217 [49]), while the load does not affect the load-independent losses, speed does,
as mechanical losses and iron losses depend on the rotor speed. For a 25 kW interior-PMSM,
iron losses at no-load can be 1 kW at 2500 min−1 [51]. Furthermore, they act on the rotor
and/or stator (p. 391, 551 [48]). The proportion and shape of the losses depend on the
motor type: asynchronous motors differ from synchronous motors, however, the losses
within synchronous motors can vary greatly. Mahmoudi et al. [50] fit the motor losses of an
IM and two PMSMs, an interior-PMSM and a surface-mounted-PMSM, based on the motor
speed and motor torque for the constant torque and constant power region and investigate
the influence of the different terms on the motor losses. The fitting terms vary among the
various motor types as do the efficiency maps.

Efficiency maps are widely used to model motor performance as a function of torque
and speed. They are generated by finding the best control parameters of the motor for each
load point [50]. They are often saved in tabulated form (p. 47 [4]). However, there are also
dynamic approaches that use electric circuit models (p. 92ff [36]).

2.2.3. Gearbox Losses

Gearbox losses Pgb,loss are mainly caused by friction in the gears and bearings. They
can be divided into load-dependent wheel losses Pgb,wheel, load-independent wheel losses
Pgb,wheel0, bearing losses Pgb,bear, sealing losses Pgb,seal, and auxiliaries losses
Pgb,other (p. 219 [52]).

Pgb,loss = Pgb,wheel + Pgb,wheel0 + Pgb,bear + Pgb,seal + Pgb,other (12)

The load-dependent wheel losses describe the losses occurring at each reduction stage.
They can be estimated from the input motor power Pm, the friction µm and loss coefficients
Hv at the reduction stage.

Pgb,wheel = µmHvPm (13)
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While Hv depends on the geometrical parameters of the wheels (such as transmission
ratio and the number of teeth) µm depends on both the rotational speed and torque. More
information concerning µm and Hv is presented in (p. 220 [52], p. 16 [53]). The load-
independent losses Pgb,wheel0 are caused by the contact between the wheels and the oil.
They vary depending on the type of lubrication (most of the existing BEVs use splash
lubrication), the wheel rotational speed, and the lubricant characteristics (such as the
dynamic viscosity and temperature). More information regarding the modeling of these
losses is presented in the work of Walter [54].

Bearing losses are divided into load-dependent and load-independent losses. There
are different calculation methods for these losses such as the ones developed by the bearing
manufacturers SKF [55] and Schaeffler [56]. For the bearing losses implemented in this
tool, we apply the calculation method proposed by Schaeffler (p. 57 [56]). According to
Schaeffler, the bearing losses can be represented as a friction torque which has a speed de-
pendent Tgb,bear,speed,1 and load-dependent Tgb,bear,load,1 component. The speed-dependent
losses of the input shaft (the shaft connected to the motor) are calculated as follows (more
information about the required units is presented in (p. 57 [56])):

Tgb,bear,speed,1 = f0(νnshaft,1)
2/3d3

m10−7 (14)

where dm represents the mean diameter of the bearing and ν the dynamic viscosity of the
lubrication oil. f0 is a bearing factor that is listed by the bearing manufacturer. Equation (14)
has to be applied for each bearing at each shaft in order to derive the total friction moment.
Finally, nshaft,1 is the speed of the input shaft. The load component friction torque is
estimated as follows:

Tgb,bear,load,1 = f1P1dm (15)

f1 is a bearing-dependent calculation factor that is given by the bearing manufacturer and
P1 is the bearing load. Similarly, Equations (14) and (15) also have to be applied for each
bearing at each shaft. By combining the contributions of Equations (14) and (15), the total
bearing friction loss can be calculated. Equation (16) is used to estimate the friction losses
occurring at the input shaft

Pgb,bear,1 = (Tgb,bear,load,1 + Tgb,bear,speed,1) ωshaft,1, (16)

where ωshaft,1 is the rotational speed at the input shaft (in rad s−1) and Tgb,bear,load,1 and
Tgb,bear,speed,1 represent the sum of all friction torques (N m) acting on the input shaft.

The bearing losses are highly dependent on the shaft speed. In the case of BEVs,
the highest losses usually occur at the input shaft (i.e., the shaft connected to the electric
motor) since this shaft rotates at the same speed as the motor. For example, Wolf [57]
calculates total bearing losses of 315 W for a 30 kW electric motor (operating point 27 N m
and 11.000 rpm) with a gearbox with two reduction stages, where 76% of the losses are
incurred by the input shaft, 16% by the intermediate shaft and 8% by the output shaft.

The sealing losses Pgb,seal play a minor role when compared to the wheel or bearing
losses. The Pgb,seal are caused by the sealing rings installed at the input and output shafts.
They depend on the rotational speed of the shaft at the point where the sealing is installed
and on the diameter of the sealing. They can be modeled based on the equation proposed
in [58].

Finally, the other losses Pgb,other include the losses of the gearbox auxiliaries such as
the oil pump. These losses are not considered in this work.

3. Research Method

In this section, we describe our research method, starting with the assumptions made
for the eco-driving algorithm in Section 3.1. Afterward, in Section 3.2 we present the
proposed eco-driving algorithm in detail. Finally, we describe the conducted experiments
in Section 3.3.
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3.1. Concept Assumptions

The eco-driving algorithm calculates optimal speed profiles, considering vehicle exter-
nal and internal constraints for a given scenario. Defining these constraints and scenarios
is crucial regarding the used assumptions and the capability of the algorithm. The main
objective is energy savings. As the energy consumption of a vehicle is mainly influenced
by longitudinal dynamics, this eco-driving algorithm regards only longitudinal effects.
However, lateral behavior influences longitudinal behavior, as approaching corners may
force a vehicle to slow down. Thus, a distance-based speed limit within a scenario should
be considered by the algorithm. Regarding the scenarios, two general applications should
be handled by the algorithm. In route optimization, a longer distance is optimized, whereas
no traffic is present and all boundary conditions are known a priori. In a moving horizon
speed planner (MHSP)-optimization, the vehicle is in a dynamic scenario with a leading
vehicle. By repeating the prediction of the leading vehicle, optimizing a finite horizon and
implementing the first part of the optimal solution, the vehicle is able to move in a dynamic
scenario with a leading vehicle and changing boundary conditions. Furthermore, the
algorithm should respect comfort limits as acceleration and jerk and powertrain-internal
limitations as maximum speeds, torques and powers of the components.

3.2. Proposed Eco-Driving Algorithm

Based on the literature review, we derive an eco-driving algorithm for BEVs, for
different powertrain topologies. In comparison to the algorithm we presented in [10], we
incorporate more precise vehicle losses and add losses of power electronics and batteries.
We propose a split loss integration approach to represent motor and transmission losses. To
achieve fast computational time and incorporate multiple states, NLP is used. For the sake
of clarity, we describe the problem for a powertrain with one motor and a single-speed
transmission first and explain changes for two motors or two speed transmissions later.

To gain optimal speed profiles we transcribe an OCP into a NLP with the states x,
the control vector u, the objective function J, p inequality constraints g and q equality
constraints h:

minimize
x, u

J(x, u)

subject to gi(x, u) ≤ 0 i = 1, ..., p,

hj(x, u) = 0 j = 1, ..., q.

(17)

The state vector consists of acceleration a, velocity v, distance s internal battery power
Pbat, SOC ξ, battery cell current Icell and two help variables, representing electric motor
and power electronic losses sm,loss, and torque losses within the gearbox sgb,loss:

x =
[
a v s Pbat ξ Icell sm,loss sgb,loss

]T. (18)

The control vector consists of the air gap torque of the electric motor Tm,a and the
braking torque Tb:

u =
[
Tm,a Tb

]T (19)

The state transitions are incorporated in the equality constraints. With time t, vehicle
mass mveh, rotating mass factor λ, the vehicle resistances Fair, Froll and Fslope, resulting pow-
ertrain force at the wheel Fpt and wheel radius rw, equality constraints can be formulated
to describe the general characteristics of movement:

h1 = a−
Fpt +

Tb
rw
− Froll − Fair − Fslope

mveh λ
, (20)

h2 = dv− a dt, (21)

h3 = ds− v dt. (22)
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For the implemented eco-driving algorithm, air resistance is determined based on
Equation (6) with the restriction v = vflow, the rolling resistance given by Equation (8) with
α = 1 and β = 0. We assume a flat street, thus gravity forces due to inclined roads can
be neglected.

General driving behavior is limited by inequality constraints, which are represented
as box constraints:

− jmax ≤
da
dt
≤ jmax, (23)

amin ≤ a ≤ amax, (24)

vmin ≤ v ≤ vmax, (25)

smin ≤ s ≤ smax, (26)

with j representing jerk. The maximum velocity is a function of s and is implemented with
arc-tangent functions

vmax = fvmax(s) = vmax,init +
M

∑
κ=1

dvmax,κ

(
0.5 +

1
π

atan(σ(s− smax,c,κ))

)
, (27)

with M speed limit changes, where dvmax,κ is the difference in the speed limit at the location
smax,c,κ . The initial speed limit is represented by vmax,init and σ is a scaling factor. Braking
torque is limited by

Tb,max ≤ Tb ≤ 0. (28)

Further equality and inequality constraints are presented in Section 3.2.1.

3.2.1. Powertrain

Figure 1 summarizes the underlying powertrain model of the optimization for the case
of a driving vehicle. The battery power is reduced due to internal losses of the battery based
on an internal resistance Ri and the cell current Icell. The battery output power Pbat,out is
reduced by the auxiliary power Paux and results in the power electronics input power Ppe.
This power is in turn reduced by the internal losses of the power electronics Ppe,loss and
yields the electric motor input power Pm,el. This power is reduced due to the electric losses
of the motor Pm,loss,el resulting in a mechanical motor power at the air gap Pm,me,a. On the
mechanical side, the motor torque at the air gap is reduced due to mechanical motor losses
Tm,loss, resulting in a mechanical motor output power Pm,me,out. In the transmission, further
torque losses Tgb,loss occur due to the losses described in Section 2.2.3. The remaining
power at the wheels Pw is used to overcome the wheel-to-distance losses. In the following,
we describe how the powertrain model is incorporated into the optimization.
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Figure 1. Power flow in the electric powertrain and the losses considered in the optimization in red.

Battery losses are modeled as an equivalent electric circuit model. Based on the Rint
model, battery output power Pbat,out is defined as

h4 = Pbat,out − (Pbat − Ri I2
cell npar nser) (29)

with the internal cell resistance Ri, the parallel number of cells npar and serial number of
cells nser, where

h5 = Icell −
Pbat

Vcell npar nser
(30)

with the cell-OCV Vcell. The cell-OCV is a polynomial function of SOC

Vcell = fVcell(ξ). (31)

The SOC is defined by

h6 = dξ − 100
Icell dt
Ccell

(32)

with the cell capacity Ccell and limited by

0 ≤ ξ ≤ 100. (33)

Maximum recuperation power Precu,max may be limited by the battery. With the
maximum cell voltage Vcell,max, maximum battery recuperation current Irecu,max can be
calculated by

Irecu,max =
Vcell −Vcell,max

Ri
, (34)

resulting in an additional inequality constraint

Irecu,max ≤ Icell. (35)

Motor maps in tabulated form cannot be used in gradient-based optimizations. Thus,
these tabulated data must be fitted to differentiable functions. As can be seen in [50], losses
increase with linear terms as the motor torque increases. Assuming the same losses for
negative torques, zero torque is a challenging point when it comes to fitting because it
cannot be differentiated due to the V-shape. Continuous polynomial fitting approaches
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that fit one polynomial for traction and recuperation torque fail to fit the point and area
around zero torque adequately, see Figure 2.

−100% 0 100%

Motor air gap torque

Lo
ss

es

Shape of original losses (measurements, analytical calculations)
Continuous fit/meta-model (polynomial order: 2)
Continuous fit/meta-model (polynomial order: 4)
Split fit/meta-model positive torque (polynomial order: 2)
Split fit/meta-model negative torque (polynomial order: 2)

Figure 2. Fitting concepts for losses with V-shape. Continuous fits fail to fit the point around zero
torque, even for high polynomial degrees.

In [10], we used two control variables, one for traction torque and one for recuperation
torque to overcome this problem. However, this required computationally expensive
complementarity constraints. Thus, we present a different approach, better able to represent
the V-shape of the losses. By introducing two split meta-models, one for positive torque
and one for negative torque, the losses can be fitted with a small normalized approximation
error, especially around zero torque, which is an operating region of major interest in
eco-driving applications. A split fitting approach is shown in Figure 2.

As described in Section 2.2.2, different losses occur for different motor parts. For the
sake of simplicity, we assume that all losses except the mechanical losses occur in the stator,
while the mechanical losses occur at the rotor. By fitting two polynomial functions, one
for electric motor losses at positive torques f+m,loss and one at negative torques f−m,loss, the
motor losses at the stator sm,loss, can be expressed with two inequality constraints

f+m,loss(ωm, Tm,a) ≤ sm,loss (36)

f−m,loss(ωm, Tm,a) ≤ sm,loss (37)

where the polynomial functions depend on motor torque and motor speed ωm

ωm =
2π v igb

rw
, (38)

with igb representing the transmission ratio. Furthermore, motor speed and torque are
limited by

ωm ≤ ωm,max (39)

− Tm,max,ct ≤ Tm,a ≤ Tm,max,ct. (40)

− Tm,max,fw(ωm) ≤ Tm,a ≤ Tm,max,fw(ωm). (41)

where Tm,max,ct is the maximum torque in the constant torque range of the motor and
Tm,max,fw is the maximum torque in the field weakening range of the motor, which is
represented by a quadratic polynomial fit.
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Finally, the motor torque is reduced by the mechanical losses, resulting in a motor
output torque Tm,out

Tm,out = Tm,a − fm,loss,mech(ωm), (42)

with fm,loss,mech representing a polynomial function.
Losses of the power electronics are incorporated in the functions f+m,loss and f−m,loss.
The same problems due to the V-shape also occur for the torque losses inside the

gearbox. Thus, modeling is similar to motor power losses with two functions, one for
positive input torques and one for negative input torques. Two inequality constraints are
set, to limit the torque losses sgb,loss

f+gb,loss(ωm, Tm,out) ≤ sgb,loss (43)

f−gb,loss(ωm, Tm,out) ≤ sgb,loss (44)

where the polynomial functions depend on the input torque, which corresponds to the
motor output torque as well as the input speed, which is the motor speed. The output
torque Tgb,out can be calculated by

Tgb,out = (Tm,out − sgb,loss) igb (45)

Finally, the powertrain force at the wheels can be calculated by

Fpt =
Tgb,out

rw
. (46)

3.2.2. Two Gears

If a two-speed transmission is used, the control vector is modified to

u =
[
Tm Tb Cgb

]T (47)

with the selected gear Cgb. Motor speed and gearbox output torque are calculated by

ωm = ((2− Cgb) igb + (Cgb − 1) igb,2)
2π v
rw

, (48)

Tgb,out = (Tm,out − sgb,loss) ((2− Cgb) igb + (Cgb − 1) igb,2) (49)

with the second gear’s ratio igb,2. As in [10], the problem is solved in two steps. First the
problem is solved in a relaxed formulation where 1 ≤ Cgb ≤ 2. This result is used to solve
a problem, in which it is penalized if Cgb 6= {1, 2}.

3.2.3. Two Motors

For a vehicle with four-wheel drive with two motors, the control vector is adapted to

u =
[
Tm,a Tb Tm,a,2

]T (50)

with Tm,a,2 representing the motor air gap torque of the second motor. Equations (36)–(45)
are used analogously for the second motor-gearbox combination. The resulting powertrain
force at the wheel can be calculated by

Fpt =
Tgb,out + Tgb,out,2

rw
. (51)

with Tgb,out,2 representing the output torque of the second motor gearbox combination.
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3.2.4. Objective Function

Driving includes many objectives as minimizing energy consumption, minimizing
traveling time, and maximizing comfort. To incorporate multiple objectives, the objective
function consists of multiple weighted sums [59], which allow setting different weights for
different objectives for flexible use of the algorithm:

J = wj

∫ (da
dt

)2
dt︸ ︷︷ ︸

Jerk

+wE

∫
Pbatdt︸ ︷︷ ︸

Energy

+wr,m

∫ (Tm,a

dt

)2
dt︸ ︷︷ ︸

Regularization Motor

+ wr,b

∫ (Tb
dt

)2
dt︸ ︷︷ ︸

Regularization Brake

+

−wvEnd 0.5 λ m (v2
end − v2

init)︸ ︷︷ ︸
Kinetic Energy

+ws

∫
(sveh − fs,t(v))2dt,︸ ︷︷ ︸

Inter-Vehicle Distance

(52)

with weighting terms wj, wa, wE, wr,m, wr,b, wvEnd and ws, inter-vehicle distance sveh and
target inter-vehicle distance fs,t(v). The regularization terms are added to reduce the
dynamics of the control variables. This can influence convergence speed. If two motors are
considered, an additional regularization term is added. Furthermore, if no leading vehicle
is present, the last term is neglected.

3.2.5. Optimization Applications

We consider two optimization applications: a route optimization where no leading
vehicle is present and a MHSP with a limited horizon that can handle changing boundary
conditions, such as a leading vehicle. For the MHSP, fs,t(v) and smax are set to

fs,t = slv − tt v− sv0, (53)

smax = slv − tmin v− sv0 (54)

with slv representing the location of the leading vehicle, tt the target time gap and tmin the
minimum time gap between the vehicles and sv0 a target distance at standstill.

The problem is implemented in Matlab, using CasADi [60] modeling language and
the IPOPT-solver.

3.2.6. Post-Processing Simulation

To obtain results acquired from the tabulated models, post-processing is required.
A simulation is performed based on the tabulated models and the optimization results
as input. The wheel-to-distance losses are calculated based on the speed profile of the
optimization. With the tabulated models, the component losses are calculated to obtain the
power at the battery output. Equation (11) is used to calculate the battery losses and the
corresponding SOC. If there are several motors, the wheel-to-distance losses are allocated
to different axles according to the optimized control inputs.

For the remainder of the paper, we use and present the simulated energy consumption
which is calculated based on the simulation with the tabulated models. For the comparison
between the meta-model and the tabulated model, we additionally consider the energy
consumption calculated by the meta-models.

3.3. Experiment Design

In this subsection, we outline the different experiments that are conducted with the
algorithm. First, we validate our powertrain models based on real-world measurements.
Finally, we compare our proposed algorithm to a state-of-the-art eco-driving optimization
algorithm and an algorithm with continuous high-degree polynomial meta-models.

3.3.1. Validation Experiments

The parameterization process of the optimization represents two levels of abstraction,
which are shown in Figure 3. Real-world measured data and analytic models set the
baseline. With loss maps in tabulated form, we describe and model reality. However,
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since the optimization algorithm cannot use the models in tabulated form, the tabulated
models are fitted to meta-models based on polynomial functions. Thus, the optimization is
based on the two-times abstracted models, and so are their results. To obtain more accurate
final results, the optimized speed profile and powertrain operation are simulated with the
tabulated powertrain models to obtain the final results.

Vehicle Measurements/
Analytic Models

Tabulated Models

Meta-Models Optimization

Simulation

Calculated Energy
Consumption

Figure 3. Overview of the parameterization, optimization and simulation process. A detailed com-
parison between vehicle measurements and calculated energy consumption as well as a comparison
between the tabulated models and meta-models are presented in Sections 5.1 and 5.2, respectively.

In Section 4, we parameterize the algorithm based on a Volkswagen ID.3. To assess
the quality of the tabulated models, all four cycles of [61] are simulated and compared to
the measured data. Since the dynamo-meter used is temperature-sensitive, the second run
was analyzed. Auxiliary power was set to the average measured auxiliary power of the
cycle under consideration.

3.3.2. Comparison Experiments

To assess the energy-saving potential of our proposed algorithm, we compare its
results to a representative state-of-the-art algorithm, which uses a continuous low-order
polynomial fit for the motor losses together with a constant gearbox efficiency of 97%.
In this context, continuous means a single fit for both, the positive and negative torque
regions. Additionally, we evaluate the significance of the proposed concept of integrating
split loss models into a nonlinear eco-driving optimization algorithm. To do so, we present
our eco-driving algorithm results, which are based on the integration of two interleaved
polynomials via a helper variable and inequality constraints. Subsequently, we compare
these results to the same algorithm which uses continuous high-order polynomial fits to
integrate the loss models.

The baseline of the studies is a car-following scenario in which the leading vehicle is
driving the worldwide harmonized light vehicles test procedure (WLTP). Car-following
usually results in smoother speed profiles than for the leading vehicle. However, during
real driving, the vehicle has to adapt its speed due to traffic and spatial factors such as
speed limits and corners. In a car-following scenario, taking only the leading vehicle into
account would result in unrealistic driving behavior because the vehicle might drive too
fast in areas where speed would be limited, for example, due to corners. To include spatial
factors, we added a speed limit for the ego vehicle. The initial set of weighting factors and
the driving style parameters can be seen in the Appendix. The prediction and optimization
horizon is set to 10 s and we assume vehicle-to-vehicle (V2V) communication. Thus, the
ego vehicle is aware of the speed profile of the leading vehicle up to the horizon time.

To see the influence of the meta-model on the optimal speed profile, the city-to-city
scenario of [10] is used. The vehicle has to drive 2500 m in 100 s, where the velocity at the
start and end is 50 km h−1 and the maximum speed is 120 km h−1.
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4. Parametrization

In the following, we use a Volkswagen ID.3 Pro Performance, which is analyzed in [61]
as a reference vehicle and parameterizes the algorithm. In the second step, we modify its
powertrain topology.

4.1. Parametrization of the Vehicle and Tabulated Models

The advantage of the proposed algorithm is the possibility of parameterizing the
vehicle component by component. To generate the loss map of the PMSM and inverter,
we use the data from [61], however, we append the electric motor losses at coasting with
the help of some real-world coast down tests of the tested vehicle. It is assumed that
mechanical motor losses are not included in the motor maps. Thus, mechanical windage
losses are calculated based on [62] with

Tloss,m = cm2r3
m,rωmlm (55)

where rm,r is the radius of the rotor, lm the stack length and cm an empirical value. The em-
pirical value is calculated based on data of [63].The values are presented in the Appendix A.

The electrical loss map is flipped for the recuperation range, however, due to the
mechanical losses, the resulting loss and efficiency map is not symmetrical.

Since no transmission loss map was available, a loss map is calculated analytically.
To generate the loss map for the transmission, the methods described in Section 2.2.3
are employed. To estimate the transmission losses, the dimensions of the transmission
components need to be known. These dimensions include gear widths, gear modules, gear
diameters, shaft diameters, and bearing dimensions. To solve this problem, the method
presented by Nicoletti et al. [64] is employed. Nicoletti et al. develop an algorithm to size
BEV-transmissions based on a limited number of input parameters, namely transmission
ratio, maximum motor torque, and maximum rotational speed. The losses are then cal-
culated as described in Section 2.2.3, based on the calculated transmission dimensions.
Due to confidentiality, not all parameters can be presented. However, the final loss map is
publicly available.

The OCV is modeled with tabulated data based on [61].
The ca-value is calculated based on the quadratic resistance terms of [61]. Furthermore,

the constant roll resistance value is estimated. The other rolling resistance parameters
are calculated by fitting the coast-down behavior of the optimization to the coast-down
behavior of the car.

The parameterized ID.3 with one motor and one gear (1M1G) is the reference power-
train topology. To investigate the influence of different topologies, a two-speed transmission
is installed (1M2G) or another motor is installed on the non-driven axle (2M1G). A 30 kW
IM is chosen as a second motor. The losses of the motor are calculated with the tool pre-
sented in [65]. An extension of the tool calculates the switching and conduction losses of
the power electronics, which is not the focus of this paper. The resulting vehicle parameters
can be found in the Appendix A.

4.2. Parametrization of the Meta-Models

The loss maps of the gearbox, inverter and motor, as well as the OCV-curve of the
battery, are fitted with polynomial functions. The vehicle is often operated in the low-
power regions with corresponding small losses. To represent these small losses properly,
relative least square fitting is used. We use polynomial functions ffit(x, y) with the shape
of Equation (5), which are fitted to the tabulated models at NLUT operating points by
minimizing the relative least squares with zLUT,j representing the value of the tabulated
model corresponding to the tuples (xj, yj):

minimize
NLUT

∑
j=1

(
ffit(xj, yj)− zLUT,j

zLUT,j

)2

. (56)
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The SOC-dependent OCV is fitted by a linear function in the range 4 to 97% since
this is the usable capacity of the vehicle [61]. For electric motor losses and gearbox losses,
we use separate functions for positive and negative input torques, respectively. Since we
assume symmetrical electric motor losses and gearbox losses for positive and negative
torques, we can derive

f+(ω, T) = f−(ω,−T). (57)

For f+m,loss, f−m,loss, f+gb,loss and f−gb,loss further inequality constraints are required for the
fitting described in (56)

f+(ω, T+) ≥ f−(ω, T+), (58)

f−(ω, T−) ≥ f+(ω, T−), (59)

with T+ ∈ [0, Tm,max,ct] and T− ∈ [−Tm,max,ct, 0]. These inequality constraints are required
so that the actual fit of the losses in the torque range under consideration is higher than
the non-relevant fit of the losses corresponding to the torque range of the opposite sign,
resulting in appropriate use of the inequality constraints given in Equations (36), (37), (43)
and (44). Mechanical losses of the motor are modeled linearly.

The polynomial order (coefficients m and n of Equation (5)) of each fit as well as the
calculated root-mean-square relative errors (RMSRE) are given in Table 1.

Table 1. Fitting parameters and results for the split meta-models. The parameters m and n represent
the polynomial order (coefficients m and n of Equation (5)).

Function Component m n RMSRE

f+m,loss/ f−m,loss PMSM 5 3 0.079
f+m,loss/ f−m,loss IM 5 3 0.067
f+gb,loss/ f−gb,loss Gearbox PMSM 2 3 0.025
f+gb,loss/ f−gb,loss Gearbox IM 2 3 0.025

fVcell Battery 1 0 0.013

To reproduce results, which are obtained with approaches shown in the state-of-the-
art, we use optimization with a continuous low-order polynomial motor fit with constant
gearbox efficiency. The fitting parameters can be seen in Table 2. This implementation
represents a baseline to evaluate our new approach of using gearbox losses and integrating
motor and gearbox losses by split meta-models.

To separately examine the effect of the split meta-models we use an implementation
of the power losses with continuous high-order fits for the motor and gearbox. The fitting
parameters are shown in Table 3.

Table 2. Fitting parameters and results for the continuous low-order polynomial meta-models
representing the state-of-the-art. The parameters m and n represent the polynomial order (coefficients
m and n of Equation (5)).

Function Component m n RMSRE

f conti,SOA
m+gb,loss PMSM+Gearbox 2 2 0.555

f conti,SOA
m+gb,loss IM+Gearbox 2 2 0.682
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Table 3. Fitting parameters and results for the continuous high-order polynomial meta-models. The
parameters m and n represent the polynomial order (coefficients m and n of Equation (5)).

Function Component m n RMSRE

f conti
m,loss PMSM 5 6 0.202

f conti
m,loss IM 5 6 0.293

f conti
gb,loss Gearbox PMSM 2 6 0.137

f conti
gb,loss Gearbox IM 2 6 0.123

4.3. Additional Parametrization

Setting the weighting terms of the objective function is not trivial. We introduced
a starting set, by evaluating energy consumption, driving smoothness and optimizer
performance. The weighting factors and the driving style parameters are shown in the
Appendix A.

For all optimizations and simulations, step size ∆t is set to 0.2 s. The update frequency
of the moving horizon is set to 1 Hz.

5. Results and Discussion

In the following, we present and discuss the results. First, the quality of the simulation
models is shown by comparing the simulation results with real-world measured data.
Subsequently, we analyze our proposed algorithm by comparing its results to those of a
state-of-the-art algorithm and an algorithm that uses continuous high-order polynomials.
We compare the meta-models and tabulated models to gain insights into their differences.
Finally, we discuss the findings of these analyses, the influence of no-load losses, and the
limitations of this work.

5.1. Validation of Simulation Models

Figure 4 shows the energy consumption at the battery output of the simulation and
measurement for the 2nd WLTP, urban, intercity and highway cycle as well as the mea-
surement spread between all driven cycles of one kind. Furthermore, Table 4 shows
the deviation between the battery output energy consumption of the simulation and the
corresponding measurement for all runs under consideration.

Table 4. Derivations between the battery output energy consumption of the simulation and the
corresponding measurement in %.

Cycle WLTP Urban-Cycle Intercity-Cycle Highway-Cycle

Derivations in % −1.6% −0.1% −3.1% 1.1%

The simulation follows the measurement qualitatively and quantitatively for all cycles.
The derivations are all smaller than 1.7% with exception of the intercity cycle. However,
for this cycle, the measurement spread is the highest, indicating inaccurate measurements.
Since the simulation is capable of representing reality in a wide range of cycles, we assume
the model to be valid.
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Figure 4. Battery output energy consumption of measurement data [61] and simulation for the 2nd
run of the WLTP, urban, intercity, and highway-cycle.

5.2. Comparison to Other Algorithms and Quality Analysis of Meta-Models

As can be seen in Tables 1 and 3, the fittings of the split meta-models result in sig-
nificantly lower RMSREs in comparison to the continuous high-order meta-models, even
though the polynomial degree of the continuous meta-models is higher. The continuous
low-order fitting that represents the state-of-the-art (Table 2) shows the highest RMSRE.
The smaller approximation error of the split meta-model can be explained with the concept
shown in Figure 2. In contrast to the split meta-models, the continuous fits cannot represent
the actual losses, especially around zero torque.

Figure 5 shows the data points of the tabulated model and the resulting fits of the
split meta-models for the PMSM. The areas excluded due to the inequality constraints of
Equations (36) and (37) are shown without surface color. Due to the two fits, a V-shape
can be represented around zero torque. The data points of the tabulated model and the
resulting fits of the IM as well as from the transmission of the PMSM are shown in the
Appendix. Noteworthy is the different shape of the losses of PMSM and IM, especially at
zero torque. The higher RMSRE of the PMSM in contrast to the IM can be explained by
the fact that the tabulated data of the PMSM was obtained from measurement data, which
itself has a certain scatter.

Figure 6 shows the resulting energy consumption for the car-following scenario for
the three different powertrain topologies, using the different meta-models. Furthermore,
the energy consumption of the leading vehicle is shown as a reference, whereby the
powertrain operation of the 1M2G- and 2M1G-topology was optimized based on our
proposed split meta-models.
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Figure 5. (a) Electrical motor losses of ID.3: fits of the split meta-model and the corresponding data
points of the tabulated model. The ranges used due to the inequality constraints of Equations (36)
and (37) are highlighted with the surface color. Irrelevant ranges of fits are presented with grid lines
only. (b) Difference between fit and tabulated electrical motor losses.
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Figure 6. Energy consumption of the leading vehicle and the ego vehicle using different types of
eco-driving algorithms.

As can be seen in Figure 6, our proposed algorithm uses the least amount of energy for
all powertrain topologies. The relative energy savings with respect to the leading vehicle
and with respect to the other algorithms depend on the powertrain topology. Furthermore,
it can be seen, that the optimization with continuous high-order polynomial meta-models
for motor and gearbox saves almost equally as much energy as the state-of-the-art algorithm
based on a continuous low-order polynomial meta-model for the motor and constant
gearbox efficiency. This shows the interdependence of the tabulated models and meta-
models and the importance of the split meta-model approach. Optimization results are
only as good as the underlying powertrain model in combination with their representation
within the meta-models. So even though the continuous high-order polynomial meta-
models use the implementation of the gearbox loss model and have closer fits due to the
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higher polynomial degrees, they cannot significantly enhance the energy savings with
respect to the state-of-the-art algorithm. This is due to the continuous fits, which fail to
represent the V-shape around zero torque. The implementation of the split meta-models
results in fits with a smaller approximation error, even though they use lower polynomial
degrees than in the continuous high-order meta-models. Thus, this algorithm allows the
highest energy savings. Furthermore, it can be seen that 2M1G requires more energy than
1M1G. This is due to the additional weight but also due to the additional load-independent
losses. Thus, their modeling of them is crucial for the evaluation of powertrain topologies.

The relative energy-saving potential of the proposed algorithm with respect to the state-
of-the-art algorithm depends on the powertrain topology. For the 1M1G-topology, the pro-
posed algorithm saves 25% more energy than the state-of-the-art. For the 2M1G-topology
the saving gains rise to 101%. The energy consumption of the 2M1G topology is not only
influenced by the vehicle speed profile but also by the internal powertrain operation.

As can be seen in Figure 7a–c, the optimizations with the continuous meta-models
use both motors simultaneously to accelerate the vehicle, while the optimization with the
split meta-model uses only one motor to propel the vehicle. Thus, the split meta-model
finds a more efficient powertrain operation for the 2M1G topology than the continuous
meta-models, due to the more accurate representation of the actual losses. Figure 7d–f
shows the computed energy consumption based on the tabulated models and meta-models
for the 2M1G powertrain topology. It can be seen, that the split meta-models represent
the tabulated models, while the calculated energy consumption based on the continuous
meta-models differs from the energy consumption based on the tabulated models.
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(a) Torque-2M1G-split meta-models
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(b) Torque-2M1G-continuous high-order
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0 300 600 900 1200 1500 1800
−100
−75
−50
−25

0
25
50
75

100

Time in s

M
ot

or
to

rq
ue

in
N

m
Motor 1
Motor 2

(c) Torque-2M1G-continuous low-order
meta-models
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(e) Energy-2M1G-continuous high-order
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Figure 7. (a–c): Torque division between the two motors of the 2M1G topology based on the split
meta-models, continuous high-order meta-models and continuous low-order meta-models. (d–f):
Energy consumption of simulation (tabulated models) and optimization (meta-models) for the 2M1G-
topology.
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The resulting optimal speed profile for the 1M1G-topology as well as the speed of the
leading vehicle and the speed limit are shown in Figure 8.
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Figure 8. Speed profiles of car-following vehicle and leading vehicle as well as the speed limit.

Figure 9 shows the speed profile as well as the motor air gap torque for the 1M1G-
topology in the city-to-city scenario for both the split and continuous high-order polyno-
mial meta-models.
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Figure 9. Comparison of (a) speed profiles and (b) corresponding motor torque during the city-to-
city-scenario for split and continuous high-order meta-models.

As can be seen from the figure, the optimal speed profile of the split meta-models
includes gliding, while the optimal speed profile of the continuous meta-models does
not. This can be explained by the better representation of the V-shape of the power loss
models by the split meta-models at low torques. This behavior underlines the necessity of
the proposed combination of inequality constraints to accurately represent the power and
torque losses.

5.3. Computational Analysis

For the car-following scenario, the average solving time on a laptop with an Intel Core
i7-7820HQ with 16 GB of RAM is shown in Table 5.

The average solving time depends on the horizon and powertrain topology. Since the
1M2G-topology needs to solve two optimizations, the solver time of the relaxed problem is
presented in braces. With an average solving time of less than one second, the algorithm
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may be online-capable. However, it should be noted that approaching speed limits, that
require the vehicle to reduce speed, are computationally expensive and require more than
1 s. Here, a better implementation of the speed limits may be required. Alternatively, the
algorithm could be adapted in the spatial domain; however, with these algorithms, waiting
at a standstill is a challenging task to solve.

Table 5. Average solving time of the algorithm for different prediction horizons in the car-
following scenario using V2V-prediction. Values in braces belong to the relaxed optimization of
the 1M2G-topology.

1M1G 1M2G 2M1G

Horizon 6 s 37.2 ms 52.2 ms (44.3 ms) 58 ms
Horizon 10 s 59.6 ms 87.4 ms (71.4 ms) 91.5 ms
Horizon 16 s 99.9 ms 143.4 ms (116.6 ms) 148 ms

5.4. Influence of No-Load Losses, and Limitations

The influence of the no-load losses must be considered in a differentiated manner:
For an existing vehicle, the mechanical no-load losses at zero torque in the transmission
and motor can also be assigned to the wheel-to-distance losses by fitting the coast-down
behavior of the vehicle. If no precise analysis is required, it does not matter which compo-
nent provides resistance to the vehicle. However, this approach leads to problems when
additional powertrain components are simulatively integrated into a vehicle, such as a
second-driven axle. The second powered axle leads to increased losses, even if the com-
ponents are only dragged along. Thus, modeling of the mechanical no-load losses at zero
torque is required. Since the mechanical no-load losses depend on the rotational speed,
the assignment of the no-load losses to wheel-to-distance losses also does not work for
two-speed transmissions, since in this case the speed is no longer uniquely linked to the
rotational speed of the motor. In addition, there are electrical no-load losses at zero torque.
With a PMSM, electrical power is required to make the motor torque-free in the air gap.
Since optimal speed profiles of electric vehicles include gliding, these operation points are
modeled in this algorithm.

Although the powertrain model described is very detailed, simplifications are still
included. The inertia of the powertrain depends on the selected gear. This is neglected in
the optimization. Furthermore, the transmission design tool does not allow for an explicit
consideration of two-speed transmissions. As a substitute, two transmissions were created,
each with one gear of the two-speed transmission. The two loss maps are similar and so
only the more conservative loss model is used for both gears. More detailed modeling of
the two-speed transmission may improve accuracy in the future.

Due to the available data, validation could only be performed at the overall vehicle
level. This means that the overall system can be checked for plausibility, but the indi-
vidual components cannot be validated. The advantage of the algorithm modeling each
component individually has the associated disadvantage that many parameters must be
used and the components must also be validated individually. Unfortunately, this was not
possible. As a result, the described transmission model cannot be finally validated either.
Nevertheless, the results of the overall system are reasonable. Since the motor is based on
measurement data, the results of the transmission can be assumed to be plausible. In order
to further improve the parameterization of the algorithm in the future, the measurement
will have to be taken on the individual components.

The modified powertrain topologies are randomly chosen and do not represent an
optimal powertrain. Thus, their performance could be improved by right-sizing the com-
ponents. This could be achieved by powertrain optimization, as shown in [11,12].

Finally, the chosen scenarios are not representative of all driving scenarios. Regarding
the validation, we chose the cycles due to the available real-world measurement data.
However, they depict a wide range of driving situations for personal vehicles. The city-to-
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city scenario is chosen as it was already used in [10] to show differences between different
optimization techniques. The car-following scenario is influenced by the idea of Mersky
and Samaras [66]. They proposed a car-following scenario for fuel economy testing of
autonomous vehicles, to accommodate for the vehicles driving style.

6. Conclusions

In this paper, we have presented a nonlinear programming eco-driving algorithm for
different battery electric powertrain topologies which is able to reduce the energy demand
in comparison to state-of-the-art eco-driving algorithms. The innovative approaches of this
algorithm are

• Incorporated detailed losses, including battery losses, inverter losses, motor losses,
transmission losses and driving losses from rolling resistance and air resistance. In
contrast to other algorithms, the losses occurring when gliding under no-load are con-
sidered more accurate. This becomes important since optimal driving includes gliding.

• A method, to properly fit the losses of the motor and transmission for the optimization
by using two polynomials, one for positive torque and the other for negative torque.
The two polynomials are interleaved via a help variable and inequality constraints.

The validation experiments show, that the models used can reflect real-world vehicles’
energy consumption in a wide range of driving cycles. Furthermore, the proposed fitting
approach allows accurate fits over the whole region of the loss maps. Thereby, the losses
are integrated into the optimization with only a small modeling error. The results show,
that the chosen meta-model affects the optimal solution. Optimal speed profile and pow-
ertrain operation differ in comparison to a continuous fit. The proposed algorithm saves
more energy than a state-of-the-art algorithm. Furthermore, we have shown that the new
approach of split meta-models is required to reach the highest potential of energy savings,
by comparing the results of the split meta-models to continuous high-order polynomial
meta-models. We publish the algorithm open-source.

Future work may include a more accurate validation of the single components, the
integration of combustion engines and corresponding transmissions for the consideration
of hybrid electric vehicles and the integration of the algorithm in real-world applications.
An analysis regarding the influence of different scenarios should be conducted in the future,
too. Since non-convex optimization can result in local optima, a review of the numerically
computed optima qualities should be conducted. Furthermore, a detailed cost analysis is
required to make statements about the economics.
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Abbreviations
The following abbreviations are used in this manuscript:

1M1G topology with one central motor and single-speed transmission
1M2G topology with one central motor and two-speed transmission
2M1G topology with all-wheel drive based on two central motors with

single-speed transmission
BEV battery electric vehicle
CVT continuously variable transmission
DP dynamic programming
IM induction motor
MHSP moving horizon speed planner
NLP nonlinear programming
OCP optimal control problem
OCV open-circuit voltage
P&G Pulse and Glide
PMSM permanent-magnet synchronous motor
RMSRE root-mean-square relative errors
SOC state of charge
SQP sequential quadratic programming
V2V vehicle-to-vehicle
WLTP worldwide harmonized light vehicles test procedure

Appendix A

Table A1. Weighting Factors.

Mode wj wa wE wr,m wr,b wvEnd ws

Route 25 0 10−3 0 0 0 0
MHSP 20 0 4× 10−3 10−4 10−6 4× 10−3 10−2

Table A2. Driving Parameters.

Mode jmax amin amax tt tmin sv0

Route 2 −3.5 2 - -
MHSP 5 −5.5 3 1.8 1 1.5

Table A3. Other Parameters.

Parameter Symbol Value Unit Source

Vehicle parameters—1M1G

Rolling resistance coefficient a 9.5 × 10−3 - Estimated
Rolling resistance coefficient b 0 - Fitted
Rolling resistance coefficient c 1.717 × 10−6 - Fitted

Air resistance coefficient ca 0.1961 - Based on quadratic resistance parameter of [61]
Front surface aa 2.36 m2 Measured

Mass vehicle + (driver) mveh 1820 + (150) kg [61]
Rotating mass factor λ 1.03 - estimated

Wheel radius rw 0.3468 m [61]
Gear ratio igb 11.53 - [61]

Maximum motor torque PMSM Tm,max,ct 309 N m [61]
Radius of the rotor PMSM rm,r 80.5 mm Measured
Stack length rotor PMSM lm 210 mm Measured

Empirical value windage losses cm 4.65 - Based on data of [63]
Internal battery resistance Ri 1.857 mΩ [61]

Battery capacity Ccell 80.44 A h [61]



Energies 2022, 15, 5396 25 of 29

Table A3. Cont.

Parameter Symbol Value Unit Source

Number of serial cells nser 108 - [61]
Number of parallel cells npar 2 - [61]

Default SOC ξ 95 % -
Maximum braking torque Tb −5000 kg/m3 estimated
Default auxiliary power Paux 300 W estimated

Environment parameters

Air density ρa 1.18 kg/m3 estimated
Acceleration due to gravity g 9.81 m s−2 -

Additional vehicle parameters—1M2G

Additional vehicle mass madd 25 kg estimated
Gear ratio second gear igb,2 3 - -

Additional vehicle parameters—2M1G

Additional vehicle mass madd 80 kg estimated
Gear ratio second motor igb,m,2 8 - -

Maximal motor torque IM Tm,2,max,ct 165 Nm [65]
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Figure A1. Contour lines of the ID.3s electric motor losses (PMSM).
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Figure A2. Contour lines of th IMs electric motor losses.
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Figure A3. Contour lines of the gearbox losses.
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Figure A4. (a) Electrical motor losses of the IM: fits of the split meta-model and the corresponding
data points of the tabulated model. The ranges used due to the inequality constraints of Equations (36)
and (37) are highlighted with surface color. Irrelevant ranges of the fits are presented with grid lines
only. (b) Difference between fit and tabulated electrical motor losses.
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Figure A5. (a) Gearbox losses of ID.3: fits of the split meta-model and the corresponding data points
of the tabulated model. The ranges used due to the inequality constraints of Equations (36) and (37)
are highlighted with surface color. Irrelevant ranges of the fits are presented with grid lines only.
(b) Difference between fit and tabulated gearbox losses.
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